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Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. +e insulin-like growth factor-binding
protein (IGFBP) family is involved in tumorigenesis and the development of multiple cancers. However, little is known about the
prognostic value and regulatory mechanisms of IGFBPs in GBM. Oncomine, Gene Expression Profiling Interactive Analysis,
PrognoScan, cBioPortal, LinkedOmics, TIMER, and TISIDB were used to analyze the differential expression, prognostic value,
genetic alteration, biological function, and immune cell infiltration of IGFBPs in GBM. We observed that IGFBP1, IGFBP2,
IGFBP3, IGFBP4, and IGFBP5 mRNA expression was significantly upregulated in patients with GBM, whereas IGFBP6 was
downregulated; this difference in mRNA expression was statistically insignificant. Subsequent investigations showed that IGFBP4
and IGFBP6 mRNA levels were significantly associated with overall survival in patients with GBM. Functional Gene Ontology
Annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes coexpressed with
IGFBP4 and IGFBP6 were mainly enriched in immune-related pathways. +ese results were validated using the TIMER and
TSMIDB databases. +is study demonstrated that the IGFBP family has prognostic value in patients with GBM. IGFBP4 and
IGFBP6 are two members of the IGFBP family that had the highest prognostic value; thus, they have the potential to serve as
survival predictors and immunotherapeutic targets in GBM.

1. Introduction

Glioblastoma (GBM) is the most common primary malig-
nant tumor of the central nervous system in adults.
According to the CBTRUS Statistical Report, the most
frequently occurring central nervous system tumor reported
in the United States between 2013 and 2017 was GBM, which
constituted 14.5% and 48.6% of all tumors and malignant
tumors, respectively [1]. Unfortunately, no treatment has
significantly altered the clinical outcomes of GBM despite
extensive efforts in basic, translational, and clinical research
conducted over the past few decades [2]. In addition, the lack
of specific and sensitive biomarkers represents a major
barrier in the management of this tumor [3–5]. Further-
more, intratumoral heterogeneity [6]and the complex tumor
microenvironment conditions contribute to the poor

prognosis of GBM. An area of active research is the use of
immunotherapy to promote antitumor immune responses;
it is an attractive approach to treating GBM [7]. +e de-
velopment of mechanism-based approaches and the iden-
tification of new therapeutic targets are therefore urgently
needed.

+e insulin-like growth factor binding protein (IGFBP)
family comprises six identified members (IGFBP-1–6) [8],
which are implicated in the pathophysiology process of
numerous human diseases, including cancer [9]. Although
the precise mechanism is not completely understood, the
IGFBP family plays important roles in lung cancer [10],
ovarian cancer [11], breast cancer [12], and obesity [13].
Using the polymerase chain reaction, GBM cell lines were
found to express mRNA for IGFBP genes: IGFBP-1 in 42%,
IGFBP-2 in 65%, IGFBP-3 in 97%, IGFBP-4 in 3%, IGFBP-5
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in 74%, IGFBP-6 in 94%, and IGFBP-7 in 87% of glioma cell
lines [14]. In addition, a number of previous studies have
demonstrated that IGFBPs play an important role in tu-
morigenesis and the progression of glioma [15–20]. A study
has also assessed the diagnostic roles of circulating IGFBP
concentrations in GBM patients [21]. Nonetheless, the
distinct roles of IGFBP family members in GBM, particularly
in relation to tumor microenvironment and immune status,
remain unclear. In this study, IGFBPs in GBM were com-
prehensively analyzed via various public databases to explore
the expression, mutation, prognostic value, and immune cell
infiltration.

2. Materials and Methods

2.1. Oncomine Database Analysis. +e mRNA expression
levels of IGFBP family members, implicated in various types of
cancer, were evaluated in samples from cancer patients and
healthy individuals (normal control) using the Oncomine
database (https://www.oncomine.org/), which is a publicly
accessible online platform that provides genome-wide ex-
pression analysis [22]. In this study, the thresholds were set as
follows:P value<0.01, fold change� 2, and gene rank: top 10%.

2.2. Gene Expression Profiling Interactive Analysis (GEPIA).
+e GEPIA database (https://gepia.cancer-pku.cn/index.
html) is a web server that uses a standard processing
pipeline for analysis and consists of RNA sequencing ex-
pression data of 9,736 tumors and 8,587 normal samples
from+e Cancer Genome Atlas (TCGA) and GTEx projects
[23]. In this study, differential gene expression and correl-
ative prognostic analyses were performed using the GEPIA
database. +e Student’s t-test was used to generate P values
for expression analysis. For further verification, survival
analysis was performed using the Kaplan–Meier curve.

