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TOPSIS aided ensemble of CNN 
models for screening COVID‑19 
in chest X‑ray images
Rishav Pramanik1, Subhrajit Dey2, Samir Malakar3, Seyedali Mirjalili4,5* & Ram Sarkar1

The novel coronavirus (COVID‑19), has undoubtedly imprinted our lives with its deadly impact. Early 
testing with isolation of the individual is the best possible way to curb the spread of this deadly virus. 
Computer aided diagnosis (CAD) provides an alternative and cheap option for screening of the said 
virus. In this paper, we propose a convolution neural network (CNN)‑based CAD method for COVID‑19 
and pneumonia detection from chest X‑ray images. We consider three input types for three identical 
base classifiers. To capture maximum possible complementary features, we consider the original 
RGB image, Red channel image and the original image stacked with Robert’s edge information. After 
that we develop an ensemble strategy based on the technique for order preference by similarity to 
an ideal solution (TOPSIS) to aggregate the outcomes of base classifiers. The overall framework, 
called TOPCONet, is very light in comparison with standard CNN models in terms of the number of 
trainable parameters required. TOPCONet achieves state‑of‑the‑art results when evaluated on the 
three publicly available datasets: (1) IEEE COVID‑19 dataset + Kaggle Pneumonia Dataset, (2) Kaggle 
Radiography dataset and (3) COVIDx.

COVID-19 has a colossal impact on almost every sector of society. Numerous deaths and countless positive cases 
are causing increased agony. Besides, governments have imposed a lockdown to confine the spread of COVID-
19, which largely impacts the world’s economy and culture. More than 590 million positive cases and 6.4 million 
deaths due to COVID-19 alone have been recorded to  date1. Diagnostic techniques, medicines and vaccines are 
some of the methods greatly researched to save humans from its disastrous  consequences2. On the other hand, 
pneumonia (usually found in children) causes severe respiratory issues that occasionally lead to death. Just like 
any other disease, in case of both pneumonia and COVID-19, early diagnosis for detection of the same is the 
most essential step to not only receive proper medical attention but also curb the spread of this disease. One of 
the most commonly used methods for diagnosis includes a real-time reverse transcription-polymerase chain 
reaction (RRT-PCR) test from a nasopharyngeal swab sample. However, the major drawback of RRT-PCR is low 
sensitivity in detecting COVID-19  cases3. Moreover, these pathological diagnosis systems suffer from inter- and 
intra-observer variability in addition to being time-consuming.

As an alternative to pathological diagnosis, several radiological methods have been explored to diagnose 
COVID-19 efficiently. Computerised tomography (CT) scans, chest X-rays and magnetic resonance imaging 
(MRI) are some of the methods used to detect the presence of this deadly  virus4. Computer-aided diagnosis 
(CAD) systems have been beneficial in easing the burden on medical professionals and ruling out the pos-
sibility of human errors. Artificial intelligence (AI) based solutions also have proven  beneficial5,6. Notably, sev-
eral research communications can be found recently that detect the presence of these viruses (COVID-19 and 
pneumonia) from both CT scans and chest X-ray  images7. However, the new variants of the virus that causes 
COVID-19 make detection more challenging. One of the disadvantages of the reliance on radiological methods 
is the risk caused by radiation, which may damage the molecular structures of the human  body8. Despite this 
risk factor, radiological diagnosis methods are still relied upon as they help in more accurate diagnosis than 
their  counterparts7,9 do.

Convolutional neural network (CNN) aided methods have been successfully used in the past for COVID-19 
and pneumonia  detection7,10 from the chest X-ray images. The main reasons for preferring them over the duo-
feature engineering and classical machine learning approaches are (1) limited need of domain knowledge for 
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extracting learned features from input patterns, (2) capability in handling datasets with imbalanced  classes11, 
and (3) the competence in handling large datasets. CNN-based approaches have been successfully explored in 
the domains such as speech recognition, medical image classification, handwriting recognition, human action 
recognition and many more. However, the most common disadvantage of such approaches is that they require 
high-end infrastructural support to train models properly. Moreover, CNNs are often observed to require assis-
tance from data pre-processing to perform  efficiently12.

Ensemble learning, in general, is the process of learning an association of multiple decision making systems. 
In the context of CNNs, ensemble learning methods aim to capture the complementary information of its 
constituent base models’  outcomes13. In doing so, many times researchers make use of methods having some 
learnable parameters. Such techniques require a substantial amount of data to train the classifier. On the other 
hand, non-trainable ensemble techniques do not need any training data but may require a few parameters to 
be tuned. For such methods to be used effectively, researchers apply some transformation operations to the raw 
outputs obtained from the base classifiers which is followed by an aggregation. The aggregation is either a form of 
hard-voting or soft-voting. In a hard-voting process, each classifier provides a binary class label (votes in favour 
or against). Whereas in the soft-voting process, each classifier provides a confidence score for each of the classes 
under consideration, based on which the final classification takes place. Multi criteria decision making (MCDM) 
algorithms are one of the statistical measure-based techniques used to rank the alternatives based on some given 
criteria. MCDMs have been extended to a large variety of works such as supplier selection strategy, benchmark 
machine learning tool selection for COVID-19 diagnosis, ranking of internet of things (IoT) based  systems14 
and in many more fields. Popular MCDM methods include the technique for order of preference by similarity 
to ideal solution (TOPSIS)15, vlsekriterijumska optimizacija I ompromisno resenje (VIKOR)16 etc.

Given the above-mentioned facts, in this work, we propose, TOPCONet, a CAD system comprising a light-
weight CNN model and a TOPSIS-aided ensemble approach for diagnosis of COVID-19 and pneumonia from 
chest X-ray images. The lightweight deep CNN model designed here consists of only five convolutional blocks 
in which each block consists of four layers, namely convolutional, activation, batch normalisation and pooling 
layers. Each of these layers is used only once for extracting features from images. Subsequently three fully con-
nected layers are added on top of the feature extractor i.e., after the five convolutional blocks. The CNN model 
is applied on three variants of input chest X-ray images, and thus we obtain three base classification models. The 
three image variants are: (1) the red channel image (i.e., 1-channel image), (2) normal RGB image (i.e., 3-chan-
nel image), and (3) 4-channel image generated by combining edge image obtained by applying the Robert’s edge 
detection method. It is worth mentioning that the designed CNN-aided classifiers are trained from scratch. 
Finally, the decisions from the classifiers are aggregated using TOPSIS based ensemble method to obtain the final 
classification of an inputted chest X-ray image. The proposed TOPCONet model is evaluated on three publicly 
available standard datasets namely: (1) Kaggle Pneumonia + IEEE COVID dataset, and (2) Kaggle Radiography 
Dataset and COVIDx, and it achieves performances comparable to state-of-the-art approaches. Concisely, the 
highlights of the present work are summarised below.

• We develop a lightweight but efficient CNN model having much fewer trainable parameters as compared to 
state-of-the-art CNN models used in CAD systems for the purpose of COVID-19 and pneumonia detection.

• We design a TOPSIS, an MCDM technique, aided ensemble method which is found to be more effective than 
standard ensemble methods such as majority voting, product rule and sum rule.

• The performance of the proposed model on three public datasets is comparable to state-of-the-art methods 
that require heavy computational resources.

The remaining parts of the paper are organised in the following manner. In the “Literature review” section, 
we first briefly review some past works from the literature of COVID-19 and pneumonia diagnosis system and 
then analyse each of them to describe their advantages and shortcomings. In the “Preliminaries” section, we 
briefly describe some prerequisites useful in describing the working procedure of the proposed model. Next, in 
the “Proposed method” section, we describe in detail how our model (i.e., TOPCONet) works. In the “Experi-
mental results” section, we present all the experimental findings related to this work while we analyse the results 
and explain each of the experimental findings in the “Discussion” section. We also summarise the advantages 
and limitations of our work in this section. In the “Conclusion” section, we end with concluding remarks and 
some scopes for future research.

