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A metabolic disorder is considered one of the hallmarks of cancer. Multiple differentially expressed metabolic genes have been
identified in colon cancer (CC), and their biological functions and prognostic values have been well explored. The purpose of
the present study was to establish a metabolic signature to optimize the prognostic prediction in CC. The related data were
downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) database, and Gene Expression
Omnibus (GEO) combined with GSE39582 set, GSE17538 set, GSE33113 set, and GSE37892 set. The differentially expressed
metabolic genes were selected for univariate Cox regression and lasso Cox regression analysis using TCGA and GTEx datasets.
Finally, a seventeen-gene metabolic signature was developed to divide patients into a high-risk group and a low-risk group.
Patients in the high-risk group presented poorer prognosis compared to the low-risk group in both TCGA and GEO datasets.
Moreover, gene set enrichment analyses demonstrated multiple significantly enriched metabolism-related pathways. To sum up,
our study described a novel seventeen-gene metabolic signature for prognostic prediction of colon cancer.

1. Introduction

Colon cancer (CC) is the third most common cancer world-
wide. Radical resection is considered the primary therapeutic
strategy for the management of CC, followed by radiotherapy
and chemotherapy. Yet, about 25%-40% of patients suffer
recurrence after surgery and adjuvant chemotherapy and
have a poor prognosis [1]. The tumor, lymph node, metasta-
sis (TNM) staging system has been used as the standard clas-
sification for predicting the recurrence in patients with CC
[2]. Nevertheless, this system is not ideal for the prognostic
prediction and clinical management of CC. Thus, efforts have
been made to develop newmethods that could improve prog-
nostic prediction and participate in making individualized
decision using clinicopathologic characteristics and molecu-
lar biomarkers [3–5]. Among these new tools, gene score
signatures based on integrated data analysis appear as a
promising approach.

Metabolic reprogramming is considered one of the hall-
marks of cancer [6]. Warburg effect, which is manifested as
enhanced glucose uptake and lactate production, has been
widely accepted as a common feature of metabolic repro-
gramming. Dysregulated expression of multiple rate-limiting
enzymesmay lead to activation of theWarburg effect in cancer
[7–9]. Previous evidence indicated that altered metabolic
genes or miRNAs modulate metabolic homeostasis in CC
[10–12]. Moreover, abnormal changes in this signaling path-
way direct a metabolic program of glycolysis in CC [13].

In the present study, the differentially expressed meta-
bolic genes were selected using The Cancer Genome Atlas
(TCGA) and Genotype-Tissue Expression (GTEx) databases.
Then, a prognostic seventeen-metabolism related signature
was developed from TCGA database and validated in the
mix of GSE39582 set, GSE17538 set, GSE33113 set, and
GSE37892 set by performing univariate Cox regression and
lasso Cox regression analyses.
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2. Materials and Methods

2.1. Microarray Data. Transcript data in TCGA-COAD were
downloaded from https://portal.gdc.cancer.gov. Transcript
data of normal colon tissues were obtained from the GTEx
database, which contains normal tissue-specific gene expres-
sion. For the Gene Expression Omnibus (GEO) database, raw
microarray cell intensity files of GSE39582, GSE17538,
GSE33113, and GSE37892 were downloaded from the
http://www.ncbi.nlm.nih.gov/geo/. The microarray data were
background adjusted and normalized using Robust Multi-
chip Average. All data were obtained from the same chip
platform (Affymetrix Human Genome U133 Plus 2.0 Array).
The EntrezGeneID was converted into the corresponding
gene symbol according to the annotation platform. When
multiple probes were matched to the same EntrezGeneID,
the mean value was obtained on behalf of the average expres-
sion level. The ComBat method was applied to remove the
potential batch effects. Clinical characteristics and prognostic
information were collected.