2.3. PrognoScanDatabaseAnalysis. +ePrognoScan database
(https://kmplot.com/analysis/) is a tool used to investigate the
prognostic value of genes [24]. We analyzed the correlation
between the expression of IGFBPs and clinical prognosis in
various types of cancer using the PrognoScan database. +e
analysis included all survival values, such as overall survival
(OS), relapse-free survival, disease-free survival (DFS), distant
metastasis-free survival, and disease-specific survival. Further
analyses only included studies with corrected P< 0.05.

2.4. cBioPortal Database Analysis. +e cBioPortal database
(https://www.cbioportal.org) is a comprehensive web re-
source that provides visual and multidimensional cancer
genomic data [25]. In this study, we explored the genetic
alterations of IGFBPs in GBM samples from TCGA.
Datasets from Mayo Clinic 2019, PanCancer Atlas, Firehose
Legacy, Cell 2013, Columbia, Nat Med 2019, and Nature
2008 were selected for further analysis. In addition, we
analyzed the correlation between IGFBP alterations and
survival outcomes in patients with GBM using
Kaplan–Meier plots. Differences in survival curves were

analyzed using the log-rank test, and a P value < 0.05 was
considered statistically significant.

2.5. LinkedOmics Database Analysis. LinkedOmics is a
public database (https://www.linkedomics.org) that contains
multiomics data from all 32 TCGA cancer types and 10
Clinical Proteomics Tumor Analysis Consortium cancer
cohorts [26]. We used the LinkFinder module to explore
genes that were differentially expressed in correlation with
IGFBP4 and IGFBP6, based on the TCGA GBM cohort
(N� 153).+e results were presented as heat maps.+eGene
Set Enrichment Analysis tool in the LinkInterpreter module
was used to perform Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) pathway
analysis of the differentially expressed genes.

2.6. Timer Database Analysis. +e Tumor Immune Esti-
mation Resource database (TIMER, https://cistrome.
shinyapps.io/timer/) is designed to systematically evaluate
the infiltration of different immune cells and their clinical
impact [27]. +e “correlation module” was used to visualize
the correlation between IGFBPs expressions and IGF1 in
GBM. To visualize the correlation between IGFBP gene
expression and immune infiltration level in GBM, the “gene
module” was used to generate scatterplots.

2.7. TISIDBDatabaseAnalysis. We used the TISIDB database
(https://cis.hku.hk/TISIDB) to further explore the role of
IGFBPs in the relationship between GBM and the immune
system. +e TISIDB database is an online platform that uses
literature mining and high-throughput data analysis to analyze
interactions between the immune system and tumors; it in-
tegrates multiple heterogeneous data types and various re-
sources of immunological data retrieved from seven public
databases [28]. In the present study, the TISIDB database was
used to analyze the correlations between IGFBP expression and
28 types of tumor-infiltrating lymphocytes (TILs), immuno-
modulators (immuno-inhibitors), and chemokines involved in
human cancers. Spearman’s correlation coefficients were used,
and P values <0.05 were considered statistically significant.

3. Results

3.1. Differential Expression of IGFBPs. We first analyzed the
transcriptional levels of IGFBPs in GBM and normal tissues
using the Oncomine database. +e results are shown in
Figure 1(a). Based on the data from the Oncomine database,
the transcriptional levels of IGFBP2, IGFBP3, IGFBP4, and
IGFBP5 were observed to be elevated in brain and CNS
cancer (Table 1). We further validated the expression of
IGFBPs using theGEPIA database. We found that, with the
exception of IGFBP6, the expression levels of the other five
IGFBPs were significantly higher in GBM tissues than in
normal tissues. Notably, the expression of IGFBP6 in GBM
tissues was lower than that in normal tissues, but this dif-
ference was not statistically significant (Figure 1(b)). +us,
the results from the GEPIA database were consistent with
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the results from Oncomine database. As IGFBPs are key
regulators of IGF-1, which is actively involved in tumori-
genesis, we also analyzed the correlation between IGFBP
family expressions and IGF-1 by using the TIMER database.

