
Research Article
Characterization of m6A Methylation Modification Patterns in
Colorectal Cancer Determines Prognosis and Tumor
Microenvironment Infiltration

Qingfang Yue ,1,2 Yuan Zhang ,1 Fei Wang ,3 Fei Cao ,1 Jun Bai ,1

and Xianglong Duan 2,4,5

1Department of Medical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, 710068 Shaanxi, China
2Institute of Medical Research, Northwestern Polytechnic University, Xi’an, 710072 Shaanxi, China
3Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, 710068 Shaanxi, China
4Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, 710068 Shaanxi, China
5Second Department of General Surgery, Third Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710068 Shaanxi, China

Correspondence should be addressed to Xianglong Duan; duanxianglong@nwpu.edu.cn

Received 18 February 2022; Accepted 21 April 2022; Published 1 June 2022

Academic Editor: Jingang Huang

Copyright © 2022 Qingfang Yue et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cumulative studies have suggested that dysregulation of m6A regulators and immunity is highly linked to the prognosis of patients with
cancer. However, the potential contribution of m6A modification patterns to the tumor microenvironment (TME) and the therapeutic
efficacy of immunotherapy for colorectal cancer (CRC) remain elusive. A comprehensive analysis of them6Amodification profiles of 458
patients with CRCwas performed by clustering 21 genes encodingm6Amethylation regulators and linking them6Amodification pattern
with TME characteristics. Using principal component analysis (PCA), a risk model was constructed to quantify individual m6A
modification patterns in patients with CRC. The results indicated that the expression profiles and genetic mutations of 21 genes
encoding m6A methylation regulators in CRC were characterized by a high degree of heterogeneity. Three m6A clusters had
significant differences in prognosis, m6A modification patterns, and TME characteristics. Furthermore, a risk model, termed
m6Ascore, was developed by PCA to quality m6A methylation patterns at an individual level. The m6Ascore could stratify patients
into high- and low-m6Ascore groups. Further analyses demonstrated that the m6Ascore had a good predictive performance for
overall survival and clinical efficacy of immunotherapy in patients with CRC. Finally, the predictive value of the model was validated
by external cohorts. In conclusion, the comprehensive characterization of m6A methylation modification patterns might contribute to
our understanding of the TME in CRC and the development of personalized antitumor immunotherapy in the future.

1. Introduction

Colorectal carcinoma (CRC) is the third most commonly
diagnosed cancer and is the second leading cause of
cancer-related deaths globally [1]. Although current treat-
ments such as targeted therapy, immunotherapy, and preci-
sion treatment have been applied for the treatment of CRC
[2, 3], the clinical outcomes are unsatisfactory, and the prog-
nosis of patients with CRC remains bleak. The prognosis of
patients with CRC varies widely even among patients with the

same stage and therapeutic regimen, largely attributed to the
highly heterogeneous nature of CRC [4]. In the current era,
immunotherapy using immune checkpoint inhibitors (ICIs)
is an encouraging strategy for the treatment of solid tumors,
including CRC [5–10]. The heterogeneity of CRC at the
genetic and molecular levels has significant ramifications in
terms of immunotherapy outcomes [11]. In CRC, microsatel-
lite instability [12], tumor mutational burden (TMB) [13], and
DNA polymerase epsilon mutations [14] have emerged as
major markers to predict the responses to immunotherapy.
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However, these indicators do not provide accurate predictions
for the current ICIs, thereby facilitating the development of
more accurate and reliable biomarkers.

As a common chemical modification of eukaryotic messen-
ger ribonucleic acids (mRNAs), N6-methyladenosine (m6A)
can affect various essential biological processes by regulating
the expression of target genes [15, 16]. m6A-regulated proteins
consist of “writers” (WTAP, METTL3, and METTL14),
“erasers” (ALKBH5 and FTO), and “readers” (IGF2BPs and
YTHDFs) [17–19]. Currently, numerous studies have offered
evidence that m6A regulators perform crucial functions inmod-
ulating the maturation, translation, and degradation of RNAs
(including mRNAs and noncoding RNAs). Cumulative studies
have revealed that m6A regulator dysregulation is correlated
with apoptosis, proliferation, self-renewal, developmental
defects, malignant tumor progression, and tumormicroenviron-
ment (TME) [20–22]. TME refers to the environment surround-
ing tumor cells, including perivascular cells, immune cells,
fibroblasts, molecules, extracellular matrix, and additional stro-
mal components. Currently, in CRC, several reports have sug-
gested that m6A methylation regulators play a crucial role in
the tumor immune microenvironment (TIME), which is
defined as the immune and the immune-related constituents
of the TME. For instance, Cai et al. highlighted that downregu-
lation of the m6A “writer”METTL14 represents an unfavorable
patient prognosis and that its low expression level may result in
the downregulation of m6A modifications and reduction of the
level of immune cell infiltration [23]. Approximately 85% of
patients with CRC exhibit mismatch-repair-proficient or micro-
satellite instability-low (pMMR-MSI-L) tumors, and such
patients are poorly responsive to immunotherapy. Wang et al.
reported that depletion of themethylation transferasesMETTL3
and METTL14 could suppress m6A modification and enhance
responses of pMMR-MSI-L CRC to anti-PD-1 therapy. Further-
more, in vivo experiments suggested that METTL3- or
METTL14-deficient tumors were associated with increased
abundance of cytotoxic tumor-infiltrating CD8+ T cells and sig-
nificantly enhanced the secretion of IFN-γ, CXCL9, and
CXCL10 in TME [24]. According to Tsuruta et al., the m6A
“erasers” gene-FTO could regulate PD-L1 expression in colon
cancer cells in an IFN-γ signaling-independent manner [25].
However, to date, most studies have only focused on the role
of single m6A regulators in the regulation of the TIME and have
failed to provide a comprehensive perspective on how m6A
modification patterns contribute to the TIME.

