
rspb.royalsocietypublishing.org
Research
Cite this article: Green JP, Cant MA, Field J.

2014 Using social parasitism to test reproduc-

tive skew models in a primitively eusocial

wasp. Proc. R. Soc. B 281: 20141206.

http://dx.doi.org/10.1098/rspb.2014.1206
Received: 18 May 2014

Accepted: 9 June 2014
Subject Areas:
behaviour, evolution, theoretical biology

Keywords:
cooperative breeding, reproductive skew,

concessions, tug-of-war, Polistes dominulus,

social parasitism
Author for correspondence:
Jonathan P. Green

e-mail: jpgreen@liv.ac.uk
†Present address: Mammalian Behaviour and

Evolution Group, University of Liverpool,

Leahurst Campus, Neston CH64 7TE, UK.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Using social parasitism to test
reproductive skew models in a primitively
eusocial wasp

Jonathan P. Green1,†, Michael A. Cant2 and Jeremy Field1

1School of Life Sciences, University of Sussex, John Maynard Smith Building, Brighton BN1 9QG, UK
2Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9EZ, UK

Remarkable variation exists in the distribution of reproduction (skew) among

members of cooperatively breeding groups, both within and between species.

Reproductive skew theory has provided an important framework for under-

standing this variation. In the primitively eusocial Hymenoptera, two

models have been routinely tested: concessions models, which assume com-

plete control of reproduction by a dominant individual, and tug-of-war

models, which assume on-going competition among group members over

reproduction. Current data provide little support for either model, but uncer-

tainty about the ability of individuals to detect genetic relatedness and

difficulties in identifying traits conferring competitive ability mean that the

relative importance of concessions versus tug-of-war remains unresolved.

Here, we suggest that the use of social parasitism to generate meaningful vari-

ation in key social variables represents a valuable opportunity to explore the

mechanisms underpinning reproductive skew within the social Hymenoptera.

We present a direct test of concessions and tug-of-war models in the paper

wasp Polistes dominulus by exploiting pronounced changes in relatedness

and power structures that occur following replacement of the dominant by

a congeneric social parasite. Comparisons of skew in parasitized and unpar-

asitized colonies are consistent with a tug-of-war over reproduction within

P. dominulus groups, but provide no evidence for reproductive concessions.
1. Introduction
Reproductive partitioning (‘skew’) in cooperatively breeding groups varies

dramatically both within and between species, from an equal distribution of

reproduction to a complete monopoly by a single individual. Efforts to under-

stand this variation have centred around tests of competing ‘reproductive skew’

models [1–5]. These models aim to explain skew in terms of negotiations and/

or competition over reproductive benefits, the outcome of which is shaped by

various social and ecological factors, including kinship, resource-holding poten-

tial (RHP), group productivity and constraints on independent breeding [6,7].

Primitively, eusocial Hymenoptera (those lacking morphological castes)

have been an important testing ground for skew models owing to the small

size of cooperative groups and the potential for all individuals to pursue inde-

pendent reproduction [1–5,8–12]. Control of reproduction by dominants seems

likely in these species, owing to the small group sizes and the nearly continuous

presence of the dominant on the nest [7]. Tests of skew theory in these taxa have

therefore focused on models in which the dominant is assumed to have either

complete (concessions models) or partial control of reproduction (tug-of-war

models). In concessions models, the dominant (defined as the individual that

controls group membership) controls reproduction, and skew is determined

by the amount of reproduction that the dominant allocates to the subordinate

in order to retain it peacefully in the group [13,14]. The size of this concession

is determined by the inclusive fitness benefits to subordinates of helping versus
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pursuing independent reproduction. Thus, the concessions

obtained by subordinates will be smaller (i.e. skew will be

higher) when relatedness is high, because the subordinate

receives larger indirect benefits from helping to rear the

dominant’s offspring. Concessions are also predicted to be

small when productivity and constraints on independent

breeding are high, as in both cases subordinates obtain

greater benefits by remaining in the group rather than

departing [6,13,14].