Scatterplots showed a significant negative correlation be-
tween IGFBP2 expression and IGF-1, while a significant
positive correlation was observed between IGFBP4 and
IGFBP6 expressions and IGF-1 (Figure 2).

3.2. Prognostic Value of the mRNA Expression of IGFBPs.
To evaluate the prognostic value of differentially expressed
IGFBPs in patients with GBM, we assessed the correlation
between differentially expressed IGFBPs and clinical outcomes
using GEPIA. We found that GBM patients with low tran-
scriptional levels of IGFBP4 (P � 0.0075) and IGFBP6 (P �

0.033) were significantly associated with longer overall survival
(Figure 3), and we selected these for subsequent analysis.
+ereafter, we used the PrognoScan database to investigate the
prognostic value of IGFBP4 and IGFBP6 expression in patients
with different types of cancer. +e results are summarized in
Figure 4. Notably, IGFBP6 expression was significantly cor-
related with the prognosis of seven types of cancer, including
blood, breast, brain, colorectal, ovarian, lung, and skin cancer.
We found that increased IGFBP6 expression was often asso-
ciated with better prognosis in these types of cancer.

3.3. Genetic Alteration Analyses of IGFBPs. We analyzed the
genetic alterations in IGFBP genes using DNA sequencing
data from GBM patients that was obtained from the cBio-
Portal online database. Six GBM datasets were analyzed, and
the results showed the frequency of gene alterations, in-
cluding mutations (0.51%–9.64%), amplifications (1.69%–
2.03%), and deep deletions (0.19%–0.34%); mutations were
the most frequently observed type of alteration (Figure 5(a)).
+e percentage of genetic alterations in specific IGFBP genes
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Figure 1: (a) IGFBP expression levels in different types of human cancers compared with normal tissues in the Oncomine database.
(b) Validation of IGFBP expression between GBM samples and normal tissue from GEPIA.

Table 1: Significant upregulated expression in mRNA level of
IGFBPs between glioblastoma and normal tissues by Oncomine
database.

Gene P value Fold change T-test Reference

IGFBP2

6.70E− 9 7.009 8.522 Shai brain (42)
3.27E− 23 31.755 15.163 Sun brain (180)
6.36E− 12 6.962 11.068 Bredel brain 2 (54)
7.45E− 11 13.538 20.347 TCGA brain (557)
1.04E− 5 5.576 9.551 Murat brain (84)

IGFBP3

2.70E− 20 8.562 11.865 Sun brain (180)
9.24E− 8 70.634 18.998 Lee brain (101)
1.55E− 6 5.536 6.328 Bredel brain 2 (54)
3.93E− 5 2.372 7.042 Murat brain (84)
9.13E− 5 1.845 4.235 Shai brain (42)
0.028 4.368 3.179 Liang brain (38)
0.011 4.387 3.297 TCGA brain (557)

IGFBP4

3.04E− 7 2.947 6.519 Shai brain (42)
5.19E− 9 2.886 6.812 Sun brain (180)
0.017 2.458 2.801 TCGA brain (557)
0.007 3.721 5.279 Lee brain (101)
0.011 1.243 3.269 Murat brain (84)

IGFBP5

2.14E− 12 6.647 10.863 Liang brain (38)
2.56–11 15.589 19.599 Lee brain (101)
1.92E− 9 4.492 9.673 Bredel brain 2 (54)
1.13E− 5 3.883 5.902 Shai brain (42)
2.52E− 14 2.417 8.809 Sun brain (180)
2.88E− 10 1.932 8.692 Murat brain (84)
0.002 3.678 4.726 TCGA brain (557)
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involved in GBM, ranged from 0.1% to 1.1% (Figure 5(b)).
+e prognostic value of IGFBPs, with or without genetic
alterations, in GBM was analyzed, and no significant
prognostic value was observed for OS (P � 0.282) or DFS
(P � 0.133) (Figures 5(c) and 5(d)).