Literature review
Several research attempts were made by researchers to design effective CAD systems for COVID-19. Here, we 
review some of the existing works employed for early detection of COVID-19 and/or pneumonia from chest 
X-ray images. Wang et al.17 designed a CNN architecture, dubbed as COVID-Net, that achieved 80% sensitivity 
for COVID-19 detection. This is one of the fundamental works that laid the ground-work for further research 
in this domain with deep learning-based CAD models for detection of the said diseases. The article by  Demir12 
presented a long short term memory (LSTM) network-based approach where the Sobel edge detection and 
marker-controlled watershed segmentation approach were used in the pre-processing stage. The author was 
able to significantly boost the model performance, but the computational cost was considerably high because of 
training both CNN and LSTM models. Convolutional LSTM (ConvLSTM) based approach has also been seen 
in the literature  recently18,19.

Classical handcrafted feature engineering-based approaches have also proven their competence for COVID-
19 detection. Panetta et al.20 proposed a novel shape-dependent Fibonacci-p patterns-based feature descriptor 
for COVID-19 detection. In another work, Chandra et al.21 first extracted the gray-level cooccurrence matrix 
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(GLCM) and histogram oriented gradient (HOG) based features and then used the binary grey wolf optimizer 
(BGWO) based feature selection technique to select the near-optimal feature set. Finally, a bi-stage majority 
voting-aided ensemble mechanism was utilised with the seven different machine learning-based classifiers. The 
authors classifies normal and abnormal images quite successfully, but the model performance was not good 
while classifying infected samples into pneumonia and COVID-19 cases. One of the possible reasons for such a 
behaviour might be related to a recent medical research  findings22 where the authors state “In some cases, definite 
discrimination of the two (COVID-19 and pneumonia) entities might be impossible solely based on the imaging, 
however, some radiologic features may suggest one diagnosis over the other”.

Oh et al.23 used a patch-based classification strategy to mitigate the difficulties due to a limited training sample 
while using a CNN model-based classification strategy. They first segmented the images using deep CNNs and 
then generated random patches to train the CNNs using the ResNet-18 model. Thus they were able to train the 
CNN model using limited training datasets. The approach also lowered the training cost by a margin. In the said 
work, the normalised validation accuracies were used as fuzzy measures for the base classifiers but it may not 
work with other datasets. Similarly, in a very recent article, Paul et al.24 proposed to use an inverted bell-shaped 
weighted average scheme to ensemble the probabilistic outcomes of deep transfer learning models. In another 
work, Das et al.25 designed a bi-stage CAD system for the detection of COVID-19 and pneumonia-infected chest 
X-ray images. In the first stage, the authors segregated the infected chest X-ray images from the normal ones, and 
in the later stage, the COVID-19 cases were identified from the infected cases. The authors used the pre-trained 
VGG-19 as the feature extractor, and a shallow learner was employed as the classifier. The performance of the 
bi-stage model was good but once a sample is classified erroneously in the first stage, it remained unclassified 
throughout. Moreover, the bi-stage classification scheme for detecting a COVID-19 or pneumonia case needs 
classification of a sample twice, which lengthens the testing time. A stacked CNN model using sub-models of 
VGG-19 and XceptionNet was proposed by Gour et al.26, but use of such large CNN models like VGG-19 and 
XceptionNet increases the training and inference time. Hasoon et al.27 used a combination of image preprocessing 
techniques and machine learning algorithms to get 6 different models those are local binary pattern (LBP)-kNN, 
HOG-kNN, Haralick-kNN, LBP-SVM, HOG-SVM, and Haralick-SVM for chest X-ray image classification. The 
authors showed that the use of machine learning algorithms failed to produce better result over the CNN based 
models. A new COVID-19 detection model CoWarriorNet was proposed by Roy et al.28 that consists of two 
networks a classification network and a confidence network. The proposed architecture is a derivative of U-Net 
architecture, which results in poor extraction of image-derived information.

Ouchicha et al.29 provided a CNN architecture with a sort of inter-network skip connections for screening 
of COVID-19 cases from chest X-ray images. The authors used two parallel CNN models and connected each 
of the layers of networks with inter-network and intra-network residual connections for feature transfer to 
encounter the vanishing gradient problem. Additionally, it is interesting to note that downsampling and skip 
connections have also been proposed in the literature in the past for COVID-19  detection30. Khuzani et al.31 
employed multiple feature extraction schemes in which a novel pooling strategy was used to extract only the 
relevant features. Finally, the authors used a fully connected neural network to classify chest X-ray images using 
the extracted features. The authors used the machine learning-based approach, instead of the conventional CNN 
approach which could significantly reduce the computational cost, but the approach failed to tackle the class 
imbalance issue. In another work, Kenaway et al.32 first used a popular CNN architecture as a feature extractor 
and then proposed an advanced version of the squirrel search optimisation algorithm to select the best set of 
features. They finally used the multi-layer perceptron (MLP) on top of the selected features for classification, 
leading to a significant increase in training time, as the transfer learning model is fine-tuned. Besides, the feature 
selection approach is trainable and the classifier also needs time to train. Gour et al.33 introduced a uncertainty 
aware CNN model known as the UA-ConvNet model. The problem of this CNN model is that in its initial stage, 
a pre-trained EfficientNet-B3 model is fine-tuned, which makes it time-taking. Bashar et al.34 used transfer 
learning concept while using CNN models like AlexNet, GoogleNet, VGG-16, VGG-19 and DenseNet to classify 
chest X-ray images. The authors enhanced the input image quality using techniques like anisotropic diffusion 
filter, Fourier transform, and edge-aware local contrast manipulation. Here, again the use of transfer learning 
techniques makes the process computationally expensive to train. Similar problem faced by Senan et al.35, where 
ResNet50 and AlexNet models were used to generate features which are combined with GLCM and LBP features.

Khan et al.36 proposed an XceptionNet-based classification model, which performed well, but the metrics 
reveal that it somewhat failed to handle imbalanced classes despite using a CNN-based architecture. Hussain 
et al.37 proposed a 22-layers deep CNN model. Goel et al.38 proposed a CNN model whose hyperparameters were 
optimised using a nature-inspired meta-heuristic approach: BGWO. This method provided a good alternative to 
the tiring grid search method, but the model has a slightly higher false-positive rate, which might not be useful 
in practical field. Aslan et al.39 designed a hybrid approach using a modified version of the AlexNet hybridised 
with bi-directional LSTM (BiLSTM) providing better results worth-while results in processing the features for 
classification. Multi-level feature extraction technique was used by Naeem et al.40 where the authors first extracted 
features like GIST, scale invariant feature transform (SIFT), and CNN based deep features and then they used 
LSTM network to perform classification. Similarly, classical classifiers like artificial neural network (ANN), 
SVM, KNN, and deep learning classifiers like recurrent neural network (RNN), LSTM were used for predicting 
COVID-19 cases from chest X-ray images by Goyal et al.41. The problem with LSTM and RNN architectures are 
that they are prone to over-fitting and difficult to apply dropout algorithm there.
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Motivation
Numerous deep learning-based methods have been explored in the past for designing CAD systems for the 
diagnosis of COVID-19 and pneumonia from chest X-ray images. Most of them aimed at designing a system 
that could perform more efficiently than its predecessors, which is the primary objective of designing a new 
CAD system at its initial stage. Hence, in many cases, these models became computationally heavier. However, 
an ideal CAD system should be computationally inexpensive and memory-efficient for its wide applicability 
and portability so that such a model can be easily executable in a resource-constrained environment without 
compromising its performance. Besides, the increment of learnable parameters in CNN models increases the 
space and time requirements. Another important issue is that such models at times extract some redundant 
features which in turn consume additional space and time during execution without much improvement of 
 performance42. Additionally, according to the lottery ticket  hypothesis43, we can prune the learnable parameters 
of a heavy CNN model to make it much more cost-efficient and portable without compromising its perfor-
mance. Keeping these facts in mind, we aim at design a lightweight CNN model that can detect COVID-19 
and pneumonia-infected chest X-ray images from normal ones. Additionally, it is to be noted that the authors 
of the  works6,21,44 used a hierarchical approach to design better CAD models for diagnosis of the said diseases, 
in which they applied various heavier CNN architectures at each stage. The use of multiple pre-trained CNN 
models along with evaluating an input image several times makes these models inefficient in terms of storage and 
computation needs. Hence, we evaluate an input image only once to make it more memory and time-efficient. 
Apart from these, some  methods6,45 used ensemble techniques in which different CNN models were applied 
as base classifiers to obtain different learned features from input images. However, the  study46 shows that we 
can gather complementary information by pre-processing the original image to extract features. Hence in our 
model, we pass two differently pre-processed images along with the original one to the CNN model for extracting 
three different features from it. We also observe from the literature that the work reported by Paul et al.45 used 
a machine learning-based ensemble technique and showed its effectiveness in improving the end performance. 
In a work by Pramanik et al.6, where the authors propose a fuzzy aggregator to ensemble the CNN outcomes 
which is non-trainable in nature.