In this study, we comprehensively investigated m6Amod-
ification characteristics and identified three m6Amodification
patterns (m6Aclusters) with distinct survival benefits, TME
immune cell infiltrations, and transcriptome characteristics.
Moreover, we constructed an m6A regulator-associated gene
signature, m6Ascore, which serves as a risk model for asses-
sing individual m6A modification patterns. Therefore, the
m6Ascore is a promising biomarker for predicting prognosis
and clinical response to ICIs in patients with CRC.

2. Materials and Methods

2.1. Date Collection. The whole workflow of our present
study is displayed in Supplementary Figure S1. RNA

sequencing (RNA-seq) data for gene expression analysis,
genetic mutations, and clinical information of patients with
colon carcinoma (n = 331) and rectal carcinoma (n=127)
were downloaded from The Cancer Genome Atlas (TCGA,
http://cancergenome.nih.gov/). Gene expression data and its
corresponding clinical information were obtained from the
GSE17536 (n = 177) and GSE78220 (n = 27) datasets in the
Gene Expression Omnibus (GEO) database. The Broad
GDAC Firehose (http://gdac.broadinstitute.org/) was retrieved
to obtain information on copy number variations (CNVs). In
addition, the IMvigor210 cohort, a dataset of advanced
urothelial cancer treated with PD-L1 inhibitor (atezolizumab),
was collected using the “IMvigor210” R package [26].
GSE78220 (n = 27), a dataset of metastatic melanoma treated
with anti-PD-1 antibody (pembrolizumab), was collected from
the GEO database [27]. The above two immunotherapeutic
datasets were collected to assess our findings.

2.2. Analysis of Somatic Mutations. Gene somatic mutation
data (MAF files) containing the mutation profile of the
CRC cohort were obtained from TCGA database. The visu-
alization procedure was performed with the aid of the “maf-
tools” R package [28].

2.3. Correlation Analysis between m6A Regulators and
Immune Infiltrations. The “CIBERSORT” package in R was
employed to assess the infiltration levels of 22 distinct
immune cell types across m6A regulators and m6A clus-
ters [29].

2.4. Unsupervised Clustering for m6A Regulators. A total of
21 m6A modulators were obtained from previous studies
[30] (Supplementary Table S1) and analyzed to identify the
characteristics of m6A modification. Unsupervised clustering
analysis was performed using the “ConsensusClusterPlus” R
package [31], and tumors were sampled for 1000 bootstrap
replications to ensure stability. The cluster number was
calculated by the area under the cumulative distribution of
the function curve, and the k-means method was used with
the Euclidean distance metric. Distinct m6A modification
profiles were identified according to the expression values of
21 m6A regulators, and patients were classified for
subsequent analysis.

2.5. Identification of Differentially Expressed Genes
Corresponding to m6A Clusters. The “limma” R package
was applied to identify differentially expressed genes (DEGs)
across various m6A clusters [32]. DEGs were considered sig-
nificantly different between groups in the case where ∣ log2
ðfold changeÞ ∣ >1 and adjusted Pvalue < 0.05.

2.6. Gene Set Enrichment Analysis and Gene Enrichment
Functional Annotation. Gene set enrichment analysis (GSEA),
an approach for interpreting gene expression data, was con-
ducted to thoroughly comprehend the distinct biological func-
tions underlying m6A modification patterns [33]. The
Molecular Signature Database (MSigDB) for GSEA (https://
www.gsea, http://msigdb.org/gsea/index.jsp) was used to
acquire the gene set “h.all.v7.2.symbols.gmt.” The enrichment
as well as modeled enrichment scores were calculated using
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the “GSEA”R package. Values with adjusted P < 0:05were con-
sidered statistically significant. The clusterProfiler package in R
was used to conduct Gene Ontology (GO) analysis of m6A-
associated DEGs. Values with P < 0:05were considered statisti-
cally significant.

2.7. Correlation Analysis between m6A Clusters and
Immunomodulators. A total of 75 immunomodulators (IMs)
were extracted from previous studies [34]. One-way analysis
of variance (ANOVA) and Kruskal–Wallis tests were used to
investigate the differences in IM potency among different
clusters.

2.8. Dimension Reduction and Construction of the m6Ascore
Model. The m6Ascore model was constructed based on m6A
cluster-associated DEGs. First, a total of 194 m6A cluster-
associated DEGs were selected for subsequent analysis.
Unsupervised clustering was performed to define DEG clus-
ters. Next, principal component analysis (PCA) was per-
formed for dimension reduction, and the final weight
values of PC1 and PC2 were used to construct the m6Ascore
model with the formula as follows [35]: m6Ascore =∑ðPC
1i + PC2iÞ, where “i” represents the expression of m6A reg-
ulator cluster-associated DEGs.