3.4. Functional Annotations and Predicted Signaling
Pathways. To further reveal the potential biological func-
tions of IGFBPs in GBM, the LinkedOmics database, which
contains data from TCGA, was used to analyze the mRNA
sequencing data of patients with GBM. +e heat map
showed the top 50 significant genes that positively and
negatively correlated with IGFBP6 and IGFBP4 expression.
IGFBP6 expression showed a strong positive correlation
with CYP1B1 (Pearson correlation� 0.715, P � 2.8e − 25),
CTSB (Pearson correlation� 0.700, P � 7.15e − 24), and
TIMP1 expression (Pearson correlation� 0.697,
P � 1.39e − 23) (Figure 6(a)). Additionally, there was a
strong negative correlation between the expression of GAB1
(Pearson correlation� −0.695, P � 2.21e − 23), SALL3
(Pearson correlation� −0.654, P � 5.14e − 20), and ZNF711
(Pearson correlation� −0.646, P � 2.01e − 19) (Figure 6(b)).
+e results of the top 50significant genes that were negatively
and positively correlated with IGFBP4 are shown in Sup-
plementary Figures 1A and B.

GO biological process analysis revealed significant
correlation between the coexpressed genes and IGFBP6.
Gene set enrichment analysis indicated that genes

coexpressed with IGFBP6 were mainly involved in neu-
trophil-mediated immunity, adaptive immune response,
acute inflammatory response, humoral immune response,
and lymphocyte-mediated immunity(Figures 6(c) and 6(e)),
while genes coexpressed with IGFBP4 were mainly involved
in collagen metabolic processes, granulocyte activation,
neutrophil-mediated immunity, adaptive immune response,
and humoral immune response (Supplementary Figures 1C
and E).

KEGG pathway analysis of the genes coexpressed with
IGFBP6 showed enrichment in cytokine-cytokine receptor
interaction, complement and coagulation cascades, Fanconi
anemia pathway, and the cell cycle (Figure 6(d)); in contrast,
genes coexpressed with IGFBP4 were enriched in collagen
metabolic process, granulocyte activation, glutamate re-
ceptor signaling pathway, and brain morphogenesis (Sup-
plementary Figure 1D). +ese results implied that IGFBP6
and IGFBP4 are involved in the modulation of various
immune molecules in GBM and have an effect on immune
cell infiltration of the tumor microenvironment.

3.5.�eAssociation of IGFBP4 and IGFBP6with ImmuneCell
Infiltration. +e TIMER database was used to evaluate
whether the expression of IGFBP4 and IGFBP6 in GBM was
correlated with immune cell infiltration. Interestingly, we
found that, in GBM, the IGFBP4 expression level had a
significant positive correlation with the level of infiltrating
dendritic cells (r� 0.423, P � 1.29e − 19) and a significant
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Figure 2: Correlation of the IGFBP expression level with IGF1 in GBM.
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negative correlation with the level of tumor purity (r� –0.166,
P � 6.35e − 04), B cells (r� –0.108,P � 2.66e − 02), and CD8+
Tcells (r� –0.16,P � 1.05e − 03).+e IGFBP6 expression level
had a significant positive correlation with the level of infil-
trating dendritic cells (r� 0.414,P � 9.78e − 19) and negatively
correlation with the level of tumor purity (r� –0.459,
P � 3.22e − 23), B cells (r� –0.182, P � 1.77e − 04), and
neutrophils (r� –0.114, P � 1.99e − 02) (Figure 7).

A Cox proportional hazard model was constructed to
evaluate the clinical relevance of immune cells in GBM.
Additionally, a univariate Cox survival analysis demon-
strated that only dendritic cell infiltration was significantly
associated with the OS of patients with GBM (Table 2).
Furthermore, a multivariate Cox survival analysis revealed
that age, IGFBP6 expression, and IGFBP2 expression were
independent prognostic biomarkers for GBM (Table 3).
+ese findings suggested that IGFBP6 plays an important
immune-related role in GBM. Finally, to further study the
correlation between IGFBPs and immune infiltration, we
investigated the relationship between IGFBP6 and IGFBP4
expression and various immune signatures using the TISIDB
database. +e TISIDB database includes data on tumor-
infiltrating lymphocytes, immunomodulators, and chemo-
kines. Using the TISIDB database, we found that the IGFBP6
expression correlated with TILs in GBM. +e relationship