In this work, to capture the complementary information provided by the base classifiers, we propose an 
ensemble with an MCDM-based aggregator known as TOPSIS. The ensemble framework has a few tunable 
parameters compared to the machine learning-based ensemble techniques. The use of such methods aims at 
developing a lightweight but effective CAD model for distinguishing COVID-19 and pneumonia-infected chest 
X-ray images from normal ones.

Preliminaries
Robert’s edge detection technique. The Robert’s edge detection technique uses 2D spatial gradient cal-
culation to detect edges in an input image. It uses two operators of size 2× 2 , known as Robert cross operators, 
which help in calculating the gradient image. The gradient image is used for identifying the edges in the image. 
Here, our idea is to extract the minute details present in a chest X-ray image and thus use a small-sized mask 
while calculating gradient image, which would be helpful rather than using larger masks. This is why we chose 
this edge detection technique. The Robert cross operators are shown in Eqs. (1) and (2).

In this edge detection technique, an input image is convolved with these two operators i.e., δx and δy . Let δx 
and δy be convolved with a gray-scale image (say, Ig ) and generate two gradient images (say, Gx and Gy ) using 
Eqs. (3) and (4).

In Eqs. (3) and (4), ′∗′ is the convolutional operator. The magnitude image corresponding to the gradient 
images (say, G) is calculated using Eq. (5).

We obtain the final edge image using a threshold value (say, th). In the present work, we use the mean of the 
gradient magnitude values appearing in G. The parameter th is calculated using Eq. (6).

In Eq. (6), M and N stand for the height and width of the input image respectively. Finally the edge image 
(say, Ie ) is obtained using Eq. (7).

(1)δx =

[

+1 0

0 − 1

]

(2)δy =

[

0 + 1

−1 0

]

(3)Gx =Ig ∗ δx

(4)Gy =Ig ∗ δy

(5)G =

√

G2
x + G2

y

(6)th =
1
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M
∑

x=1

N
∑

y=1

G(x, y)
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Convolutional neural network. This is probably one of the most revolutionary research findings in the 
domain of document image  processing47, which later extended to multiple fields such as video  processing48, 
speech processing and emotion recognition. CNN is used as a discriminative  architecture49 inspired by the con-
cept of a time delay neural network (TDNN). In TDNN, the weights are shared in a temporal dimension, which 
ultimately reduces computation. On the other hand, the CNN model does not require weights to be shared, and 
convolutions are replaced by matrix multiplication as in standard NNs. This replacement significantly decreases 
number of weights. Moreover images can be fed as raw input to the network, whereas in classical NN models, 
features, extracted from the images, are fed to the NNs. In other words, CNNs are seen as a combination of a 
learned feature extractor and a classifier. Weights for both the classifier and the feature extractor model are 
learned using the back propagation  algorithm47. Some important parts/characteristics of any CNN models are 
described in the later parts.

Convolutional layer. One of the most important parts of any CNN model is the convolutional layer which is 
suggested by its name. In a convolutional layer, a linear operation occurs in which the input image is convolved 
with a set of learnable weights. For applying the convolutional process on an image, a two-dimensional array 
(i.e., matrix) of weights is used which is known as the kernel or filter. The filter is smaller in size compared to the 
input image. To perform convolution element-wise matrix multiplication is performed between the filter matrix 
and a filter-sized patch of the input image. After this, all the values of the patch are added together to produce a 
single value. By using a filter smaller than the input size it can then be applied to the various parts of the input 
during convolution. Thus, the same weights can be applied to the various parts of the input data resulting in 
translation invariance. The invariance to translation is an important property for knowing whether a feature is 
present in the input image rather than in the location of the feature in the image.

Activation function. Activation functions play a crucial role during the training of the CNN models. Let 
zi = g(x,wi) be the mathematical formulation of any neuron and yi = f (zi) be the value that is to be transmit-
ted to the next neuron. The use of an activation function is popular because it helps in countering the vanishing 
gradient problem associated with any CNN model. In standard NNs, activation functions control the flow of 
information among the neurons present therein. There are several diverse activation functions in literature at 
present. The choice of activation functions mainly depends on the objective of the work at hand. Probably, one 
of the most popularly used activation functions is the rectified linear unit (ReLU) which is well used for image 
recognition-based  tasks47.

Batch normalisation. Initially suggested by Ioffe et al.50, batch normalisation greatly improvises the conver-
gence of the CNN model during training and also helps produce stable results. Batch normalisation helps in 
coordinating the update of weights in multiple layers in the model. To do so, it scales the output of the layer 
such as standardising the activations of each input variable or the activations of the nodes of the previous layer. 
Here, standardising means rescaling data to have a mean of 0 and a standard deviation of 1. This standardisation 
stabilises during the training phase of the CNN model and also speeds up the training time.

Pooling layer. A pooling layer is designed to reduce the dimension of feature maps. This layer ensures that 
the relevant information passes on to the next level of the network while the redundant features are discarded. 
Thereby pooling serves as a filter mechanism for the extracted features. In this work, we use max-pooling which 
returns the maximum local value of each pooling window.

Fully connected network. In fully connected network (FCN) layers, the neurons of the current layer remain 
connected to each neuron of the previous layer. Figure 1 shows how a single neuron of one layer connects with 
multiple neurons of another layer during the construction of a multi-layered FCN model. In this figure, the node 
y is represented with the weighted sum of its inputs as shown in Eq. (8). In this equation, the parameters w and 
b are optimised using the back propagation algorithm. Relevant studies in the past have shown that a neuron 
having a larger w value means that it is more important. The parameter b is the bias variable used to shift the 
value of y. The output layer of the FCN part of a CNN model is an N-dimensional vector, where N is the number 
of classes for a classification problem. A pictorial description of the classical multi-layered FCN model is given 
in Fig. 2.

The final FCN layer uses a softmax function (see Eq. 9) that determines the class level probabilities of an 
input for a classification problem.

(7)Ie(x, y) =

{

edge pixel : G(x, y) < th
background pixel : otherwise

(8)y =
�
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�

·











x1
x2
x3
x4
x5











+ b



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15409  | https://doi.org/10.1038/s41598-022-18463-7

www.nature.com/scientificreports/

In Eq. (9), z = [z1, z2, ..., zN ] is the input to the softmax function.

TOPSIS algorithm. TOPSIS, proposed by Hwang and  Yoon15, is a simple (though effective) multi-criteria 
decision analysis (MCDA) or MCDM method. It is derived from the idea that the geometric distance of the 
highest-ranked alternative is the nearest to the ideal solution while the lowest-ranked alternative is the nearest to 
the worst solution. The positive ideal solution capitalises on the beneficial attributes most while minimising on 
the cost attributes. The TOPSIS method uses all of the information in the form of a decision matrix and criteria 
weights as a vector and generates a ranking for all the alternative candidate. A detailed procedure is described 
in Algorithm 1.

(9)softmax(zj) =
ezj

∑N
x=1

ezx

Figure 1.  A pictorial representation of how a neuron of one layer connects with neurons of other layer.