Tug-of-war models, in contrast, assume that no one

individual has complete control over the allocation of repro-

duction. Rather, skew is determined through competition,

with RHP asymmetries determining the share of reproduction

each individual receives [15]. Unlike concessions models, in

which some reproduction may be ceded to ensure group stab-

ility, tug-of-war models do not consider the possibility of

group dissolution in response to the partitioning of reproduc-

tion [15]. Consequently, factors such as productivity and

constraints on independent breeding are predicted to have no

effect on skew in a tug-of-war over reproduction [6]. Rather,

asymmetries in RHP are of central importance, with high

skew predicted when subordinate RHP is low relative to

dominant RHP. Further, in contrast with concessions models,

tug-of-war models predict either no relationship between relat-

edness and skew, or else a weakly negative relationship when

subordinate RHP is very low [15].

Surprisingly, despite the central role played by primi-

tively eusocial wasps and bees in the development and

early testing of concessions models [1,14], there currently

exists little evidence for reproductive concessions [7]. Positive

correlations between relatedness and skew, consistent with

concessions models, are limited to three studies [2,8,12],

while the majority report no correlation between relatedness

and skew [3,5,9–11,16,17]. Reviewing these data, Field &

Cant [7] argue that small sample sizes combined with low

variance in relatedness among groups may have limited stat-

istical power. Furthermore, the ability of individuals to

discriminate among conspecifics on the basis of genetic relat-

edness and the possible cues involved in this process are

often unclear [7,18–20]. The lack of a relationship between

skew and relatedness does not therefore rule out reproductive

transactions if reproduction is allocated based on mean relat-

edness rather than variation in relatedness at the individual

level [7].

Similarly, there is uncertainty about the extent of support

for tug-of-war models [7]. Failure to detect a positive corre-

lation between skew and relatedness has been interpreted

as support for a tug-of-war over reproduction [4]. However,

the central prediction of tug-of-war models, that skew

should decrease with increasing subordinate RHP relative

to the dominant, remains untested within primitively euso-

cial wasps and bees [7]. One possible reason for this is the

difficulty in identifying traits that determine an individual’s

RHP, with efforts to pinpoint traits underlying dominance

frequently yielding contradictory results [21–23].

To test the central predictions of concessions and tug-

of-war models, we thus require a method of generating

variation in: (i) dominant-subordinate relatedness, and (ii)

dominant-subordinate differences in RHP that are both mea-

surable and biologically meaningful. Here, we present a

novel method for generating this variation and use it to test

concessions versus tug-of-war models in the paper wasp

Polistes dominulus. Polistes dominulus is a temperate species in
which nests are founded singly or by small groups of females

(co-foundresses). Relatedness between P. dominulus co-foun-

dresses is highly variable, with a significant proportion of

groups containing non-relatives [16,17]. In common with

other polistine wasps, shared odour cues among nest-mates

provide a rule-of-thumb for recognizing relatives [18]. There

is also some evidence that P. dominulus foundresses may

additionally be capable of within-colony kin discrimination,

though the cues involved remain unknown [19].

To explore the role of concessions versus competition in

determining skew within P. dominulus groups, we exploit the

changes in relatedness and power structures of co-foundress

groups that occur following usurpation of the colony by a con-

generic social parasite, Polistes semenowi. Polistes semenowi is

one of three social parasites in the genus Polistes, all of

which parasitize P. dominulus co-foundress groups within the

hosts’ native Afro-Eurasian range [24]. Usurpation by the para-

site occurs shortly before the emergence of the first host

offspring and is characterized by violent and prolonged fight-

ing between the parasite and adult hosts [25,26]. After

successful usurpation, the parasite assumes the role of princi-

pal reproductive, relying on subordinate hosts to rear its

offspring [24]. Significantly, replacement of the host dominant

by the parasite precipitates a shift in both relatedness and RHP

asymmetry. Substitution of the host dominant by a heterospe-

cific parasite reduces relatedness to zero, and it is clear from

the hosts’ behavioural response to usurpation by the parasite

that they are able to detect parasitism [25–27]. Replacement

of the host dominant by the parasite also leads to a decrease

in the relative RHP of subordinates: the parasite has various

morphological specializations, including larger body size

and thickened mandibles, which are thought to represent

adaptations to violent usurpation [24].