2.9. Statistical Analysis. The correlation coefficient was eval-
uated by Spearman’s correlation analysis. The optimal cutoff
value for each cohort was determined by the “survminer” R
package. Statistical significance of comparisons between two
groups was computed by Student’s t-test or the Wilcoxon
signed-rank test. The Kruskal-Wallis test and one-way
ANOVA were used for the purpose of examining statistical
differences among the three groups. The Kaplan-Meier
method was employed to perform prognostic analysis,
whereas the log-rank test was used to assess if there were
any differences among the groups. A protein-protein m6A
regulator interaction (PPI) network was constructed using
the STRING database [36]. All statistical P values were
double-sided. Statistical significance was set at P < 0:05. All
statistical analyses were performed using R 3.6.1 (https://
www.r-project.org/).

3. Results

3.1. Characterization and Clinical Value of m6A Regulators
in CRC. In the present study, 21 m6A-related genes including
“writers” (ZC3H13, VIRMA, WTAP, RBM15, RBM15B,
METTL3, METTL14, and METTL16), “erasers” (ALKBH5 and
FTO), and “readers” (IGF2BP1, IGF2BP2, IGF2BP3, RBMX,
HNRNPC, HNRNPA2B1, YTHDC1, YTHDC2, YTHDF1,
YTHDF2, and YTHDF3) were identified from previous studies
[30]. In TCGA-CRC dataset, the overall mutation frequency
of the above 21 RNA methylation-related genes was high, with
143 of 163 (87.73%) samples having mutations in 21 genes
encoding m6A regulators. The genes undergoing the highest
mutation frequencies were ZC3H13 (26%), KIAA1429 (17%),
and YTHDC2 (17%) (Figure 1(a)). Then, we investigated the
CNV of 21 genes encoding m6A regulators and found that
CNVs were frequent in TCGA-CRC dataset. The CNV of
ALKBH5, HNRNPA2B1, IGF2BP3, KIAA1429, METTL16,

YTHDF1, YTHDF3, and ZC3H13wasmore than 50%. Among
them, ALKBH5 and METTL16 primarily exhibited deletions,
and the other genes mostly exhibited amplification
(Figure 1(b)). At the transcriptomic level, we compared the
differential expression of genes encoding 21 m6A regulators
in tumor and healthy samples, and the results showed that
13 out of 21 genes were significantly differentially expressed.
The genes IGF2BP1, IGF2BP3, and YTHDF1 were signifi-
cantly upregulated in tumor samples, whereas the genes
YTHDC1, YTHDC2, ALKBH5, METTL14, METTL16, FTO,
WTAP, YTHDF2, YTHDF3, and RBM15B were significantly
downregulated in tumor tissues (Figure 1(c)). Furthermore,
the PPI network constructed using STRING implies extensive
protein interactions among these regulators. The interactions
and prognostic relevance of the 21 m6A regulators in patients
with CRC are illustrated by the regulatory network shown in
Figure 1(d), and the results suggested a positive coexpression
profile in most genes. Taken together, the above results indi-
cate that the genetic and expression differences of m6A regu-
lators are highly heterogeneous in CRC, suggesting that
differences in the expression of m6A regulators might have a
key role in the onset and progression of CRC.

3.2. Prognosis and Immune Landscape of m6A Regulators.
First, the coexpression and prognostic significance of the
21 m6A regulators in TCGA-CRC cohort were analyzed
and further visualized in the network (Figure 2(a)). The
results revealed that most of the m6A regulators were signif-
icantly positively correlated.

Recent evidence has demonstrated that m6A modifica-
tions are involved in tumor immunity [22]. For the purpose
of further analyzing the association between m6A modifica-
tions and the TME, we investigated the association of 21
m6A gene expression profiles with the infiltration of 22 dis-
tinct immune cell types. An extensive correlation was found
between the expression of m6A regulators and the infiltration
of most immune cell subtypes, with significant differences
between the expression of different genes and immune cell
infiltration (Figure 2(b)). The m6A eraser YTHDC2was deter-
mined as a tumor suppressor in the above analysis. Results of
GSEA demonstrated a predominant enrichment of ADHE-
RENS JUNCTION, ECM RECEPTOR INTERACTION,
ERBB SIGNALING PATHWAY, PROSTATE CANCER,
and SMALL CELL LUNG CANCER in the YTHDC2 high-
expression group and a predominant enrichment of OLFAC-
TORY TRANSDUCTION in the YTHDC2 low-expression
group (Figure 2(c)). Results of survival analysis indicated a sig-
nificantly longer overall survival (OS) duration in patients
belonging to the YTHDC2 high expression group compared
to those belonging to the YTHDC2 low expression group in
both TCGA-CRC and IMvigor210 cohorts (Figures 2(d) and
2(e)). The anatomical location of the primary tumor is also
recognized as an important factor for colon cancer prognosis
[37]. As illustrated in Figure 2(f), no significant differences
were recorded for the expression of the YTHDC2 gene in pri-
mary tumors with different anatomical locations. TMB is an
important indicator to assess the efficacy of immunotherapy
for CRC [13]. The expression of the YTHDC2 gene was signif-
icantly higher in the high-TMB group than in the low-TMB
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group (Figure 2(g)). Given the crucial role played by YTHDC2
in tumor immunity, we thoroughly investigated if YTHDC2
expression could predict immunotherapeutic responses.
Unfortunately, in the IMvigor210 dataset, no significant dif-
ference was discovered in terms of the expression of YTHDC2
in patients with therapeutic response compared to patients
without therapeutic response (Figure 2(h)).