Figure 2.  A pictorial description of classical feed-forward neural network with one input layer of size 12, 
two hidden layers each of size 8 and an output vector of length 4. This figure has been generated using a tool 
developed by Alex LeNail https:// alexl enail. me/ NN- SVG/.

https://alexlenail.me/NN-SVG/
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Proposed method
In this work, we propose TOPCONet, an ensemble-based approach using lightweight CNN based three base 
learners (hereafter termed Classifier 1, Classifier 2 and Classifier 3) to detect COVID-19 and pneumonia 
from chest X-ray images. The base classifiers use the same CNN architecture but work with different forms of 
input images. The image variants are red channel image (i.e., 1-channel red image), original RGB image, and a 
4-channel image prepared by combining the edge image generated by the Robert’s edge detection method with 
the original RGB image used in Classifier 1, Classifier 2 and Classifier 3 respectively. To begin with we resize all 
the images to the spatial dimension of 224× 224 pixels to feed to the base classifiers. While evaluating we estimate 
the class probability scores using the base classifiers and feed them to the TOPSIS-based ensemble method. The 
complete pipeline for our proposed model can be found in Fig. 3.

Customised CNN. It has been described earlier that a CNN architecture consists of two main components 
viz., a feature extractor and a classifier network. Therefore, while designing a customised CNN architecture for 
any specific task, both the feature extractor and the classifier should be stressed upon. A very deep network con-
sisting of many layers might be effective for extracting very deep features but on the other hand, optimisation 
of the model becomes a difficult task which means the optimisation of the very deep network is much difficult 
when compared to small-sized networks. The same has been empirically and theoretically shown by Choroman-
ska et al.53. The major motivations for using CNNs as a feature extractor over handcrafted features is the presence 
of shared weights, pooling, local connections and many possible  layers47. Therefore for each of these layers, while 
designing, one thing that should be considered is the extraction of the best possible features for the classifier to 
perform efficiently. It must also be kept in mind to minimise the number of redundant features. To efficiently 
deal with this, nowadays deep feature selection-based approaches are also gaining  popularity42,54. Filter pruning 
strategy is one of the appproaches to reducing the number of redundant features; one such work was communi-
cated by Luo et al.55. On a similar note, in this work, we aim to extract meaningful and less redundant features. 
Considering the mentioned facts, the customised CNN designed with five blocks of convolutions, is carefully 
tuned to extract the best possible features and minimize the redundant extracted features. Each level of convolu-
tion is followed by a layer of activation to control the flow of information to the next level of convolution and for, 
batch normalisation for re-scaling and re-centring of the values to have smoother learning and max-pooling to 
get rid of redundant features. It the end, an FCN with two hidden layers is coupled with exponential linear unit 
(ELU) activation function to impart a non-linearity to the input signal. Thus, we ensure that both the feature 
extractor and the classifier work efficiently. The detailed structure is shown in Fig. 4.

TOPSIS‑aided ensemble method. As already been mentioned, in the present work, we employ a TOP-
SIS-aided ensemble method to decide the final class of an input chest X-ray image depending on the class level 
confidence scores generated by the base classifiers. We use the available classes as the alternatives and the con-
fidence scores from each of the base classifiers as the criteria values for each of the alternatives (i.e., classes). 
The ijth element of the decision matrix (i.e., rij ) used in the TOPSIS method is constructed by considering the 
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confidence score of the ith base classifier corresponding to the jth class. We employ all the steps as described 
in Algorithm 1 on the decision matrix to obtain the top most-ranked alternative which here is the final class. 
It should be noted that we resort to column normalisation of the decision matrix to comply with the TOPSIS 
algorithm. During the normalisation process, we divide the input score by the square root of the summation of 
squares of the observations. In our case, all the criteria are beneficial.

Computational complexity of the TOPSIS aided ensemble model. As the proposed ensemble method is non-
trainable, it is important to discuss the computational complexity of the model. In this part, we discuss the com-
putational complexity using the O-notation. The ensemble method requires constant number of operations for 
each of the samples. For each of n base classifiers and m alternatives (i.e., number of classes), normalisation and 
weight assignment. The complexity of the model is O (n×m) . The complexity while determining the positive 
and negative ideal solution and distance from the two is O (n×m) . Furthermore, the complexity of finding the 
top ranked alternative is O (m).

Statement of ethical approval. All procedures performed in studies involving human participants were 
in accordance with the ethical standards of the institutional and/or national research committee and with the 
1964 Helsinki Declaration and its later amendments.

Figure 3.  The pipeline for the proposed model. Here, the CNN architecture for all three base classifiers is the 
same. Images are taken from the public datasets found  in51,52.

Figure 4.  Architecture of the proposed CNN model.
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Experimental results
In this section, we discuss and also attempt to explain the experimental findings. It should be noted that all the 
performances are evaluated on machines supported by Nvidia Tesla T4 GPUs. The programming environment 
used to train and test our model is Python 3.8.

Dataset description. To evaluate the performance of our proposed method for COVID-19 and pneumo-
nia detection from chest X-ray images we use samples from two datasets. The first dataset (termed as Dataset-1 
hereafter) consists of chest X-ray images of pneumonia-affected patients and normal subjects from Guangzhou 
Medical Centre: Chest-X-ray-Pneumonia52 and COVID-19 affected patients from IEEE COVID-chest X-ray-
dataset51. The second dataset, termed here after as Dataset-2, is hosted publicly on Kaggle and is popularly 
known as the COVID-19 Radiography  Database56. Dataset-2 has been created in collaboration of researchers 
from Qatar University (Qatar), University of Dhaka (Bangladesh), Pakistan and Malaysia. The dataset consists 
of chest X-ray images of COVID-19 positive, normal and pneumonia-infected cases. The distributions (i.e., 
number of samples in train and test set) of both the datasets have been shown in Table 1. It is to be mentioned 
here that during model training we have randomly selected 15% of the training samples as validation samples.

Tuning the hyperparameters of customised CNN model. In typical CNN models, hyperparameter 
tuning is a very essential and tedious job. Hyperparameters of a deep learning model to an extent indicate the 
learning capability of such a model. It is essential to set two main hyperparameters, namely batch size and learn-
ing rate to obtain near-optimal model performance. The batch size controls the number of samples to be loaded 
for training at one go while the learning rate determines the learning capability of the model which says to what 
extent the newly acquired information overrides the previous. Here we estimate the hyperparameters using 
samples of Dataset-1 and propagate these parameters to train the model for Dataset-2. Here we would also like to 
mention that we tune the said hyperparameters only for Classifier 2 as it takes the standard RGB images as input. 
For tuning the hyperparameters, we randomly select 15% of the training dataset as the validation samples. For 
this, we employ the grid search method to select the near-optimal batch size and the learning rate. The learning 
rate is selected from the set {1e − 02, 1e − 03, 1e − 04, 1e − 05, 1e − 06} while for selecting batch size we use the 
set {8, 16, 32} . From Fig. 5 it is observed that the validation accuracies converge to their optimum solution for 
learning rate = 1e− 4 and batch size = 16. For smooth learning we rely on the popularly used Adam optimiser 
and categorical cross-entropy as the loss function.

Performance comparison: customised CNN model vs. state‑of‑the‑art CNN models. It has 
already been mentioned that we propose a customised CNN model that is lightweight in nature (see Fig. 4). 
Based on this CNN model, three different classifiers are formed. We compare the performances of the proposed 
classifiers (including TOPCONet) with state-of-the-art CNN models following the transfer learning concept and 

Table 1.  Distribution of datasets for training and evaluating the present TOPCONet model.

Dataset Source

Train samples Test samples

COVID-19 Normal Pneumonia COVID-19 Normal Pneumonia

Dataset-1 Kaggle  Pneumonia52 and IEEE COVID-
1951 739 1072 3100 185 269 775

Dataset-2 KaggleCOVID-19 Radiography  Database56 2893 8154 1076 723 2038 269

Figure 5.  Validation accuracy (in %) with respect to different learning rates used to train the customised CNN 
model.
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training from the scratch. In the transfer learning approach, we load the pre-trained weights of the respective 
CNN models which are obtained after training the models on the ImageNet dataset. Subsequently, using the 
loaded weights we fine-tune the models on both datasets. To maintain uniformity during performance compari-
son, the total number of epochs used is 15 for both state-of-the-art CNN models and the proposed classifiers. 