Social parasitism thus represents a ‘natural experiment’,

in which the predictions of skew models can be tested by

comparing skew in parasitized and unparasitized colonies.

If determined via concessions, skew is expected to be lower

in parasitized than unparasitized colonies, because of the

zero relatedness between subordinate hosts and the parasite

dominant. If, however, skew is determined through on-

going competition, as assumed by tug-of-war models, skew

should be higher in parasitized colonies owing to the greater

asymmetry in RHP between subordinates and parasites

than between subordinates and dominants in unparasitized

colonies (see table 1 for a summary of predictions).

Here, we test these predictions by comparing reproductive

skew in unparasitized P. dominulus colonies and colonies para-

sitized by P. semenowi. Skew was examined in the first instance

using microsatellites to determine the number of eggs laid by

dominants and subordinates on each nest type. However, gen-

etic data alone may not be sufficient to illuminate the processes

determining skew and can give misleading estimates of skew if

considered in isolation [28]. We therefore use subordinate

ovarian development as a measure of reproductive investment

on parasitized and unparasitized nests.
2. Material and methods
(a) Field methods
We identified 30 P. dominulus colonies parasitized by P. semenowi
at rural sites around Conil de la Frontera and Zahara de los

Atunes (Cádiz Province, Spain) in April–May 2010 during the



Table 1. Predictions made by skew models for parasitized and unparasitized colonies, based on differences in dominant-subordinate relatedness and RHP.

variable skew

relatedness RHP concessions tug-of-war

parasitized lower higher lower higher

unparasitized higher lower higher lower

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:2014120

3

late pre-emergence phase of the host colony cycle. Each parasi-

tized nest was matched with a nearby (less than 0.5 km)

unparasitized nest of a similar size (73.1+3.46 cells, range:

40–148) and with a similar number of adults (mean+ s.e. ¼

6.82+0.42, range: 3–20). To stimulate egg-laying, 10 eggs were

removed from each nest one week following nest identification.

The delay of one week was to allow any parasites that might

have usurped the nest only just before nest identification suffi-

cient time to develop their ovaries. Seven days after egg

removal, nests and adults were collected and stored at 2808C.
 6
(b) Laboratory methods
(i) Ovarian development
Dissections of ovaries were performed in 10% saline under a 40�
dissecting microscope. Ovarian development was measured as

the mean length of the largest egg across each of the six ovarioles

[29]. Analyses using the mean number of eggs in each ovariole

produced similar results.
(ii) Genetic analysis
All adult wasps were genotyped, together with 7–14 eggs per

nest (mean+ s.e. ¼ 9.87+ 0.22 for parasitized nests, 9.90+ 0.29

for unparasitized nests), at nine microsatellite loci (Pbe128TAG,

Pdom1, Pdom2, Pdom7, Pdom20, Pdom22, Pdom25, Pdom127b and

Pdom140), as described in Leadbeater et al. [30]. PCR products

were genotyped on a 48-capillary ABI3730 DNA analyser at

the NERC Biomolecular Analysis Facility at Sheffield (NBAF-S).

Allele assignment was performed using GENEMAPPER v. 3.4. No

linkage disequilibrium, deviation from Hardy–Weinberg equili-

brium or heterozygote deficiency was found (reported in [31]).
(iii) Maternity assignment
Samples amplified successfully at 7.8+0.03 loci. On parasitized

nests, initial assignment of offspring to the parasite was based

on them sharing at least one allele at each locus with the parasite

and was facilitated by the presence of parasite-specific alleles. Off-

spring that were homozygous at every locus were classed as

males. Given the observed heterozygosities, the probability of a

P. dominulus female being homozygous at all nine loci (and thus

of being incorrectly classed as a male) was 1.01� 1026. For a

P. semenowi female, this probability was 7.24� 1025. To determine

the maternity of female P. dominulus, we partitioned offspring into

full-sister groups using the full sibship reconstruction procedure in

KINGROUP v. 2.9 [32] (for full details of the procedure, see [30]).