between IGFBP6 expression and TILs in different types of
cancer is shown in Figure 8(a). In GBM, the four TILs that
had the strongest correlation with IGFBP6 were type 1 T
helper cells (+1, Spearman: r� 0.632, P< 2.2e − 16), central
memory CD4 T cells (Tcm_CD4; Spearman: r� 0.624,
P< 2.2e − 16), regulatory T cells (Treg, Spearman: r� 0.614,
P< 2.2e − 16), and activated dendritic cells (Act_DC,
Spearman: r� 0.587, P< 2.2e − 16) (Figure 8(b)). +e cor-
relation between the expression level of IGFBP6 and
immuno-inhibitors is shown in Figure 8(c). Among the
immuno-inhibitors, IL10RB (Spearman: rho� 0.541,
P< 2.2e − 16), IL10 (Spearman: rho� 0.495, P< 7.72e − 12),
CD96 (Spearman: rho� 0.426, P< 1.45e − 08), and CSF1R
(Spearman: rho� 0.42, P< 2.44e − 08) (Figure 8(d)) showed
the strongest correlation with IGFBP6 expression. +e
correlation between IGFBP6 expression and chemokines is
shown in Figures 8(e) and 8(f) shows the correlation of
IGFBP6 with CCL7 (Spearman’s rho� 0.599, P< 2.2e − 16),
CCL26 (Spearman’s rho� 0.5645, P< 2.2e − 16), CXCL6
(Spearman’s rho� 0.56, P< 2.2e − 16), and CXCL14
(Spearman’s rho� 0.549, P< 2.2e − 16). +e correlation
between IGFBP4 expression and various immune signatures
is shown in Supplementary Figure 2.

+ese results further confirmed that IGFBP6 and
IGFBP4 are correlated with immune infiltrating cells in
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Figure 3: Prognostic value (OS) of the IGFBP expression in GBM (GEPIA).
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Figure 4: Forest plot displaying the prognostic results for IGFBP4 (a) and IGFBP6 (b) generated by using the PrognoScan database.
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Figure 5: (a) Summary of IGFBPs alteration frequency in GBM. (b) OncoPrint visual summary of IGFBPs alterations. (c, d) Kaplan–Meier
plots comparing OS (c) and PFS (d) in GBM patients with and without IGFBPs gene alterations.
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GBM, which suggests that IGFBPs, particularly IGFBP6,
play a vital role in immune escape in the GBM tumor
microenvironment.

4. Discussion

GBM is a lethal primary brain tumor. +e treatment out-
comes for patients with GBM have not improved over the

past few decades. +e molecular mechanism underlying the
role of the IGFBP family in the tumorigenesis of GBM is still
unclear. In this study, IGFBPs implicated in GBM were
comprehensively analyzed in terms of expression, prog-
nostic value, mutation, biological function, and immune cell
infiltration.+e results from the Oncomine database showed
that IGFBP2, IGFBP3, IGFBP4, and IGFBP5 were expressed
at a higher level in tissues from patients with brain and CNS
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Figure 6: (a, b) Heatmaps of the top 50 genes positively and negatively correlated with IGFBP6 in TCGA-GBM. (c, d) GO annotations and
KEGG pathways of IGFBP6 correlated genes in TCGA-GBM by GSEA. (e) Top four GO annotations of IGFBP6.
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Figure 7: Correlation of IGFBP4 and IGFBP6 expression with immune infiltration level in GBM.
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cancer than in normal tissues from healthy individuals. +is
observation is consistent with findings from the GEPIA
database. Analysis of the prognostic value showed that
differential expression of IGFBP4 and IGFBP6 was signifi-
cantly correlated with overall survival of GBM patients. +e
occurrence of IGFBP alterations in GBM was low. Addi-
tionally, there were no significant differences between OS
and DFS of GBM patients with or without IGFBPs alter-
ations. GO annotation and KEGG pathway enrichment
analyses implied that IGFBP4 and IGFBP6 had immune-
related functions, and this was validated using the TIMER
and TSMIDB databases. Overall, these results suggest that
IGFBP4 and IGFBP6 serve as valuable prognostic bio-
markers and potential immunotherapeutic targets in GBM.

Owing to the lack of T-cell infiltration and the profound
immunosuppressive nature of GBM, GBM is characterized
as a “cold tumor.” Immunological treatment of cold tumors
is a great challenge because of the absence of the adaptive
immune response in immune cell infiltration [29, 30].
Despite the poor outcomes of previously developed

immunotherapy treatments, there has been new preclinical
and clinical developments in immunotherapy that are
providing promising treatments for GBM [7].