Table 2.  Performance comparison of the proposed 3 base classifiers and TOPCONet with some state-of-the-
art CNN models utilising the concept of transfer learning and training from scratch on Dataset-1. For citing 
recall (Rec), precision (Pre) and F1-score micro-average method is used. *After the CNN models’ name means 
that the models have been trained from scratch.  #As the proposed ensemble method is non trainable, hence 
time required to run on the training split is not applicable (N/A). RA indicates recognition accuracy and bold 
faced numbers indicate the best scores.

Model # Trainable parameters

Performance (in %) in terms of
Total time 
(in s)

Pre Rec F1-score RA Train Test

SqueezeNet 1,248,424 93.12 93.27 93.19 93.32 112.6 2.4

SqueezeNet* 1,248,424 92.24 92.04 92.14 92.35 226.3 4.5

MobileNetV2 3,504,872 98.23 98.00 98.11 97.96 102.1 3.1

MobileNetV2* 3,504,872 98.39 97.65 98.25 98.12 448.4 4.5

ResNet101 44,549,160 94.33 91.00 92.67 94.38 331.5 7.0

ResNet101* 44,549,160 96.83 92.70 94.41 95.03 779.2 6.8

DenseNet121 7,978,856 97.67 96.67 96.67 97.96 184.9 6.0

DenseNet121* 7,978,856 97.57 98.12 97.84 97.80 637.5 5.7

VGG-19 143,667,240 96.67 96.33 96.67 98.20 207.0 11.1

VGG-19* 143,667,240 95.14 97.53 96.21 96.41 625.6 8.3

InceptionV3 27,161,264 96.33 96.67 96.67 96.69 209.5 4.7

InceptionV3* 27,161,264 95.5 96.43 95.94 96.58 430.9 7.6

Classifier  1* 306,467 97.34 97.00 97.67 97.96 55.3 0.9

Classifier  2* 339,235 97.67 97.34 97.67 98.04 68.4 1.5

Classifier 3* 355,619 98.34 98.00 98.37 98.53 86.2 2.4

TOPCONet 1,001,324 98.47 98.26 98.37 98.78 N/A# 4.9

Table 3.  Performance comparison of the proposed 3 base classifiers and TOPCONet with some state-of-the-
art CNN models utilising the concept of transfer learning and training from scratch on Dataset-2. For citing 
recall (Rec), precision (Pre) and F1-score micro-average method is used. *After the CNN models’ name means 
that the models have been trained from scratch. #As the proposed ensemble method is non trainable, hence 
time required to run on the training split is not applicable (N/A). RA indicates recognition accuracy and bold 
faced numbers indicate the best scores.

Model # Trainable parameters

Performance (in %) in terms of
Total time 
(in s)

Pre Rec F1-score RA Train Test

SqueezeNet 1,248,424 95.35 95.20 95.27 95.32 165.4 5.5

SqueezeNet* 1,248,424 94.56 94.23 94.39 94.78 556.6 4.9

MobileNetV2 3,504,872 95.96 95.88 95.92 96.14 270.5 5.0

MobileNetV2* 3,504,872 95.93 97.26 96.57 97.6 1047.0 5.2

ResNet101 44,549,160 95.20 95.45 95.32 95.48 693.3 11.9

ResNet101* 44,549,160 83.79 89.40 86.31 88.01 1901.0 11.8

DenseNet121 7,978,856 97.00 96.67 96.67 96.30 453.7 9.4

DenseNet121* 7,978,856 97.10 94.90 95.97 96.96 1357.0 9.0

VGG-19 143,667,240 96.67 96.00 96.34 96.08 499.6 9.4

VGG-19* 143,667,240 93.51 97.37 95.31 96.03 1508.0 13.6

InceptionV3 27,161,264 95.01 95.11 95.06 95.24 390.7 7.4

InceptionV3* 27,161,264 93.42 94.98 94.1 95.1 1044.0 7.7

Classifier  1* 306,467 97.30 96.87 97.08 97.92 123.3 2.0

Classifier  2* 339,235 97.04 97.08 97.06 97.98 189.9 2.7

Classifier  3* 355,619 97.37 97.76 97.57 98.28 165 5.5

TOPCONet 1,001,324 97.84 97.85 97.85 98.61 N/A# 11.2
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All the results are evaluated on test samples of the said datasets i.e., following hold-out test set samples approach. 
The comparative results are presented in Tables 2 and 3 for Dataset-1 and Dataset-2 respectively.

From these tables the number of trainable parameters for the proposed Classifier 1, Classifier 2 and Classifier 
3 can be observed as 306,467; 339,235; and 355,619, respectively. Classifier 3 uses the maximum number of train-
able parameters (355,619) which is 28.49% of trainable parameters used in the SqueezeNet model (1,248,424), 
which itself is considered to have the least number of trainable parameters among the well-known deep CNN 
models such as MobileNetV2 (3,504,872), VGG-19 (143,667,240) and DenseNet121 (7,978,856). Moreover, 
these tables also show that the total number of trainable parameters used in the proposed TOPCONet model is 
1,001,324 (trainable parameters of Classifier 1 + Classifier 2 + Classifier 3 + TOPSIS-aided ensemble) which is 
evidence that although TOPCONet consists of three base classifiers it uses less number of trainable parameters 
than the state-of-the-art CNN models. Hence, we can safely comment that the proposed TOPCONet is com-
putationally less expensive than the popularly used state-of-the-art CNN models used in literature in terms of 
trainable parameters.

For Dataset-1, when compared in terms of accuracy, the proposed Classifier 3 among the three base clas-
sifiers demonstrates the highest recognition accuracy which is 0.58% more than the second-highest 98.20% 
obtained using the VGG-19 model which uses transfer learning concept. In the case of the precision score, the 
MobileNetV2 model trained from scratch on Dataset-1 offers a better result (98.39%) which is 0.05%, more 
than our Classifier 2. For recall the DenseNet121 (trained from scratch) and MobileNetV2 (following transfer 
learning concept) give better results over our base classifiers. In the case of the F1-score, the proposed Classi-
fier 3 performs the best. However, TOPCONet outperforms all the CNN models on this dataset in terms of all 
the parameters. Now comparing our base classifiers with other popularly used CNN models on Dataset-2, it is 
evident that the proposed Classifier 3 outperforms all the other popular CNN models in terms of recognition 
accuracy with a difference of 0.63% with respect to the second-best result given by the present Classifier 2. It is 
also to be noted that apart from the accuracy, the Classifier 3 performs better in terms of precision, recall and 
F1-score values which are 0.54% , 0.48% and 0.77% better than the second-best method.

Although in some cases the proposed base classifiers are not able to outperform the other CNN models, it 
is to be kept in mind that it has far fewer of trainable parameters than those other CNN models which makes it 
easier to train, making it appropriate use in a resource constraint environment. It is evident from the training 
time column that the proposed base classifiers take far lesser time to train than the other state-of-the-art CNN-
based classifiers in the case of both the datasets. In the case of CNN models, training from scratch takes more 
time than using the transfer learning approach. However, in the case of the proposed classifiers although they are 
being trained from scratch they take less time than the standard CNN models using transfer learning approach.

In a nutshell, from the experimental results discussed in this subsection and shown in Tables 2 and 3 we can 
safely comment that (1) the proposed customised CNN model takes much less time to train from scratch as 
compared to state-of-the-art CNN models (please note Classifier 2 take the same input type (i.e., RGB image) as 
other state-of-the-art CNN models), (2) our customised CNN model also takes less time as compared to other 
CNN models when they are trained according to the transfer learning concept, (3) both the customised CNN 
model-based base classifiers and TOPCONet have less trainable parameters compared to other CNN models, 
(4) unsurprisingly, TOPCONet outperforms all the models with moderate training and testing time.