Taken together, these results disclose a significant corre-
lation between the expression of m6A methylation regula-
tors and the TME. The expression of the m6A eraser
YTHDC2 is closely associated with immune cell infiltration
and might be a favorable biomarker for prognosis. However,
the prediction significance of YTHDC2 in terms of immuno-
therapeutic efficacy still needs further validation.

3.3. Identification of m6A Modification Characteristics Based
on 21 m6A Regulators. m6A regulators might be responsible
for the CRC heterogeneity, and they are tightly correlated

with TME. To further identify novel m6A regulator profiles,
we performed unsupervised clustering based on the expres-
sion of 21 m6A regulators in TCGA-CRC data. As demon-
strated in Supplementary Figure S2, three clusters showed
the best clustering performance, and patients were
stratified into m6Acluster-1 (n = 221), cluster-2 (n = 285),
and cluster-3 (n = 115). Survival analysis revealed that the
three m6A clusters had significant differences in the OS.
The OS duration of patients in m6Acluster-1 and
m6Acluster-2 was significantly longer than that of patients
in m6Acluster-3 (Figure 3(a)). The PCA algorithm was
employed to visualize the expression profile of 21 m6A
regulators, and the results indicated that three clusters
could be well distinguished (Figure 3(b)). Therefore, the
classification of the m6A clusters was reasonable.

Subsequently, we investigated the differences in immune
cell infiltrations among m6Aclusters and found that the
infiltration levels of CD8 T cells, activated NK cells, M1
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Figure 1: Multiomics characterization of 21 m6A methylation regulators in The Cancer Genome Atlas-colorectal cancer (TCGA-CRC)
dataset. (a) A waterfall plot of 21 m6A methylation gene mutations in TCGA-CRC cohort. (b) The frequency of copy number
variations (CNVs) in genes encoding m6A methylation regulators. (c) A boxplot showing the differences in gene expression of 21
m6A methylation regulators in tumor versus normal tissues (orange denotes the tumor sample, and green denotes the normal
sample). ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05. (d) A network plot of protein-protein interactions among 21 m6A methylation
regulators.
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Figure 2: Continued.
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macrophages, M2 macrophages, and neutrophils were signifi-
cantly higher in m6Acluster-1 and m6Acluster-3 than in the
m6A-2 cluster. However, the infiltration levels of plasma cells,
M0 macrophages, resting CD4-positive memory T cells, regu-
latory T cells, and monocytes were higher in m6Acluster-2
than in m6Acluster-1 and m6Acluster-3 (Figure 3(c)). Next,
we examined the differences in the role of signaling pathways
across the three clusters, and the results indicated that
m6Acluster-1 and m6Acluster-3 were mainly enriched in
KEGG TERPENOID BACKBONE BIOSYNTHESIS, KEGG
ALZHEIMERS DISEASE, KEGG PARKINSONS DISEASE,
KEGG OXIDATIVE PHOSPHORYLATION, and KEGG
PEROXISOME and that m6Acluster-2 was mainly enriched
in KEGG NITROGEN METABOLISM, KEGG PRIMARY
BILE ACID BIOSYNTHESIS, and KEGG NEUROACTIVE
LIGAND RECEPTOR INTERACTION (Figure 3(d)).

3.4. Clinical and Transcriptomic Characteristics of the Three
m6A Clusters. First, we explored the role of m6A regulators
in the classification of m6A clusters. The heat map of
m6A-associated genes showed that IGF2BP1 and IGF2BP3
played a major role in the classification process
(Figure 4(a)). Immune infiltration-associated signatures
have a significant role in TME. Therefore, it is necessary to
thoroughly probe into the correlation between m6A clusters
and various immune infiltration-associated signatures as
established by Mariathasan et al. [26]. We first investigated
differences in the expression of these immune infiltration-
associated signatures in m6A clusters, and the results indi-
cated that m6Acluster-1 and m6Acluster-3 were enriched
in immune activation signatures such as CD8 T effector,
antigen processing machinery, immune checkpoint, cytolytic
activity, type I IFN response, coinhibition T cell, coinhibi-

tory APC, costimulation T cell, MHC-I HLA, and MHC-II
HLA. Moreover, m6Acluster-3 was enriched in stroma acti-
vation phenotype signatures, including EMT1, EMT3, and
pan-F-TBRS (Figure 4(b)). Furthermore, we performed dif-
ferential expression analysis of IMs among the three clusters
and found that multiple genes showed significant differential
expression (Figure 4(c)). A comprehensive analysis of the
above results and the characteristics of immune cell infiltra-
tions and patient prognosis in the three subtypes revealed
that m6Acluster-1 is an immune-inflamed phenotype asso-
ciated with elevated infiltration levels of immune cells and
that m6Acluster-3 is an immune-excluded phenotype asso-
ciated with the infiltration levels of multiple immune cell
types. However, these cells are reserved in the surrounding
nests of tumor cells instead of penetrating their stroma. Fur-
thermore, m6Acluster-2 was an immune-desert phenotype
characterized by a few immune cell infiltrates and a suppres-
sive immunological landscape [38].