We assumed that foundresses were singly mated, meaning that

no individual could be the mother of more than one sister

group [17,33].

The maternity of male P. dominulus offspring was determined

individually for each male, by comparing its genotype with foun-

dress genotypes on the nest. Male offspring were present on 45

out of 60 nests. Because the parasite had produced most of the off-

spring on parasitized nests, we were unable to assign only 1 out of

139 (0.7%) males to its mother. On unparasitized nests, however,
this proportion was much higher (55%) (see also [17]). For this

reason, our analyses of skew refer to female offspring only.

(iv) Reproductive skew
Reproductive skew for each nest was calculated as the proportion of

offspring (including those assigned to missing wasps: see below)

produced by the dominant reproductive, defined as the individual

that produced most offspring within the group. Using a combi-

nation of genetic and ovarian data, we were able to assign all

female eggs to individual mothers on 44 out of 60 nests (25 parasi-

tized and 19 unparasitized nests). On four parasitized and two

unparasitized nests, some P. dominulus offspring could not be

assigned to individual subordinates, owing to the existence of

P. dominulus subordinates with similar genotypes and similar

levels of ovarian development. However, these were all unequivo-

cally offspring of subordinates, so that the proportion of offspring

produced by the dominant (our measure of reproductive skew)

was unaffected. For the same reason, the mother of the largest off-

spring sibling-group (i.e. the dominant) could not be identified on

a further six unparasitized nests. Again, however, this did not

affect our measure of skew. On a further six nests (one parasitized

and five unparasitized), the genotypes of one or more offspring

did not match those of any adult collected with the nest, pointing

to reproduction by ‘missing’ wasps. On seven nests, adult female

offspring (workers) were present at nest collection. However, dis-

sections revealed no ovarian development among workers, ruling

them out as potential mothers.

(v) Relatedness
The average relatedness between a dominant and its subordi-

nates in unparasitized colonies was calculated from pairwise

(dominant-subordinate) relatedness values obtained in KINGROUP

using the method of Queller & Goodnight [34].

(vi) Body size
Body size was estimated by measuring the width of the head at

the widest point using a 16� binocular microscope [26]. For each

nest, we calculated the difference in size between the dominant

and the mean size of subordinates. This value was then divided

by the mean size of all group members in order to obtain a

standardized difference that could be compared across nests.

(c) Statistical analysis
All statistical analyses were performed in R v. 2.14.2 [35]. The

proportion of dominant-laid eggs on all parasitized and unpara-

sitized nests was the dependent variable in a generalized linear

model with quasi-binomial errors. Mean ovarian development

(square-root transformed) was the dependent variable in a

linear model with normal errors. The latter analysis included

192 subordinates on the 22 parasitized and 18 unparasitized

nests for which measurements were available for all subordinates

and the identity of the dominant could be determined. In both

models, parasitism status (yes or no) was fitted as an explanatory

variable, together with group size, productivity (number of nest
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cells), site and the presence of workers. Two-way interactions

between parasitism and group size, productivity, site and the

presence of workers were also included. The presence of workers

was included as worker emergence may precipitate important

changes such as eviction of subordinates by the dominant [36]

and increased rates of dominant turn-over [17], both of which

may affect reproductive partitioning. Across all nests, group

size and productivity were strongly correlated (r ¼ 0.56, p ,

0.0001); their effects were therefore analysed in separate

models. Model simplification proceeded by backwards deletion

of non-significant terms until further removals led to significant

( p , 0.05) increases in deviance. Significance levels are reported

on the addition of non-significant terms, and the removal of

significant terms, from the minimum adequate model.
60

parasitized unparasitized

%

Figure 1. Percentage of dominant-laid eggs on parasitized and unparasitized
nests (n ¼ 30 in each case). Central lines represent median values, the
bottom line of the box represents the third quartile and vertical lines represent
approximately 2 s.d. around the interquartile range (circles denote outliers).