Performance comparison: TOPSIS‑aided ensemble method vs. standard ensemble meth‑
ods. We implemented some standard ensemble methods such as product rule, sum rule, weighted average 
method and majority voting method. After evaluation on the test sets of Dataset-1 and Dataset-2, the perfor-
mances of the ensemble methods are shown in Table 4. Here we would like to mention that for implementing 
the TOPSIS-aided ensemble approach, we have first ranked the base classifiers depending on validation accuracy 
and then assigned the weights (termed as criteria weights in the TOPSIS method) 0.55, 0.35 and 0.1 chronologi-
cally from the best to the worst-performing base classifiers. We set these values experimentally. This parameter 
tuning is conducted only for Dataset-1 while using the same values for evaluating TOPCONet on Dataset-2. In 
terms of accuracy, the TOPSIS aided ensemble method outperforms all the other standard ensemble methods 
used here for comparison on Dataset-1. The difference in accuracy is 0.16% when compared to the second best 
performers: weighted average and sum rule based ensemble methods. Considering the results on Dataset-2, the 
difference in accuracy between the highest accuracy obtained using the proposed method and the second best 
result obtained by product rule ensemble method is 0.19%.

Table 4.  Performance comparison of the TOPSIS aided ensemble method with other popular ensemble 
methods. All the scores reported are in %.

Category Mmethod

Dataset-1 Dataset-2

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Hard-voting Majority voting 98.40 97.76 98.42 98.45 96.74 97.68 97.17 98.21

Soft-voting

Product rule 98.34 97.34 98.00 98.37 98.10 97.97 98.04 98.42

Sum rule 98.65 97.98 98.32 98.62 97.90 97.78 97.85 98.32

Weighted average 98.65 97.98 98.32 98.62 97.90 97.78 97.84 98.32

TOPSIS-aided 98.47 98.26 98.37 98.78 97.84 97.85 97.85 98.61
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In terms of precision for Dataset-1, the sum rule and weighted average-based ensemble methods exceed that 
of the proposed method by 0.18% and for Dataset-2, the product rule-based ensemble outperforms the proposed 
TOPSIS-aided ensemble method by 0.26% . The highest result for performance in terms of the recall value is given 
by the proposed method which is 98.26% for Dataset-1 but for Dataset-2 it is the product rule based ensemble 
that exceeds the proposed method by 0.12% . If we compare in terms of F1-score on the Dataset-1, it can be con-
cluded that the majority voting ensemble method gives the best F1-score with 0.05% more than the proposed 
method while for Dataset-2, it is the product rule based ensemble method that gives the highest F1-score with 
the difference being 0.19% from the proposed method.

Moreover, the performances of the ensemble methods of weighted average and sum rule are almost the same. 
It may have happened because, in the case of the weighted average method, we take the normalised validation 
accuracies as the weights for each classifier which themselves are almost similar and so despite using weighted 
average ensemble to prioritise the best performing classifiers, the ensemble gives almost equal priority to the 
three classifiers which in turn become similar to sum rule based-ensemble method.

Analysis of execution time at module level. In this section, we describe the execution time for differ-
ent steps in TOPCONet with the machine configuration described previously. The time required to process one 
batch of samples (i.e., 16 images at a time) at different stages is tabulated in Table 5. From Table 5 it is clear that 
the total time required to test one sample using the proposed approach is (240+ 12+ 13+ 14+ 4)/16 which 
is nearly 18 ms. The increase in training time for Classifier 2 and Classifier 3 over Classifier 1 is attributed to the 
fact that the number of trainable parameters for Classifiers 2 and 3 is higher than Classifier 1. This is because 
Classifier 2 and Classifier 3 accept 3-channel and 4-channel input images respectively, while Classifier 1 accepts 
1-channel input images.

Performance of the TOPCONet model using 5‑fold cross validation technique. To test the 
effectiveness of the proposed model, we also evaluate our model performance using the standard 5-fold cross-
validation scheme. In this setting, we split the dataset into five separate folds. Each time sample of four splits 
is considered a training samples while the rest samples are used for the testing. The detailed experimental out-
comes are recorded in Table 6. From Table 6 it is evident that for Dataset-1, the TOPCONet model performs the 
best on Fold 4 experiment with accuracy  98.24%. In the case of Dataset-2, the highest accuracy for the proposed 
ensemble method is achieved during Fold 3 experimentation which is 97.85%. For the base classifiers in the case 
of Dataset-1, the highest accuracy for Classifier 1 is achieved in Fold 2, for Classifier 2 it is Fold 4 and for Clas-
sifier 3 it is Fold 3 experiment. For Dataset-2, during Fold 3 experimentation we attain the highest accuracy for 
all the base classifiers.

Table 5.  Time required to process 16 sample images at a time. The training time reported is recorded as the 
sum of total time required to train for each epoch. The time reported is the average of five independent runs.

Process Time to train (in ms) Time to test (in ms)

Pre-processing 240 240

Classifier 1 350 12

Classifier 2 375 13

Classifier 3 425 14

TOPSIS ensemble – 4

Table 6.  Accuracies (in %) while evaluating using 5-fold cross validation scheme.

Fold

Dataset-1 Dataset-2

Classifier 1 Classifier 2 Classifier 3 Ensemble Classifier 1 Classifier 2 Classifier 3 Ensemble

Fold1 96.09 96.42 95.84 96.58 96.43 96.46 95.84 96.83

Fold2 97.79 97.74 97.55 98.12 95.64 95.60 95.80 96.27

Fold3 97.02 96.58 97.72 97.80 97.46 97.52 97.72 97.85

Fold4 97.71 97.79 97.71 98.24 96.73 96.86 96.93 96.96

Fold5 96.57 96.74 96.82 97.06 95.59 95.95 95.16 96.13

Maximum 97.79 97.79 97.72 98.24 97.46 97.52 97.72 97.85

Minimum 96.09 96.42 95.84 96.58 95.59 95.60 95.16 96.13

Average 97.04 97.05 97.13 97.56 96.37 96.48 96.29 96.80

SD 0.65 0.59 0.72 0.64 0.70 0.67 0.91 0.61
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Performance comparison: proposed method (TOPCONet) vs. state‑of‑the‑art methods. To 
test the effectiveness of the proposed TOPCONet model, we compare its performance with the performances of 
some state-of-the-art methods proposed by Khan et al.36, Jain et al.57, Hussain et al.37, Ismael et al.58, Das et al.25, 
Goel et al.38, and Paul et al.24  on Dataset-1 while for Dataset-2 we compare the methods proposed by Aslan 
et al.39, Ouchicha et al.29, Kedia et al.59, Ahmad et al.60, Chowdhury et al.56, Sedik et al.18, Wu et al.30, Panetta 
et al.20, Yang et al.61, Paul et al.24, Gour et al.33, Gour et al.26, Hasoon et al.27, Bashar et al.34, Senan et al.35, Naeem 
et al.40, Goyal et al.41, Roy et al.28 and Senan et al.35. To have a fair comparison with these methods include the 
experimental setups, especially the approach followed to prepare the samples of train and test sets, used by these 
methods. We found that two major approaches were used by these researchers: (1) partitioning the samples of 
the entire dataset into train and test  sets18,20,25,34–36,38,39,57–59,61, as shown in Table 1 (we call this experimental 
setup as hold-out test set approach) and (2) standard 5-fold cross validation  approach26,27,29,30,33,37,40,41,56,60 as 
described in subsection “Performance of TOPCONet model using 5-fold cross validation technique”. However, 
the method designed by Paul et al.24  do not follow any of the mentioned experimental setups and hence we have 
developed the models at our end and evaluated following our experimental schemes. For the method proposed 
by Paul et al.24 we use transfer learning concept. Likewise, we also estimate the performances of the proposed 
TOPCONet model using both the mentioned approaches. On the other hand, the method proposed by Bashar 
et al.34 and Senan et al.35 designed for 4-class classification problem. Hence, for the comparison with our method 
we train and test these two models on the present datasets using their experimental setups, and consider the best 
performance obtained. The comparative results are recorded in Table 7 and Table 8 for Dataset-1 and Dataset-2 
respectively.     