To further uncover the potential biological profile of dis-
tinct m6A patterns, DEGs among m6A clusters were ana-
lyzed. A total of 194 genes were identified, out of which
167 genes were significantly upregulated and 27 were signif-
icantly downregulated (Figure 4(d)). GO analysis was per-
formed on the upregulated and downregulated DEGs, and
the top 10 pathways enriched in the three functional catego-
ries (biological process (BP), cellular component (CC), and
molecular function (MF)) are shown in bubble plots. As
shown in Figures 4(e) and 4(f), the majority of the enriched
pathways are linked to BPs such as differentiation of
immune cells, ligand and receptor activity of growth factors
and cell membranes, and stromal-related and vesicle forma-
tion. The above results indicate the different clinical and
transcriptomic features of the m6A clusters.
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Figure 2: Relationship between m6A regulator expression and tumor immune cell infiltration in The Cancer Genome Atlas-colorectal
cancer (TCGA-CRC) dataset. (a) Correlation and prognosis network of 21 m6A regulators in patients with CRC. (b) Correlation heat
map between immune cell infiltrates and 21 m6A regulator expression. (c) Gene set enrichment analysis (GSEA) for high and low
YTHDC2 expression status. (d) Correlation between overall survival (OS) and YTHDC2 expression in TCGA-CRC cohort (log-rank test,
P = 0:0072). (e) Correlation between OS and YTHDC2 expression in IMvigor210 cohort (log-rank test, P = 0:016). (f) Differences in
YTHDC2 expression across anatomical locations in TCGA-CRC dataset. (g) Differences in YTHDC2 expression and tumor mutational
burden in TCGA-CRC dataset. (h) A boxplot showing relative YTHDC2 expression in different clinical response groups.
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3.5. Construction of the m6Ascore Model. Unsupervised clus-
tering analysis was performed using the obtained expression
profiles of 194 tumor m6A cluster-associated DEGs. As a result,
the tumor samples of TCGA-CRC could be categorized into
three m6Acluster-associated differentially expressed gene clus-
ters (DEG-cluster), named Gene cluster-1, Gene cluster-2, and
Gene cluster-3. Results of the prognostic analysis indicated sig-
nificant survival differences among DEG clusters (Supplemen-
tary Figure S3). The above analysis was performed based on
m6A methylation modifications, reflecting accurately the
expression profiles of m6A regulators in CRC. Furthermore,
based on the DEGs among m6A clusters, we could construct
a risk score system by PCA algorithm, referred to as the

m6Ascore, for the purpose of quantifying m6A modification
profiles in individual patients with CRC. The optimal density
threshold of the m6Ascore associated with survival was
calculated using the “survminer” R package, with a threshold
value of 3.23. This threshold value was used to classify
TCGA-CRC samples into high- and low-m6Ascore groups
(Figure 5(a)). The findings from the Kaplan-Meier survival
analysis demonstrated an improved prognosis condition
among patients in the low-m6Ascore group compared to
those in the high-m6Ascore group (Figure 5(b)).

Then, we sought to explore the correlation between the
DEG clusters and clinical characteristics. As shown in
Figure 6(a), the patients in Gene cluster-2 and Gene
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Figure 3: Identification and functional enrichment analysis of m6A clusters in The Cancer Genome Atlas-colorectal cancer (TCGA-CRC)
dataset. (a) Overall survival curves among three m6A clusters. (b) A scatter plot of principal component analysis (PCA) of 21 m6A
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Figure 4: Continued.

8 Journal of Immunology Research



cluster-3 were younger than 65 years, had a better progno-
sis, and were diagnosed with left-sided colon and rectum
cancer. (Figure 6(b)). Additionally, the differential expres-
sion of IMs among three clusters was analyzed, and the
results indicated that multiple genes (including KIR2DL1,

KIR2DL3, GZMA, IFNA2, IL12A, TNFSF9, VEGFA,
VEGFB, CD274, VTCN1, and SELP) showed significant
differential expression (Figure 6(c)). Then, we compared
the m6Ascore in left- and right-sided samples and the
results suggested much greater scores among the right-
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Figure 4: Differential expression of immune signatures among three m6A clusters. (a) Heat map depicting the expression profile of 21 m6A
regulators. (b) A boxplot of relative immune signatures among three m6A clusters. (c) Differential expression of immunomodulatory
molecule expression among tumor m6A clusters. (d) A volcano plot of differential expression gene analysis among three m6A clusters.
(e) Gene Ontology (GO) enrichment analysis of upregulated gene sets among m6A clusters. (f) GO enrichment analysis of
downregulated gene sets among m6A clusters.

Distribution
100

75

50

25

0

0

1

2

3

4

−4 −2

−2.5 0.0 2.5 5.0

0 2 4

D
en

sit
y

Maximally selected rank statistics

St
an

da
rd

iz
e l

og
-r

an
k 

st
at

ist
ic

m6A score

m6A score

Cutpoint: 3.23

Groups
High
Low

(a)

m6A score

1.00

0.75

0.50

0.25

0.00

0 1000 2000 3000 4000
Time of days

0 1000 2000 3000 4000
Time of days

Number at risk
106
515

21
173

9
31

4
12

2
4

High
Low

p < 0.0001Su
rv

iv
al

 p
ro

ba
bi

lit
y

High

Low

+

+

(b)

Figure 5: The optimal gradient for the m6Ascore (m6Ascore) among different clinical groups. (a) Correlation between density statistics of
m6Ascore distribution and the determination of optimal threshold. (b) Survival curves between high- and low-m6Ascore groups.