R.Soc.B
281:20141206
3. Results
Usurpation of P. dominulus nests by P. semenowi represents a

natural experiment with which to test the competing predic-

tions of concessions versus tug-of-war skew models.

However, to determine the influence of parasitism on skew,

it is first necessary to rule out any differences between the

two nest types that may have affected levels of skew prior

to parasitism. There were no differences between parasitized

and unparasitized nests in subordinate body size (Wilcoxon

rank sum test, W ¼ 10441, p ¼ 0.12, n ¼ 155 parasitized and

150 unparasitized subordinates) or the average relatedness

between subordinates on a nest (W ¼ 364, p ¼ 1, n ¼ 28 para-

sitized and 28 unparasitized nests). Matching parasitized and

unparasitized nests in the field also ensured that there were

no differences between the two nest types in colony size

(Wilcoxon matched-pairs test, W ¼ 143, p ¼ 0.40, n ¼ 30 para-

sitized and 30 unparasitized nests), productivity (W ¼ 167,

p ¼ 0.41) or ecological constraints (nests were matched for

site). Parasitized and unparasitized nests thus did not

differ systematically in any of the parameters traditionally

associated with reproductive skew prior to parasitism.

(a) Relatedness and body size on parasitized versus
unparasitized nests

The relatedness between a parasite and its subordinates on

parasitized nests is zero, while on unparasitized nests, the

median relatedness between a dominant and her subordinates

was 0.70 (range: 0–0.91). On 22 out of 27 parasitized nests, the

parasite was the largest individual. By contrast, the dominant

was the largest foundress on only 6 out of 23 unparasitized

nests (including two cases where she was the joint-largest foun-

dress), not significantly different to the proportion expected if

dominance was random with respect to body size (5 out of 23

nests; exact binomial test, p ¼ 0.62). Importantly, the size differ-

ence between dominants and subordinates was significantly

greater on parasitized than on unparasitized nests (paired

t-test: t20¼ 4.94, p , 0.0001). The expected differences between

parasitized and unparasitized nests in relatedness and RHP

were therefore observed.

(b) Reproductive skew on parasitized versus
unparasitized nests

The proportion of dominant-laid eggs was significantly

higher on parasitized nests than unparasitized nests (96+
2.0% versus 90+3.8%; F1,58 ¼ 4.49, p ¼ 0.04; figure 1). The
parasite was the only individual to produce offspring on 26

out of 30 parasitized nests, whereas the dominant foundress

was the only individual to produce offspring on 20 out of

30 unparasitized nests. Omitting one unparasitized nest

with unusually low skew (44% dominant-laid eggs) from

the analysis gave a similar result (F1,58 ¼ 3.17, p ¼ 0.08).

Across all nests, the proportion of dominant-laid eggs was

not significantly predicted by group size (F1,57 ¼ 0.43, p ¼
0.52), productivity (F1,57 ¼ 1.10, p¼ 0.30), site (F1,57 ¼ 0.98,

p ¼ 0.33), the presence of workers (F1,57 ¼ 0.30, p¼ 0.59) or

any of the interaction terms.