For Dataset-1, among the state-of-the-art methods evaluated following the hold-out test set approach, the 
methods proposed by Senan et al.35 and Das et al.25 stand first and second with a test accuracy of 98.70% and 
98.45% respectively. Also, the best recall, F1-score and precision values are given by the optimized ResNet50 
model by Senan et al.35 with values 98..67%, 98.67% and 98.00% respectively. Whereas, the pre-trained Xception 
model proposed by Jain et al.57 gives the best precision of 98.00% among the state-of-the-art methods. Now, when 
comparing TOPCONet with state-of-the-art methods that followed the hold-out test set based experimental 
setup, results from Table 7 are the evidence that the highest accuracy for the Dataset-1 is given by the proposed 
method, which is 0.08% more than the optimized ResNet50 model proposed by Senan et al.35. In terms of pre-
cision score, our method exceeds the pre-trained Xception model by Jain et al.57 and the optimized ResNet50 
model by Senan et al.35 by 0.67% . However, in terms of F1-score the optimized ResNet50 model outperforms 
our TOPCONet method by ( 0.33% .) and in terms of recall it is outperformed by Senan et al.35 by 0.67% . In the 
case of methods that followed the five-fold cross-validation approach, the proposed method outperforms the 
state-of-the-art method that employed CoroDet.

For Dataset-2 among the state-of-the-art methods that followed five-fold cross-validation experimental setup, 
the best performer is the UA-ConvNet model which is proposed by Gour et al.33 with an accuracy of 98.90% while 
the second-best accuracy is provided by the ensemble of InceptionV3 and MobileNetV2 proposed by Ahmad 
et al.60 with a value of 98.77% . In the case of precision, recall and F1-score the ensemble of InceptionV3 and 
 MobileNetV260 outperforms all other methods in the case of 5-fold cross-validation experimental setup. It also 
outperforms the proposed method with 5-Fold cross-validation by 0.57% , 0.55% , 0.56% and 0.92% in precision, 
recall, F1-score and recognition accuracy respectively.

Table 7.  Performance comparison of the proposed method with some state-of-the-art models on the 
Dataset-1.

Work Ref. Technique Experimental protocol

Performance (in %) in terms of

Precision Recall F1-score Accuracy

Khan et al.36 CoroNet Hold-out test set 95.00 96.90 95.94 95.00

Jain et al.57 Xception Hold-out test set 98.00 94.60 96.00 97.00

Hussain et al.37 CoroDet 5-Fold cross validation 96.34 96.00 96.00 96.66

Ismael et al.58 End to end CNN Hold-out test set 95.67 94.67 95.00 96.09

Das et al.25 Bi level prediction Hold-out test set 97.87 98.14 98.00 98.45

Goel et al.38 OptCoNet Hold-out test set 92.88 96.25 95.25 97.78

Paul et al.24 Inverted bell ensemble Hold-out test set 97.21 97.81 97.50 97.97

Paul et al.24 Inverted bell ensemble 5-Fold cross validation 97.12 97.62 97.39 97.85

Gour et al.33 UA-ConvNet model 5-Fold cross validation 98.49 98.26 98.36 98.09

Gour et al.26 Stacked CNN model 5-Fold cross validation 97.62 98.52 97.50 97.27

Hasoon et al.27 LBP-KNN model 5-Fold cross validation 97.80 100.0 98.88 98.70

Bashar et al.34 Optimized CNN model Hold-out test set 95.67 93.34 94.67 95.20

Senan et al.35 ResNet50 Hold-out test set 98.00 98.67 98.67 98.70

Naeem et al.40 CNN-LSTM model Hold-out test set 95.00 95.00 95.00 96.60

Goyal et al.41 F-RRN-LSTM model Hold-out test set 88.89 95.41 92.03 94.31

Proposed TOPCONet
Hold-out test set 98.67 98.00 98.34 98.78

5-Fold cross validation 98.10 97.53 97.81 98.24
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When it comes to the comparison of the methods using the hold-out data splitting method, the best accuracy, 
precision, recall and F1-score are achieved by the hybrid architecture using the modified AlexNet model and 
BiLSTM with the value of 98.70% , 98.77% , 98.76% and 98.76% respectively. However, this method outperforms 
the proposed method in precision, recall, F1-score and accuracy by 0.93% , 0.91% , 0.91% and 0.09% respectively. 
Although from the comparison, it can be observed that some methods have outperformed the proposed method 
in Dataset-2 for both the hold-out test set and five-fold cross-validation experimental setups but it is to be kept 
in mind that the number of parameters used by the proposed method is far less than that of these state-of-the-art 
methods. The total number of parameters of the combination of three classifiers is around 1 million which is far 
less than that of AlexNet, MobileNetV2 and InceptionV3 models as shown in Table 2.

Performance of TOPCONet on COVIDx CXR‑3 dataset. To investigate scalability and robustness 
of the proposed TOPCONet model, we have evaluated its performance on a recently published large daraset, 
known as COVIDx CXR-3  Dataset62. This dataset was made public by Wang et al.17. It consists of 30,000 chest 
X-ray images from over 16,490 subjects (either COVID-19 positive patients or normal subjects). The images in 
the dataset are already partitioned into train and test sets by the researchers in the  work17. In the train set of the 
dataset, there are 16,400 chest X-rays of COVID-19 positive patients and 13,992 chest X-rays belonging to non 
COVID-19 subjects whereas, the test set contains 200 chest X-ray images of the COVID-19 positive and negative 
patients each. We have followed the standard dataset divisions to conduct our experiments. The performance of 
the TOPCONet along with the base classifiers are provided in Table 9. In order to compare the performances of 
our model on this dataset, we compare it with some state-of-the-art COVID-19 detection methods like Xception 
model used by Jain et al.57,  the CheXNet model by Chowdhury et al.56, the ResNet50 model used Senan et al.35, 
the CovidConvLSTM model by Dey et al.19 and the use of VGG-16 as a transfer learning model that was used 
by Bashar et al.34. Performances of these state-of-the-art models are also recorded in Table 9 along with perfor-
mances of our final model and base classifiers. From Table 9, it can be concluded that the proposed TOPCONet 
model gives the highest performance in all metrics like accuracy, precision, recall and F1-score. The second and 
third highest results in all metrics are given by Classifier 1 and Classifier 2 respectively. However, the Classifier 
3 is outperformed in terms of accuracy by other state-of-the-art methods. Apart from the performance, present 
models acquire less trainable parameters than the past methods used here for comparison.

Discussion
It has already been mentioned that in this work, we propose a new CAD system (i.e., TOPCONet) for COVID-19 
and pneumonia detection from chest X-ray images. The TOPCONet model is computationally inexpensive and 
efficient. The performance of the model is evaluated on two publicly available datasets and the obtained results are 
described in the previous section. However, in this section, we discuss more findings of the TOPCONet model. 
To start with we discuss the performance and the number of training parameters of all the basic components 
of the model. It is to be noted here that TOPCONet comprises of four major components: three base classifiers, 

Table 8.  Performance comparison of the proposed method with some state-of-the-art models on the 
Dataset-2.