2.2. Identification of Differentially Expressed Metabolic
mRNA in TCGA-COAD and GTEx Database. The
metabolism-related genes were retracted from KEGG gene
sets that were associated with metabolism. Ultimately, 853
metabolism-related genes were overlapped in TCGA and
GEO database. A total of 471 CC samples and 349 normal
colon samples were selected and linear models for microar-
ray data method was used to analyze differentially expressed
metabolism-related genes (∣logFC ∣ >0:5, P < 0:05).

2.3. Development of Risk Score for Metabolic Signature Using
TCGA Database. Using the univariate Cox regression and
lasso Cox regression model, a list of metabolic genes was
identified and a multigene-based classifier for predicting
prognosis was constructed. A formula of a risk score for each
patient was presented with the expression levels of the genes
and their corresponding coefficients. Patients were divided
into high-risk and low-risk groups using the median value
of risk score as the cutoff point.

2.4. External Validation of Risk Score Using the GEO
Database. GSE39582, GSE17538, GSE33113, and GSE37892
datasets were combined for external validation. The risk
score of included patients was calculated based on a formula
derived from TCGA database. Patients were divided into
high-risk and low-risk groups by using the median value of
the risk score of the GEO database as the cutoff point.

2.5. Gene Set Enrichment Analyses. Gene Set Enrichment
Analyses (GSEA) were performed to explore potential path-
ways related to the gene signature using the TCGA-COAD
cohort. A P < 0:05 and FDR q < 0:25 were considered signif-
icant difference.

2.6. Statistical Analysis. Survival differences were evaluated
using the Kaplan–Meier estimate with the log-rank test.
Multivariate Cox regression analysis was performed to iden-
tify independent prognostic factors. The receiver operating
characteristic (ROC) curve was plotted to investigate the

prognostic or predictive accuracy of this signature. All statis-
tical analyses were performed with R (version 3.6.1, https://
www.r-project.org/).

3. Results

3.1. Development of Prognostic Risk Score for Metabolic
Signature. A total of 471 CC samples and 349 normal colon
samples, including 853 metabolism-related genes were
included in the final analysis. Transcriptome change profiling
was performed between CC samples and normal colon sam-
ples. A total of 147 genes (43 upregulated mRNAs and 104
downregulated mRNAs) were differentially expressed
between the two groups (Figure 1(a)). Univariate Cox regres-
sion model and lasso Cox regression model identified 17
genes, which were used to construct the prognostic model
(Figure 1(b)). The risk score was as follows: risk score = ð−
0:221757031158657 × expression level of MTMR7Þ + ð
0:206248657005617 × expression level of GSTM5Þ + ð−
0:417679119748783 × expression level of GPX2Þ + ð
0:150215117279366 × expression level of PDE6BÞ + ð−
0:070604304617128 × expression level of CDS1Þ + ð−
0:351801273605734 × expression level of SGPP2Þ + ð
0:568971606841924 × expression level of GSTM2Þ + ð−
0:111818090438981 × expression level of ALDOBÞ + ð
0:123891815430814 × expression level of CPT1CÞ + ð
0:26051604643361 × expression level of PDE1BÞ + ð−
0:0955344571364628 × expression level of AGMATÞ + ð
0:3138054768187 × expression level of FTCDÞ + ð−
0:630585032132511 × expression level of HDCÞ + ð
0:190772635324619 × expression level of DGKBÞ + ð
0:326618039980251 × expression level of ACADLÞ + ð
0:130179173907145 × expression level of MAT1AÞ + ð
0:251928635630125 × expression level of PLCG2Þ.