(c) Investment in reproduction by subordinates on
parasitized versus unparasitized nests

Despite the high levels of skew across both nest types, dissec-

tions revealed substantial investment in reproduction by

subordinates, with 76% subordinates possessing at least one

clearly defined egg in one or more ovarioles. There was no

difference in ovarian development between subordinates in

parasitized and unparasitized nests (F1,38¼ 2.08, p ¼ 0.16). In

addition, subordinate ovarian development did not vary

with group size (F1,38¼ 1.99, p ¼ 0.17), productivity (F1,38¼

0.03, p ¼ 0.86), site (F1,38¼ 0.01, p ¼ 0.92), the presence of

workers (F1,38¼ 1.60, p ¼ 0.21), or any of the interaction terms.
4. Discussion
Efforts to understand variation in reproductive skew have

been complicated by the number and complexity of existing

theoretical models [28,37,38]. Recent reviews suggest that

rather than simply selecting models whose predictions

match observed data, the focus should now be on comparing

the predictions of competing models directly, ideally using

experimental manipulations [7,28,37,38].
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In this study, we exploited the changes in the relatedness

and power structures of P. dominulus co-foundress groups fol-

lowing usurpation by a social parasite to furnish a direct test of

the predictions of concessions and tug-of-war models. Com-

paring skew in parasitized and unparasitized colonies using

a large sample size (60 nests), we found support for on-going

competition over reproduction but no evidence for reproduc-

tive concessions. Specifically, higher reproductive skew on

parasitized versus unparasitized nests indicates that subordi-

nates who are more distantly related to the dominant do not

receive greater direct benefits to compensate for reduced

kin-selected benefits available through helping, consistent

with previous work [5,16,17]. Instead, our results suggest that

reproduction is partitioned according to the relative com-

petitive abilities of group members, with the competitively

superior parasites taking a greater proportion of reproduction

than achieved by dominants on unparasitized nests.

Two further lines of evidence from our study are consistent

with a mechanism of reproductive partitioning based on com-

petition rather than one of dominant control and reproductive

concessions. First, we found no effect of group productivity on

levels of skew among either parasitized or unparasitized nests.

Under a concessions framework, the size of a subordinate’s

staying incentive is expected to decrease with increasing

group productivity, as the benefits to the subordinate of

remaining in the association are greater. Tug-of-war models,

by contrast, ignore issues of group stability and in doing so

assume that the benefits derived by a subordinate from

cooperation do not affect its share of reproduction.

Second, we found that the majority of subordinates invested

in development of their ovaries despite the fact that very few

achieved any reproductive success within their groups (see

also [39]). If the high levels of skew observed across nests were

the outcome of a transaction between the dominant and her

subordinates, we would expect a subordinate’s share of repro-

duction to be matched by its investment in offspring

production. Instead, our findings suggest that there is on-

going competition over opportunities for reproduction, with

subordinate egg-laying attempts probably countered by

oophagy by the dominant [40].

To date, concessions models have received very limited

support in paper wasps [1,3,5,7,16,41]. Evidence for reproduc-

tive concessions comes from only a single study, which found

that skew in Polistes fuscatus groups was positively correlated

with relatedness and group productivity [2]. The authors

also found that skew among late offspring was higher than

among early offspring, which they interpreted as a decreasing

staying incentive over the season in response to an increase in

the constraints on independent breeding [2]. However, it has

subsequently been argued that increasing skew could instead

be the result of a decline in subordinate power over the

season, allowing the dominant to wrest a larger share of

reproduction in a tug-of-war as the season progresses [7,20].

In part, the failure of concessions models to predict skew

in Polistes and other social taxa may stem from unrealistic

assumptions about how reproduction is controlled [42],and

about the ability of individuals to gather information con-

cerning factors that determine the benefits of cooperating

versus nesting alone [7,43]. In the case of primitively eusocial

bees and wasps, it has been suggested that the ability to move

freely in the environment may allow individuals to acquire

information about ecological constraints [7]. Dominant indi-

viduals, however, rarely leave the nest and may therefore
have little opportunity to gather information about a subordi-

nate’s scope for independent nesting [7]. Failure of dominants

to detect the ecological constraints on subordinates may limit

the scope for reproductive transactions and may explain why

previous studies have found no relationship between skew

and the magnitude of constraints [4,44].