In this study, our initial screening revealed that IGFBP4
and IGFBP6, of the IGFBP family, were related to the clinical
outcomes of GBM. IGFBP4 has been consistently shown to
inhibit insulin-like growth factor activity [31]. It has a
growth inhibitory role and has been reported as one of the
genes that is downregulated in colon cancer [32], breast
cancer [33], and lung carcinoma [34]. Furthermore, it was
reported that the IGFBP4 expression has tumor promoting
effects in renal cell carcinoma [35] and glioma [36], sug-
gesting a possible oncogenic role for IGFBP4. Several studies
have shown that IGFBP4 promotes cell proliferation in
GBM, epithelial-to-mesenchymal transition, and invasive
cell migration and invasion [37] and inhibits the angiogenic
response [38]. Nur et al. [39] assessed 83 volunteers (60
patients with lung cancer and 23 healthy individuals) and
found that the serum concentration of IGFBP4 was a better
predictor of lung cancer than serum concentrations of
PAPP-A. In our study, high IGFBP4 mRNA expression was
significantly correlated with low OS in patients with GBM,
and function analysis suggested that IGFBP4 is strongly
associated with immune cells, which is consistent with
findings from previous studies. However, little is known
about the immune-related function of IGFBP4. Recently, a
whole-genome expression profiling study on postmortem
brain tissue has provided insight into the correlation be-
tween IGFBP4 and immune responses [40]. Further in-
vestigations are required to verify these findings.

IGFBP6 has an affinity for IGF-II that is 20–100 fold
higher than its affinity for IGF-I, and it has a highly con-
served structure across species [41]. It was believed that the
major function of IGFBP6 was inhibiting IGF-II-induced
cell proliferation, migration, and survival [42]. +e rela-
tionship between IGFBP6 and cancer remains unclear [9].
Notably, IGFBP6 has antitumor effects in many types of
cancer, including neuroblastoma [43], colon [44], ovarian
[45], and prostate cancer [46]. Moreover, many studies have
demonstrated the downregulation of IGFBP6 expression in
cancer; in contrast, several studies have shown upregulation
of IGFBP6 in pancreatic cancer [47] and adrenocortical
cancer [48]. Recently, it has been reported that IGFBP6 may
exert immunological functions [49, 50]. IGFBP6 was found
to be highly expressed in eosinophils [51], and it has also
been reported that IGFBP6 is associated with allergic asthma
[52] and thymic atrophy [53]. In rheumatoid arthritis pa-
tients, IGFBP6 was shown to be able to induce high levels of
T-lymphocyte migration in vitro [54]. +ese evidences
suggest an important role for IGFBP6 in immunity. IGFBP6
had the highest proportion of mRNA (94%) expressed in
glioma cell lines that were derived from primary glioblas-
tomas [14], and the biological function study showed that
IGFBP6 is an unfavorable prognostic factor of patients with
glioma [55]. +e findings of the present study are consistent
with the previous studies, and the expression of IGFBP6 was
lower in tissues from patients with GBM than in normal
tissues from healthy individuals (normal controls), which
suggests that IGFBP6 has a significant effect on the prognosis

Table 2: Univariate analysis of the correlation of IGFBPs ex-
pression and immune infiltrates with OS inGBM.

Cancer Variable P

GBM IGFBP3 0.001584
GBM Dendritic cell 0.001617
GBM IGFBP5 0.003962
GBM IGFBP2 0.004553
GBM IGFBP6 0.02552
GBM B cell 0.105243
GBM IGFBP4 0.398653
GBM CD4+ T cell 0.629122
GBM IGFBP1 0.657062
GBM Neutrophil 0.741002
GBM Macrophage 0.755369
GBM CD8+ T cell 0.805153

Table 3: Multivariate analysis of the correlation of IGFBPs ex-
pression and immune infiltrates with OS in GBM.