3.2. The Prognostic Value of Seventeen-Gene Metabolic
Signature in Training and External Validation Series.
Patients in TCGA set were divided into the low-risk group
(N = 190) and the high-risk group (N = 189) using the
median risk score as the cutoff value. Patients with lower risk
scores generally had a better prognosis than those with
higher risk scores (hazard ratio (HR): 3.358, 95% confidence
interval (CI): 2.506-4.501, P < 0:001, Figure 2(a)). To evalu-
ate the universality of the metabolic signature, GEO datasets
were used to validate the prognostic value. GEO datasets
were combined with the GSE39582 set, GSE17538 set,
GSE33113 set, and GSE37892 set for further analysis. As
expected, patients in the high-risk group showed poorer
prognosis compared to those in the low-risk group (HR:
1.174, 95% CI: 1.093-1.262, P < 0:001) (Figure 2(b)). In
TCGA set, stratified analysis demonstrated that the meta-
bolic classifier still presented significant prognostic difference
in stage I, II and stage III, IV (Figures 2(c) and 2(d)).

Furthermore, ROC analysis was done to assess the prog-
nostic accuracy of the metabolic signature; briefly, the meta-
bolic signature (area under curve ðAUCÞ = 0:795) had better
prognostic accuracy than the AJCC TNM stage in TCGA set
(AUC = 0:707) (Figure 3(a)). Moreover, ROC analysis was
performed to evaluate the prognostic accuracy of the
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metabolic signature (Figure 3(b)). The distribution of the
gene risk score, the survival status of the colon cancer
patients, and gene expression differences between the two
groups were also shown (Figures 4–6).

3.3. Independent Prognostic Value of the Metabolic Signature.
In TCGA dataset, univariate and multivariate Cox regression
analyses demonstrated that TNM stage and the metabolic
signature were independent prognostic factors for the overall
survival. In the combined GEO database, identical results
were observed (Table 1).

3.4. Identification of Signaling Pathways Related to the
Metabolic Signature Using GSEA. GSEA were performed
using TCGA dataset, and 38 enriched pathways were found
to be related to the metabolic signature (Figure 7). A number
of the enriched pathways were metabolism related, such as
gluconeogenesis, fructose and mannose metabolism, nitro-
gen metabolism, and glycosaminoglycan biosynthesis. More-
over, several common pathways were also enriched, such as
basal cell carcinoma, hedgehog signaling pathway, TGF-
beta signaling pathway, and Wnt signaling pathway. Particu-
larly, the majority of nonmetabolism-related pathways were
enriched in the high-risk group, while the main
metabolism-related pathways were enriched in the low-risk
group.

3.5. Development of a Nomogram for Predicting Prognosis in
Colon Cancer. To optimize prognostic prediction, a nomo-
gram which integrated the metabolic signature, stage, age,
and gender was developed based on TCGA dataset. The total
points which were figured out using each variable could be
converted to predict 1-, 2-, and 3-year probability of overall
survival of colon cancer patients (Figure 8).

4. Discussion

Colon cancer is characterized by genetic heterogeneity and
identical pathological stage with distinctive outcomes. So
far, efforts have been made to explore sensitive biomarkers
for eliminating deficiency of clinicopathological characteris-
tics and optimizing the prognostic prediction of cancer.
Recently, mRNA, miRNA, lncRNA, circRNA, and integrated
signatures have been developed for prognostic prediction of
CC [14–16]. Gene signatures in relation to specific pheno-
types, such as immune infiltration, metastasis, and autophagy
[17–19], have received increasing attention. Previous studies
have demonstrated that metabolic disorders may contribute
to tumor progression. In our present study, we developed a
novel metabolic signature and validated its prognostic value
in CC patients using TCGA and GEO datasets.

Based on the metabolic signature, patients were divided
into the high-risk group and the low-risk group. Patients in
the high-risk group presented poorer prognosis. ROC analy-
sis suggested that the metabolic signature had better prog-
nostic accuracy than the AJCC TNM stage. What is more,
the metabolic signature was an independent prognostic fac-
tor for CC patients in both training sets and validation set,
thus could be used as a promising biomarker for optimizing
prognostic prediction of CC. The GSEA results revealed
that many enriched pathways were associated with the
metabolic signature. The majority of enriched pathways
were metabolism related, indicating that the signature
was a marker of the dysregulated metabolic microenviron-
ment of CC. Intriguingly, the metabolism-related pathways
were enriched in the low-risk group. These data suggest
that targeted metabolic therapy may be more effective for
patients in the low-risk group, while patients in the low-
risk group may benefit from nonmetabolic intervention.
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Figure 1: (a) Differentially expressed metabolism-related genes between colon cancer and normal tissues from TCGA and GTEx datasets. (b)
The univariate Cox regression model revealed metabolism-related genes, which were related to prognosis.
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Figure 2: Continued.
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Nevertheless, the underlying molecular mechanisms still
need to be explored.

