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Selection accumulates information in the genome—it guides stochastically evolving
populations toward states (genotype frequencies) that would be unlikely under neutral-
ity. This can be quantified as the Kullback–Leibler (KL) divergence between the actual
distribution of genotype frequencies and the corresponding neutral distribution. First,
we show that this population-level information sets an upper bound on the information
at the level of genotype and phenotype, limiting how precisely they can be specified
by selection. Next, we study how the accumulation and maintenance of information
is limited by the cost of selection, measured as the genetic load or the relative fitness
variance, both of which we connect to the control-theoretic KL cost of control. The
information accumulation rate is upper bounded by the population size times the cost of
selection. This bound is very general, and applies across models (Wright–Fisher, Moran,
diffusion) and to arbitrary forms of selection, mutation, and recombination. Finally, the
cost of maintaining information depends on how it is encoded: Specifying a single allele
out of two is expensive, but one bit encoded among many weakly specified loci (as in a
polygenic trait) is cheap.

evolution | population genetics | information

Throughout evolution, selection accumulates information in the genome. It guides
evolving populations toward fitter phenotypes, genotypes, and genotype frequencies,
which would be highly unlikely to arise by chance. This information—the degree to which
selection can control the stochastic process of evolution—has been a long-standing subject
of research (1–7), and relates to basic questions in evolutionary biology and genetics.

1. Introduction

1.1. How Well Can Selection Specify the Genotype and the Phenotype?. The degree to
which within- and between-species genetic variations are shaped by selection has been
the subject of the neutralist–selectionist debate (8–11). Today, we know that much of
the human genome is involved in various biochemical processes (12, 13), but this does
not mean that it is strongly shaped by selection (14–16). Here we ask a related question
in information-theoretic terms: How much information can selection accumulate and
maintain in the genome? Much of the sequence is to some degree random, and, given
its size, l ≈ 3× 109 base pairs, it likely contains far less information than the maximum
conceivable 6× 109 bits of information. A similar question has been raised in the context
of origin of life: Given high mutation rates, how much information could be maintained
in the genome of early organisms (2)?

Analogous questions can be asked about the phenotype. How many traits can selection
optimize? It is easy to list a large number of potentially relevant traits: Take the expression
of all genes in all cell types and conditions, or regulatory interactions between pairs of
genes. For a fit organism, these traits need to be specified with some precision, and this
precision is likely limited (even if it is, to some degree, facilitated by correlations among
traits). For example, a study of selective constraint on human gene expression (17) gave
evidence of constraint, but, overall, this seems weak. Given the large number of possibly
important phenotypes, how precisely can selection specify them?

1.2. Quantifying Genetic Information. An established method in bioinformatics quanti-
fies the information content of a short genomic motif, such as a binding site, by comparing
an alignment of its instances across the genome to the genomic background (18, 19).
Our definition of genetic information is mathematically similar, but aims to apply more
generally (to large regions without multiple instances available). It is therefore based in
theoretical population genetics rather than sequence data analysis. A key related concept
is the repeatability of evolution (20, 21). Evolution is stochastic due to genetic drift
and mutation, but selection can reduce the space of possible outcomes. For example,
suppose that, in a sequence of length l , n sites are under strong selection for specific
nucleotides. By fixing those nucleotides, selection will accumulate 2n bits of information.
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Meanwhile, the remaining l − n sites will be occupied by random
nucleotides, and, if a replicate population evolves under iden-
tical conditions, the l − n nucleotides will likely be different.
Therefore, our concept of information in a sequence is inversely
related to how differently it could have evolved under identical
conditions.

In general, however, the information content of the genome
cannot be quantified by simply counting the sites that are under
selection. A single bit of information can be spread across many
loci under weak selection—a phenomenon particularly relevant
when selection acts on polygenic traits, long recognized in quan-
titative genetics and described by the infinitesimal model (22,
23). Polygenicity and weak selection also resolve the apparent
contradiction between the variety of phenotypes, or biochemical
processes involving the DNA, and the lack of strong selective
constraint on all of them. Selection might act on a small number
of high-level traits, which are influenced by large numbers of loci
spread across the genome [described by the omnigenic model
(24)], which experience only weak selection individually.

In Section 2, we define information on three levels—the popu-
lation state (genotype frequencies), the genotype, and the pheno-
type. There are simple inequalities between the three levels. This
means that the upper bound on information accumulation rate,
which we prove at the population level, also implies a bound at
the genotype and phenotype levels. We use the Kullback–Leibler
[KL] divergence, a central quantity in information theory (25), to
quantify the difference between their actual distribution and their
corresponding neutral distribution.