9Journal of Immunology Research



OS_status
Stage
Gender
Anatomic
Age
m6A.cluster
DEG.cluster

4

3

2

1

0

OS_status

Anatomic
Anatomic_LCC
Anatomic_RCC
Anatomic_UN

Gender
FEMALE
MALE

Stage
Stage_I
Stage_II
Stage_III
Stage_IV
Stage_UN

Age

Age > 65
Age < =65

m6A.cluster

0
1

1
2
3

DEG.cluster
1
2
3

(a)

1.00

0.75

0.50

0.25

0.00

0 1000 2000 3000 4000
Time of days

0 1000 2000 3000 4000
Time of days

Number at risk
1
2
3

263
230
128

70
73
51

19
11
10

7
2
7

2
1
3

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.026

DEG.cluster
1
2
3

+
+
+

(b)

DEG.cluster
LogFC

0.70

0.05

−0.70

⁎p < 0.05 ⁎⁎p < 0.01 ⁎⁎⁎p < 0.001

Receptor Others Antigen presentation

LogFC (3_vs_1)
Function

LogFC (3_vs_1)
Function

Stimulatory

Inhibitory
MHC

BT
LA

CD
27

CD
40

CT
LA

4
ED

N
RB

H
AV

CR
2

IC
O

S
IL

2R
A

KI
R2

D
L1

KI
R2

D
L3

TN
FR

SF
14

TN
FR

SF
18

TN
FR

SF
4

TN
FR

SF
9

A
RG

1
EN

TP
D

1
G

ZM
A

H
M

G
B1

PR
F1

H
LA

_A
H

LA
_B

H
LA

_C
H

LA
_D

PA
1

H
LA

_D
PB

1
H

LA
_D

Q
A

1
H

LA
_D

Q
B1

H
LA

_D
Q

B2
H

LA
_D

RA
M

IC
A

M
IC

B

LA
G

3
PD

CD
1

TI
G

IT
TL

R4

CD
40

LG
CC

L5

CD
70

CX
3C

L1
CX

CL
10

CX
CL

9
IF

N
A

1
IF

N
A

2
IF

N
G

IL
10

IL
10

2A
IL

13
IL

1A
IL

1B

TN
F

TN
FS

F4
TN

FS
F9

V
EG

FA
V

EG
FB

CD
28

CD
80

IC
O

SL
G

BT
N

3A
1

BT
N

3A
2

CD
27

4
CD

27
6

PD
CD

1L
G

2
SL

A
M

F7
V

TC
N

1

IT
G

B2
SL

EP

IC
A

M
1

IL
2

IL
4

Ligand
Co-

stimulation
Co-

inhibitor
Cell

adhesion

(c)

15

10

5

−5

0

A
na

to
m

ic
_R

CC

A
na

to
m

ic
_L

CC

Anatomic
RCC
LCC

p < 2.22e-16

m
6A

sc
or

e s
ca

le

(d)

Figure 6: Continued.

10 Journal of Immunology Research



sided patients than those among the left-sided patients
(Figure 6(d)). TMB is an important indicator to assess the effi-
cacy of immunotherapy for CRC [13]. The results demon-
strated a remarkably elevated m6Ascore among patients
belonging to the high-TMB group compared to those belong-
ing to the low-TMB group (Figure 6(e)). For m6Amethylation
DEG clusters, DEG cluster-1 demonstrated the highest
median m6Ascore, while DEG cluster-2 demonstrated the
lowest median m6Ascore (Figure 6(f)). These findings might
provide novel insights into the mechanisms of m6A modifica-
tions and gene mutations among immune checkpoints in
CRC. The association among m6A methylation regulators,
DEG clusters, anatomical sites, m6Ascore, andOS is presented
as a Sankey diagram (Figure 6(g)).

3.6. Validation of the m6Ascore Model in GEO Datasets. The
robustness of the m6A risk model for predicting CRC prog-
nosis was further validated on the GSE17536 dataset. The
m6Ascore for the GSE17536 cohort was calculated using
the previously screened DEGs. Next, the optimal density
threshold of the m6Ascore associated with survival was cal-
culated using the “survminer” R package, and the samples of
GSE17536 were divided into high and low-m6Ascore groups.

Results of the Kaplan-Meier analysis also revealed that the
patients in the high-m6Ascore group had a poorer prognosis
than those in the low-m6Ascore group (Figure 7(a), P < 0:01
). Moreover, as shown in the heat map (Figure 7(b)), the
m6Ascore could serve to assess several clinical features. The
groupwith a highm6Ascore was associated with favorable his-
tological subtypes and earlier staging in the GSE17536 cohort.
All these findings showed that the m6Ascore model might be
used to predict the prognosis and certain clinical parameters of
patients with CRC and to provide potential therapeutic impli-
cations in the clinical setting.