Most of the genes of our metabolic signature have been
reported to be associated with cancer. Myotubularin-related
protein 7 (MTMR7) is downregulated in colorectal cancer
and is a negative predictor of colorectal cancer patient sur-
vival. Mechanically, MTMR7 inhibits insulin-mediated

AKT-ERK1/2 signaling, which in turn decreases colorectal
cancer cell proliferation [20].

Glutathione peroxidase 2 (GPX2), which belongs to the
antioxidant enzyme glutathione peroxidase family, is often
upregulated in multiple tumors [21–24]. In colon cancer,
high GPX2 expression has been associated with early tumor
recurrence, and H2O2 neutralization by GPX2 has been
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Figure 2: Kaplan–Meier estimates of colon cancer patients using the metabolic signature: (a) TCGA database; (b) incorporative GEO
database; (c) stage I, II in TCGA database; (d) stage III, IV in TCGA database.
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Figure 3: Receiver operating characteristic (ROC) analysis of the sensitivity and specificity of the metabolic signature and clinicopathological
features: (a) TCGA database; (b) incorporative GEO database.
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Figure 4: The metabolic signature risk score distribution: (a) TCGA database; (b) incorporative GEO database.
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identified as essential for maintaining clonogenic and meta-
static capacity [25].

CDS1 is an enzyme that is essential for the regeneration
of the signaling molecule PIP2 from phosphatidic acid. Most
of the CpG sites in the promoter area of the CDS1 gene are
methylated in the majority of the cancer tissues. Moreover,
decreased expression of CDS1 was detected in hepatocellular
carcinoma [26].

Glutathione S-transferase mu2 (GSTM2) is a phase II
detoxification enzyme, which is often downregulated in lung
cancer due to hypermethylation of its promoter. GSTM2 has
shown the ability to increase the expression of CCN2 and
inhibit lung cancer migration [27].

Previous evidence has indicated that ALDOB has a dual
function in tumor progression. On the one hand, ALDOB
inhibits metastasis through TET1 in hepatocellular carcinoma
[28]; on the other hand, it enhances fructose metabolism and
drives metabolic reprogramming of colon cancer liver metas-
tasis [29]. Interestingly, both univariate and multivariate
regression analyses in our previous study revealed that high
ALDOB expression was associated with poor overall survival
and disease-free survival of colorectal cancer patients. Further
experiments demonstrated that the upregulation of ALDOB
promotes tumor progression by epithelial-mesenchymal tran-
sition in colorectal cancer [30]. In line with our previous study,
we verified a significant upregulation of ALDOB in colon can-
cer using TCGA and GTEx datasets.

Carnitine palmitoyltransferase 1C (CPT1C), an
enzyme that has an important role in the beta-
oxidation of long-chain fatty acids, has been shown to
regulate cancer cell senescence through mitochondria-
associated metabolic reprogramming [31]. Moreover,
CPT1C promotes cancer cell growth and metastasis in
papillary thyroid carcinomas under conditions of meta-
bolic stress [32].

Agmatinase (AGMAT) functions as an intermediary in
polyamine biosynthesis. A recent study suggested that
AGMAT could promote lung cancer progression by activat-
ing the NO-MAPKs-PI3K/Akt pathway [33]. In colon can-
cer, AGMAT promotes tumor progression by inducing
chronic inflammation [34].