Work Ref. Technique Experimental protocol

Performance (in %) in terms of

Precision Recall F1-score Accuracy

Aslan et al.39 mAlexNet+BiLSTM Hold-out test set 98.77 98.76 98.76 98.70

Aslan et al.39 mAlexNet Hold-out test set 98.16 98.26 98.20 98.14

Ouchicha et al.29 CVDNet 5-Fold cross validation 96.72 96.84 96.68 96.69

Kedia et al.59 CoVNet-19 Hold-out test set 98.34 98.34 98.34 98.20

Ahmad et al.60 InceptionV3+MobileNetV2 5-Fold cross validation 97.56 97.54 97.55 98.77

Chowdhury et al.56 CheXNet 5-Fold cross validation 96.61 96.61 96.61 97.74

Sedik et al.18 ConvLSTM Hold-out test set 94.67 97.09 95.64 95.96

Wu et al.30 ULNet 5-Fold cross validation 96.93 96.60 96.60 95.25

Panetta et al.20 Classical Fibonacci p-pattern Hold-out test set 97.78 96.90 97.32 97.79

Panetta et al.20 Shape dependent Fibonacci p-pattern Hold-out test set 97.20 96.76 96.69 98.03

Yang et al.61 Fast.AI ResNet Hold-out test set 97.00 97.00 97.00 97.00

Paul et al.24 Inverted bell ensemble Hold-out test set 97.24 97.25 97.24 97.64

Paul et al.24 Inverted bell ensemble 5-Fold cross validation 96.84 96.72 96.72 97.12

Gour et al.33 UA-ConvNet model 5-Fold cross validation 99.51 98.00 98.73 98.90

Roy et al.28 CoWarriorNet Hold-out test set 94.66 91.33 92.66 97.80

Bashar et al.34 Optimized CNN model Hold-out test set 97.00 93.67 95.67 96.55

Senan et al.35 ResNet50 model Hold-out test set 97.00 97.67 97.67 98.01

Goyal &  Singh41 F-RRN-LSTM model Hold-out test set 93.65 96.78 95.19 95.04

Proposed TOPCONet
Hold-out test set 97.84 97.85 97.85 98.61

5-Fold cross validation 96.99 96.99 96.99 97.85
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namely Classifier 1, Classifier 2 and Classifier 3 and TOPSIS aided ensemble process. The performances on 
Dataset-1 and Dataset-2 using the experimental setup are discussed in the subsection “Dataset description” and 
the number of trainable/tunable parameters present in these major components are provided in Table 2. From 
the performances recorded in Tables 2 and 3 we can see that Classifier 3 that accepts 4-channel input images 
performs the best among the base classifiers for both datasets. From this observation, we can safely comment that 
combining the edge image, generated by Robert’s edge detection technique, with the original image helps us to 
obtain better performance. From these results, we can also say that our model learns the association of features.

In addition to these, we can also observe that after the ensemble of the outputs from the three base classifiers 
using the TOPSIS-aided ensemble method, it results in an increase of accuracy by 0.25% for Dataset-1 and in the 
case of Dataset-2 the increase in accuracy is 0.33% . The results establish that the TOPSIS-aided ensemble method 
can learn the better association of confidence scores provided by the classifiers. For a deeper understanding, we 
examine the confusion matrices of the base classifiers and the TOPSIS aided ensemble method for all the data-
sets. The confusion matrices are shown in Fig. 6. From the figure, we can conlcude the TOPSIS aided ensemble 
works optimally for all the three datasets. Hence we can also claim that the proposed method works well across 
the datasets. The proposed ensemble method is able to capture multiple complimentary information provided 
by the base classifiers for COVID-19 and pneumonia detection.

We can also observe from Tables 2 and 3 that a certain number of parameters are trained for each of the base 
classifiers. This can be explained because the input dimension of each of the base classifiers differs. Moreover, 
it must be noted that the ensemble approach consists of several criteria (in this case, three). Corresponding to 
each of the criteria, a criteria weight is assigned. These weights are manually tuned i.e., these are not trained by 
any learning methods.

For further analysis of the proposed 3-channel CNN model (i.e., Classifier 2), we use grad-cam analysis, 
which works by using the gradients generated inside the model to create a heat-map to show the regions where 
the model focuses to perform the intended classification task. In Fig. 7, the original chest X-ray images along 
with their grad-cam counterparts are shown. In this figures, we observe that the TOPCONet focuses mainly on 
the lung area. It is noteworthy that a few activation regions can be seen outside the lung. This is probably because 
the model learns a few redundant features along with the useful ones. These redundant features are the ones that 
get insignificant importance from the classifier (FCNNs in this case) during the final classification.

Advantages and limitations of the proposed method. The advantages of the proposed model are 
listed below:

• The proposed CNN model can learn effective features from input images of different types.
• It has fewer tuning parameters compared to state-of-the-art CNN models.
• The TOPSIS aided ensemble method can efficiently aggregate the confidence scores estimated by the base clas-

sifiers to provide the final class.
• The ensemble method used here has very few tunable parameters (same as the number of base classifiers 

used in ensemble mechanism) and hence very little additional cost is required.

To provide our observations on the proposed work, we also mention some of its limitations which are as 
follows:

• The proposed CNN model might not work well on rotated and arbitrarily cropped images. It might require 
different augmented training samples like other CNN models.

• The TOPSIS aided ensemble method fails to classify a sample if two of the base classifiers incorrectly classify 
it with high confidence.

• As we have used deep learning models as our base learners, it demands resources such as graphics processing 
unit (GPU), dedicated random access memory (RAM) etc. for training the same.

Table 9.  Performances of TOPCONet model and its sub-modules along with some state-of-the-art models on 
COVIDx Dataset. The best values are highlighted in bold.

Work Ref. Technique #Trainable parameters

Performance (in %) in terms of

Precision Recall F1-score Accuracy

Jain et al.57 Xception 22,910,480 79.50 74.00 73.00 74.25

Chowdhury et al.56 CheXNet 20,242,984 82.50 75.00 73.50 74.75

Bashar et al.34 Optimized CNN 138,357,544 87.50 85.50 85.00 85.50

Senan et al.35 ResNet50 25,636,712 80.50 77.00 76.50 77.25

Dey et al.19 CovidConvLSTM 363,996,809 88.71 86.75 86.58 86.75

Proposed Classifier 1 306,467 94.00 92.61 93.30 93.25

Proposed Classifier 2 339,235 92.00 92.46 92.23 92.25

Proposed Classifier 3 355,619 81.00 69.53 74.83 72.75

Proposed TOPCONet 1,001,324 94.50 94.03 94.26 94.25
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Conclusion
Keeping in mind the present scenario of COVID-19 cases, the situation needs to be addressed properly to help 
humanity to come out of this crisis as soon as possible. In the present work, we propose a CAD system, called 
TOPCONet, for screening COVID-19 and pneumonia which performs well on publicly available three chest 
X-ray datasets. In TOPCONet, we first pre-process the images to obtain different forms of the original images, 
which are further used to train and evaluate the model. The skeletal structure of the base classifiers of the 
ensemble approach is the same, however, the type of input differs for each of the cases. We combine the deci-
sions of these base classifiers using the proposed TOPSIS aided ensemble method. The proposed model can learn 
deep features better, and it performs at par with the state-of-the-art methods. It is noteworthy to mention that 
our customised CNN model uses a very less number of trainable parameters compared to the popularly used 
CNN models in several deep learning-aided CAD systems. It should be noted that these datasets suffer from 
the problem of imbalanced classes. Hence further works can be focused on handling this issue efficiently. Since 
our model gives an end-to-end classification result for COVID-19 and pneumonia diseases using chest X-ray 
images and is lighter in nature, it may be employed in detecting such diseases to ease the burden on radiologists 
and doctors. However, the proper advice of medical professionals should be considered along with the outcome 
from this model. Apart from these, further work may be focused on using domain knowledge as it may increase 
the model performance. Last but not the least, the present model can be used to extract features first and then a 
suitable feature selection technique may be employed to select a near-optimal subset of features that may further 
reduce the storage and time requirements.

(a) Dataset 1 Classifier 1 (b) Dataset 1 Classifier 2 (c) Dataset 1 Classifier 3 (d) Dataset 1 Ensemble

(e) Dataset 2 Classifier 1 (f) Dataset 2 Classifier 2 (g) Dataset 2 Classifier 3 (h) Dataset 2 Ensemble

(i) COVIDx Classifier 1 (j) COVIDx Classifier 2 (k) COVIDx Classifier 3 (l) COVIDx Ensemble

Figure 6.  Confusion matrices obtained on Dataset-1, Dataset-2 and COVIDx dataset.
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