Coef HR (95%CI_l−95%CI_u) P value Sig
Age 0.027 1.027(1.018–1.036) 0.000 ∗∗∗

IGFBP6 0.146 1.158 (1.036–1.293) 0.010 ∗

IGFBP2 0.110 1.117 (1.016–1.227) 0.022 ∗

Dendritic 0.384 1.468 (0.964–2.238) 0.074
raceWhite 0.603 1.828 (0.739–4.523) 0.192
IGFBP4 −0.084 0.920 (0.809–1.045) 0.200
B cell −0.425 0.654 (0.339–1.261) 0.205
Neutrophil 0.608 1.836 (0.675–4.992) 0.234
Gender (male) 0.079 1.082(0.859–1.363) 0.504
CD8_T cell 0.156 1.169 (0.704–1.943) 0.546
IGFBP1 −0.040 0.961 (0.842–1.097) 0.554
Purity 0.211 1.235 (0.610–2.503) 0.557
IGFBP3 −0.025 0.975 (0.893–1.065) 0.572
Macrophage 0.231 1.259 (0.565–2.809) 0.573
raceBlack 0.234 1.264(0.454–3.522) 0.654
CD4_T cell −0.082 0.922 (0.398–2.133) 0.849
IGFBP5 0.002 1.002 (0.869–1.154) 0.982
∗P< 0.01; ∗ ∗ ∗P< 0.0001.
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of GBM. Functional analysis of IGFBP6 coexpressed genes
revealed that the genes coexpressed with IGFBP6 were re-
lated to the immune system, indicating that IGFBP6 could
not only serve as a potential prognostic indicator but may
also be a new immune therapeutic target in GBM.

Our current study provides evidence that the dysregu-
lation of IGFBP4 and IGFBP6 plays a vital role in the im-
mune regulation of GBM, and this suggests a potential
molecular mechanism in the progression of GBM that in-
volves the IGFBP family.

5. Conclusions

In conclusion, our study’s findings indicate that the IGFBP
family has a prognostic role in GBM. IGFBP4 and IGFBP6
may serve as valuable prognostic indictors and potential
immunotherapeutic targets in GBM. However, there are
certain limitations that must be considered when inter-
preting our study’s findings. +e data analyzed in this study
were obtained from online databases. Furthermore, the
mechanisms by which IGFBP4 and IGFBP6 are involved in
tumorigenesis and progression of GBM, especially immune
regulation, require in vitro and in vivo studies.
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abundance of tumour-infiltrating lymphocytes (TILs) and
IGFBP4. (B) Four TILs with the highest correlation. (C)
Correlations between immunomodulators and IGFBP4.
(D) Four immunomodulators with the highest correlation.

−1

1

CCL1
CCL2
CCL3
CCL4
CCL5
CCL7
CCL8
CCL11
CCL13
CCL14
CCL15
CCL16
CCL17
CCL18
CCL19
CCL20
CCL21
CCL22
CCL23
CCL24
CCL25
CCL26
CCL27
CCL28

CX3CL1
CXCL1
CXCL2
CXCL3
CXCL5
CXCL6
CXCL8
CXCL9
CXCL10
CXCL11
CXCL12
CXCL13
CXCL14
CXCL16
CXCL17

XCL1
XCL2

AC
C

BL
CA

BR
CA

CE
SC

CH
O
L

CO
A
D

ES
CA

G
BM

H
N
SC

KI
CH

KI
RC

KI
RP

LG
G

LI
H
C

LU
A
D

LU
SC

M
ES

O
O
V

PA
A
D

PC
PG

PR
A
D

RE
A
D

SA
RC

SK
CM

ST
A
D

TG
CT

TH
CA

U
CE

C
U
CS

U
V
M

(e)

0

0.0

C
C

L7
_e

xp

−5.0

−2.5

2.5

5.0

2
IGFBP6_exp

Spearman Correlation Test:
rho = 0.599, p < 2.2e-16

GBM (166 samples)

4 6 8

0

0

C
XC

L6
_e

xp

−4

4

2
IGFBP6_exp

Spearman Correlation Test:
rho = 0.56, p < 2.2e-16

GBM (166 samples)

4 6 8 0

5.0

7.5

C
XC

L1
4_

ex
p

0.0

2.5

10.0

2
IGFBP6_exp

Spearman Correlation Test:
rho = 0.549, p < 2.2e-16

GBM (166 samples)

4 6 8

0

0.0

2.5

C
C

L2
6_

ex
p

−5.0

−2.5

5.0

2
IGFBP6_exp

Spearman Correlation Test:
rho = 0.564, p < 2.2e-16

GBM (166 samples)

4 6 8

(f )

Figure 8: Associations of the IGFBP6 expression level with lymphocytes, immunomodulators, and chemokines in GBM from TISIDB
database. (a) Correlations between abundance of tumour-infiltrating lymphocytes (TILs) and IGFBP6. (b) Four TILs with the highest
correlation. (c) Correlations between immunomodulators and IGFBP6. (d) Four immunomodulators with highest correlation. (e) Cor-
relations between chemokines and IGFBP6. (f ) Four chemokines with the highest correlation.
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(E) Correlations between chemokines and IGFBP4. (F) Four
chemokines with the highest correlation. (Supplementary
Materials)
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