Formiminotransferase cyclodeaminase (FTCD) is an
enzyme, which comprises two domains (FT and CD) and cat-
alyzes histidine degradation during folate metabolism [35].
The enzyme is most highly expressed in the liver. FTCD
was identified as a new regulator for HIF-1α in a hepatocar-
cinoma cell line [36].

L-histidine decarboxylase (HDC) is the rate-limiting
enzyme for the generation of histamine by decarboxylating
L-histidine [37]. Previous studies revealed that polymor-
phisms of the HDC gene were significantly associated with
breast cancer in the Chinese Han population, thus enhancing
its role as a promising diagnostic or therapeutic target for
breast cancer [38].
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Figure 5: The distribution of patients’ survival status and time: (a) TCGA database; (b) incorporative GEO database.
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Figure 6: Heat map of the metabolic gene expression profiles: (a) TCGA database; (b) incorporative GEO database.

Table 1: Univariate and multivariable Cox regression analyses in colon cancer.

Variable
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Training set

Metabolic signature 3.358 (2.506-4.501) <0.001 3.253 (2.366-4.473) <0.001
Age 1.029 (1.007-1.053) 0.011 1.040 (1.017-1.063) <0.001
Gender 1.276 (0.780-2.089) 0.332 1.192 (0.723-1.966) 0.490

Stage 2.176 (1.645-2.877) <0.001 2.202 (1.630-2.973) <0.001
External validation set

Metabolic signature 1.174 (1.039-1.262) <0.001 1.098 (1.015-1.189) 0.020

Age 0.992 (0.983-1.001) 0.070 1.001 (0.992-1.010) 0.832

Gender 1.132 (0.885-1.448) 0.322 1.262 (0.983-1.619) 0.067

Stage 2.871 (2.428-3.396) <0.001 2.786 (2.341-3.315) <0.001

8 BioMed Research International



ACADL is in charge of lipid and energy metabolism [39].
Abnormally expressed ACADL has been detected in prostate
cancer and esophageal squamous cell carcinoma [40, 41].
Nevertheless, its regulatory mechanism in malignant diseases
remains unclear.

Methionine adenosyltransferase 1a (MAT1A) is an
enzyme that has a vital role in the methylation cycle
by regulating S-adenosylmethionine [42]. MAT1A, which
can enhance cell survival under chemotherapy, has been
associated with drug resistance in bladder cancer PDX
mice [43]. Torres et al. found that dysregulated MAT1A
gene expression resulted in a specific pattern of promoter
methylation and histone acetylation [44]. Yet, data on
the role of GSTM5, PDE6B, SGPP2, PDE1B, DGKB,
and PLCG2 in cancer are still lacking. Thus, further
studies are needed to explore their molecular mechanisms
in cancer.

This study has a few limitations. Firstly, the prognostic
indicators are overall survival (OS) and relapse-free sur-
vival (RFS) in TCGA and GEO datasets, respectively.
There are some differences between OS and RFS. Sec-
ondly, several critical prognostic factors, including differ-
entiation and positive lymph node ratio, were unavailable
in the public datasets, which may affect the multivariate
Cox regression analysis. Thirdly, the model based on the
17 genes performed better on the training set, while much
worse on the validation set. The data from TCGA were
totally different from microarray. This difference was fur-
ther displayed by serious imbalance of risk score between
TCGA and GEO datasets. External validation of our
metabolic signature is needed in more independent
cohorts. Lastly, the functional experiments are needed to
clarify the underlying molecular mechanism of our meta-
bolic signature.
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Figure 8: (a) Nomogram predicting prognosis of colon cancer patients from TCGA database. (b) The calibration plot of the nomogram (1
year). (c) The calibration plot of the nomogram (2 years). (d) The calibration plot of the nomogram (3 years).
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5. Conclusions

In conclusion, our study established a novel metabolic signa-
ture for optimization of prognostic prediction in colon can-
cer, which may contribute to clinical decision-making and
generation of individual strategies.
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