3.7. Assessment of the Predictive Power of m6Ascore for ICI
Immunotherapy Response. The immunophenogram was
developed for predicting checkpoint blockade responses at
a pancancer level by Charoentong et al. [39]. To determine
the predictive power of the m6Ascore in terms of immuno-
therapeutic benefit, we obtained the dataset of TCGA-CRC
cohort from The Cancer Immunome Atlas (TCIA) database
and explored the correlation between immunophenoscore
(IPS) and m6Ascore by performing immunophenogram anal-
ysis. The results illustrated that CTLA4-negative+PD-1-nega-
tive and CTLA4-positive+PD-1-positive cells exhibited
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Figure 6: Identification and characterization of differential expressed gene (DEG) clusters. (a) A heat map of the expression profiles of
DEGs. (b) Survival curves between DEG clusters. (c) Differential analysis of immunomodulatory molecule expression among DEG
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significant differences in the immunotherapeutic response
between the high- and low-m6Ascore groups (P < 0:05),
whereas CTLA4-negative+PD-1-positive and CTLA4-posi-
tive+PD-1-negative cells exhibited no differences in the
immunotherapeutic response between the high- and low-
m6Ascore groups (P > 0:05). Moreover, the high-m6Ascore
group tended to have a higher IPS score than the low-
m6Ascore group, suggesting that patients in the high-
m6Ascore group were more likely to gain benefit from immu-
notherapy (Figures 8(a)–8(d)).

Next, we investigated whether m6Ascore could predict the
immunotherapeutic responses using the GSE78220 and IMvi-
gor210 cohorts. Patients in the IMvigor210 cohort receiving
anti-PD-L1 immunotherapy were classified into two groups
according to the m6Ascore, namely, the high m6Ascore and
the low m6Ascore. The findings demonstrated a significantly
higher immunotherapeutic response rate in the high-
m6Ascore group than that in the low-m6Ascore group
(Figures 8(e) and 8(g)). Moreover, survival analysis demon-
strated a significantly longer OS duration among patients in
the low-m6Ascore group than that in the high-m6Ascore
group (Figure 8(f)). Similarly, the same trend was found in
the GSE78220 cohort, in which the patients were treated with
anti-PD-1 immunotherapy (Figures 8(h)–8(j)). All these find-
ings confirmed that m6Ascore might serve to predict the effi-
cacy of immunotherapies and the prognosis of patients with
CRCs.

4. Discussion

Recent studies have linked m6A modifications to the regula-
tion of tumor immunity and response to ICIs [22]. To date,
accumulating reports have shown the crucial roles of m6A

regulators in carcinogenesis, development, diagnosis, ther-
apy, and prognosis [21, 40]. However, the in-depth analysis
of the m6A methylation regulator pattern and its signifi-
cance on the TIME of CRC needs further elucidation. In this
study, we shed light on the association between different
m6A modification profiles and the immune landscape in
CRC. This study improves our understanding of the TME
and facilitates the development of more accurate immune
therapy strategies for the treatment of patients with CRC.

In the present study, we first globally assessed somatic
mutations, CNVs, and RNA expression of the 21 m6A regu-
lators in TCGA-CRC cohort patients. We found that muta-
tions and CNVs of the 21 m6A regulators were frequent in
TCGA-CRC patients. At the transcriptomic level, we found
that 2 m6A regulator expression was higher and 8 regulator
expression was lower in TCGA-CRC patients. In addition,
the correlation between each m6A regulators and TME-
infiltrating cells was explored. Our results indicated that sig-
nificant differences were observed between genes and
immune cell infiltrations. Collectively, the results suggested
that 21 genes encoding m6A regulators are highly heteroge-
neous in CRC patients and dysregulation of m6A regulators
was associated with the development and antitumor
immune response of CRC.

In addition, here, we focused on the regulatory role of
the m6A reader YTHDC2 in colorectal cancer. To the best
of our knowledge, the m6A readers have been investigated
in other cancers [41–43], but YTHDC2 has been poorly
studied in CRC. In the present study, the outcomes indicated
that YTHDC2 was lowly expressed in colorectal cancer and
coupled with prognostic analysis hinted that it might be a
tumor suppressor, and this result was in line with Ji et al.’s
results [44]. Further, YTHDC2 was significantly correlated
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with multiple immune cell infiltrations, and the expression
of YTHDC2 gene in the high-TMB group was found to be
significantly higher than that in the low-TMB group; hence,
we inferred that it might be correlated with the efficacy of
immunotherapy; unfortunately, it was not found after the val-
idation using IMvigor210 dataset; the reasonmight be that this
external dataset was not from CRC. Thus, in the future, CRC
datasets need to be validated and basic experiments need to
be performed to further investigate the mechanism of
YTHDC2 in the regulation of immune cell infiltration.