While reproductive skew was significantly greater on para-

sitized than unparasitized nests, levels of skew were generally

high (more than 90% dominant-laid eggs on 28 out of 30 para-

sitized and 24 out of 30 unparasitized nests), in line with those

previously reported for P. dominulus [5,16,17] and other primi-

tively eusocial wasps [1,9]. Such high skews imply that

dominants have a significant competitive advantage over

their subordinates and can therefore monopolize reproduction.

This advantage seems likely to derive from something other

than (purely) physical strength, as body size is not strongly cor-

related with hierarchical rank in at least some P. dominulus
populations [21,23]. For instance, though we found substantial

ovarian development among subordinates, their investment in

reproduction may be constrained by the high energy costs of

foraging that they experience [45].

(a) Social parasitism as a means of exploring
reproductive skew

We exploited changes in the power and relatedness structures

of paper wasp groups following social parasitism in order to

conduct a direct test of competing reproductive skew models.

Comparing parasitized and unparasitized groups generates

variation in social parameters, including competitive ability

and relatedness, that is not only clear and measurable but

that is likely to be readily perceived by group members

themselves. Higher skew on parasitized nests is here inter-

preted as support for a mode of reproductive allocation in

the host species based on competition among group members.

However, it could instead be argued that the high skew on

parasitized nests is the result of a distinct mechanism through

which parasite dominants, but not host dominants, manipulate

host reproductive behaviour to monopolize reproduction. The

findings from this study, showing equal investment in egg

production by parasitized and unparasitized subordinate

hosts, argues against physiological suppression by the parasite,

while a previous study found that aggression levels by para-

sites towards hosts were similar to those observed between

host dominants and their subordinates [46]. Thus, it seems

reasonable to conclude that the skews observed on parasitized

and unparasitized nests are the result of a common

mechanism based on competition over reproduction between

group members.

Social parasitism is potentially a useful tool for testing the

fundamental predictions of reproductive skew theory in many

social Hymenoptera. Among primitively eusocial taxa, social

parasitism has evolved not only in Polistes [24] but also

within allodapine and halictid bees [47]. Social parasitism

may also provide an opportunity to study reproductive skew

in species that exhibit advanced eusociality. For instance, a

number of socially parasitic (inquiline) ant species are

known to tolerate the host queen(s) and will reproduce along-

side their hosts in the nest [48,49]. Moreover, though many of

these parasite species are smaller than their hosts, the extent of

this size difference varies substantially among host–parasite

associations [49]. Such host–parasite associations thus pro-

vide a further opportunity to explore how reproduction is
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partitioned according to both the relatedness of groups and

asymmetries in power between group members.

Acknowledgements. We thank Juan Miguel Mancera Romero for facilities
in Spain, Rosie Foster and Elli Leadbeater for help in the field and Jon
Carruthers and Olga Drazan for laboratory assistance. Genotyping
was performed at the NBAF-S supported by the Natural Environ-
ment Research Council (NERC), UK. Terry Burke and Deborah
Dawson kindly provided project support and comments on the
manuscript and Andy Krupa provided genotyping assistance.
Innes Cuthill, Rob Hammond, David Harper and two anonymous
reviewers provided valuable comments on the manuscript.

Data accessibility. The data reported in this paper have been deposited in
dryad, doi:10.5061/dryad.84mf4.

Funding statement. This research was financially supported by a GTA
studentship from the University of Sussex (to J.P.G.) and NERC
grant no. NE/E017894/1 (to J.F.).
ishing.org
References
Proc.R.Soc.B
281:20141206
1. Field J, Solı́s CR, Queller DC, Strassmann JE. 1998 Social
and genetic structure of paper wasp cofoundress
associations: tests of reproductive skew models. Am.
Nat. 151, 545 – 563. (doi:10.1086/286140)

2. Reeve HK, Starks PT, Peters JM, Nonacs P. 2000
Genetic support for the evolutionary theory of
reproductive transactions in social wasps.
Proc. R. Soc. Lond. B 267, 75 – 79. (doi:10.1098/
rspb.2000.0969)
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