Considering the highly individual heterogeneity of m6A
regulator modification, then we uncovered the characteristics

of m6A methylation modification mediated by 21 genes
encoding m6A regulators in CRC. Based on 21 m6A regula-
tors, we identified three distinct models of m6A modification
by unsupervised consensus clustering in the CRC cohort. These
three patterns termed m6Acluster-1, m6Acluster-2, and
m6Acluster-3 are characterized by different prognoses and
immune cell infiltrations in the TME. m6Acluster-1 presented
a high proportion of effector TME immune cell activation and
infiltration level, which are the hallmarks of the immune-
inflamed phenotype, also described as a “hot” immune micro-
environment [45]. Although m6Acluster-3 was also character-
ized by both elevated levels of TME immune cell infiltration,
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it had a high level of EMT1, EMT3, and pan-F-TBRS expres-
sion, which could determine the activation of stroma-
associated pathways. Moreover, the patients exhibiting the
m6Acluster-3 phenotype had worse survival compared to those
exhibiting the m6Acluster-1 phenotype. The location and
migration of T cells as well as the status of the stroma play cru-
cial roles for antitumor immunosurveillance. In the case of high
levels of immune cell infiltration, m6Acluster-3 could be classi-
fied as an immune rejection phenotype since T cells are
restricted to the stroma, thus failing to penetrate the core tumor
nest [46]. In contrast to m6Acluster-3 and m6Acluster-1,
m6Acluster-2 was characterized by the lack of immune cell
infiltration and immunosuppression, which could be labeled
as an immune-desert phenotype. Previous research has sug-
gested that this phenotype was probably correlated with the
absence of activated and primed T cells and immune tolerance
[47]. The immune rejection phenotype and immune-desert
phenotype are also referred to as a “cold” immune microenvi-
ronment [48]. Charoentong et al. illustrated that the expression
levels of IMs were closely associated with tumor genotypes and
that tumor genotypes could determine tumor immunopheno-
types and tumor escape mechanisms [39].We found significant
differences in the expression of IMs among the three m6A clus-
ters. Collectively, the above findings confirmed the reliability of
m6A modification patterns for identifying and classifying
immune phenotypes of CRC.

Next, DEGs among the three m6A clusters were identi-
fied as m6A modification pattern-associated genes and were
found to be enriched mainly in immune-related and
stromal-related biological processes. Similar to the results
of m6A patterns, three DEG clusters were recognized by
unsupervised consensus clustering. These DEG clusters fea-
tured significantly different survival outcomes and IM
expression. Moreover, we constructed a risk model, termed
m6Ascore, for the purpose of quantifying the pattern of
m6A modifications in patients with CRCs. Thus, the
m6Ascore risk model could divide TCGA-CRC cohort into
two groups, and survival analysis indicated that the patients
belonging to the low-m6Ascore group had significantly lon-
ger OS duration than those belonging to the high-m6Ascore
group. We employed the GSE17536 cohort to verify the reli-
ability and robustness of the risk model in terms of OS
prediction.

We next investigated whether m6Ascore is related to the
TMB. The key initiator of adaptive immune activation is
neoantigen recognition, and mutational profiles are sug-
gested to be promising biomarkers to predict clinical
response to ICI-based immunotherapy. However, it is diffi-
cult to detect the expression of overall neoantigens. TMB is
easily available and commonly employed to estimate neoan-
giogenic load and is a good marker for predicting immuno-
therapeutic responses [49, 50]. The TMB was significantly
higher among the patients in the high-m6Ascore group than
those in the low-m6Ascore group. Subsequently, in both the
IMvigor210 and GSE78220 cohorts, patients in the high-
m6Ascore group demonstrated better responses to ICI immu-
notherapy in contrast with those in the low-m6Ascore group,
which was consistent with the reports that patients with a
high-TMB had a superior clinical response to immunother-

apy. Furthermore, the m6Ascore can also be useful for the
evaluation of clinical characteristics of patients, such as ana-
tomical location, histological type, and tumor stages. Taken
together, the above findings imply that m6Ascore is a reliable
and robust biomarker for predicting the efficacy of ICI immu-
notherapies and is a promising tool to promote individualized
immunotherapy for patients with CRC in the future.

There are a few limitations to the present study. First, the
findings of this study are based on bioinformatic predictions;
the m6A modification patterns and m6Ascore risk model
were only established according to the 21 m6A regulator
expression in TCGA-CRC cohort. Hence, further large-scale,
multicenter, and prospective clinical cohorts are needed to
verify our findings. Second, due to the lack of survival data
of patients with CRC undergoing immunotherapy, the pre-
dictive reliability of m6Ascore in CRC needs further valida-
tion. Third, this study is a bioinformatics analysis and can be
used as a preliminary reference. Further deep basic experi-
mental researches are required to discover the association
between m6A methylation and immune cell regulations, as
well as the efficacy of immunotherapy in CRC cohort.

5. Conclusion

This study categorized CRC into three stable immune subtypes
with distinct prognoses and TME based on 21 m6A methyla-
tion regulators. Importantly, a risk model-m6Ascore was
developed to predict prognosis, clinical features, and the effi-
cacy of immunotherapy in patients with CRC. The predictive
power of the m6Ascore was validated on external datasets.
Therefore, m6Ascore may be a viable tool to predict the immu-
notherapy response in patients with CRC, thus paving the way
for personalized immunotherapy in the future.
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Figure S1: the workflow of our study design and analytical
pipeline. Figure S2: consensus clustering of the expression
profiles of 21 m6A methylation regulators in colorectal cancer
(CRC). (A–D) Clustering results at classification numbers k =
2, 3, 4, and 5, respectively. (E) Distribution of CDF curves for
consensus clustering. (F–I) Survival curves at classification
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tially expressed genes (DEGs) among tumor m6A clusters.
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