Notably, the neutral phenotype distribution corresponds ap-
proximately to the phenotype distribution among random DNA
sequences. Recent work with random mutant libraries suggests
that, for some phenotypes, this distribution is accessible experi-
mentally [gene expression driven by random promoters (26–28)
or enhancers (29)]. Any departure from this neutral distribution
amounts to accumulation of information.

1.3. Cost of Information. After defining what genetic informa-
tion means, we ask how quickly it can accumulate and how much
of it can be maintained. We look for answers in terms of the cost of
selection—the amount of relative fitness variation in a population.
This cost, traditionally measured as the relative fitness variance or
the genetic load, is itself limited. In a population with constant
size, relative fitness is proportional to the expected number of
offspring, and the number of offspring can only vary between zero
and the reproductive capacity of the organism.

We rely on an information-theoretic measure of cost of selec-
tion, which is itself upper bounded by the relative fitness variance
and genetic load but has favorable mathematical properties. It
relates the cost of selection to the KL cost of control (30–32), or
the thermodynamic power (33).

The relationship between information accumulation rate and
the cost of selection has been studied by Kimura (1) and, later,
Worden (3), MacKay (4), and Barton (7). In Section 3, we discuss
these works in more detail and derive a more general bound. The
problem of maintenance has been studied by Eigen (2), Watkins
(5), and Peck and Waxman (6). We discuss these in Section 4
and present example calculations that suggest general trends in
the amount of information that can be maintained per unit cost.

2. Quantifying Genetic Information

The measures of information studied in this paper are based on
comparisons between the distributions of various variables under
selection versus neutrality. The focus on probability distributions

accounts for the stochasticity of evolution, and the difference
between the distributions with and without selection corresponds
to the control that selection exerts on evolution. We quantify this
difference in bits, using the KL divergence (25)

D(U ) =
∑
u

ψU (u) log2
ψU (u)

ϕU (u)
, [1]

where U is a variable that takes values u with probabilities ψU (u)
with selection and ϕU (u) under neutrality. Below, we focus on
three variables—genotype frequencies (which describe population
states), genotypes, and phenotypes.

For a pair of variables U ,V , statistical dependencies are re-
flected in their joint and conditional KL divergence, D(U ,V )
and D(U |V ) (see SI Appendix, section S1 for the definitions).
Both are nonnegative quantities, and they follow the chain rule

D(U ,V ) =D(U ) +D(V |U ) =D(V ) +D(U |V ). [2]

The chain rule allows a comparison of the effects of selection on
different variables, as well as on the same variable at different
times.

2.1. Population-Level Information. Evolution is a stochastic pro-
cess happening to populations, and genotype frequencies form the
state space. We use X to denote the genotype frequencies as a
random variable, with each value x being a vector with an element
xg for each genotype g , normalized as

∑
g xg = 1. As an example,

Fig. 1A shows a common evolutionary scenario where a single-
locus, two-allele system starts from a single copy of a beneficial
allele A, and, later, the frequency evolves stochastically.

X takes values x with probabilities ψX (x ) under selection
and ϕX (x ) under neutrality. Fig. 1B shows examples of these
distributions for the single-locus system at three different times.
In general, these distributions are shaped by various evolutionary
forces—mutation, drift, recombination, selection (ψX only), and
others. We refer to D(X ), the KL divergence between ψX and
ϕX , as the population-level information.

The example in Fig. 1 illustrates two important phenomena
we discuss in the rest of the paper. The first phenomenon is the
accumulation of information. A population evolves from an initial
distribution (in the simplest case, ψX = ϕX and D(X ) = 0, but
this is not necessary). For example, the initial state x may be
completely specified as in Fig. 1A, or both ψX and ϕX may
start at the neutral stationary distribution. Over time, selection
causes ψX to diverge from ϕX , and the information D(X )
accumulates (Fig. 1B). We study this in detail in Section 3. The
second phenomenon is the maintenance of information, and it
takes place when both ψX (x ) and ϕX (x ) are stationary, and the
information D(X ) is constant. In Section 4, we study how much
information can be maintained at a given cost of selection.

The population-level information D(X ) has been studied un-
der different names and in different roles (7, 34–36). It captures
any departure of the genotype frequency distribution ψX from
its neutral counterpart ϕX —notably, selection can favor not
only high frequencies of fit genotypes but also higher or (more
typically) lower amounts of genetic variation within populations.
Note that D(X ) refers to the effects of selection on the genotype
frequencies, rather than allele frequencies. It therefore includes
effects of selection on correlations between loci (linkage disequi-
librium), which are generated by physical linkage, by chance in
finite populations, or due to functional interactions (epistasis)—
see also SI Appendix, section S2.

Notably, D(X ) (or D(G) introduced below) appears as a
term in free fitness—a quantity analogous to free energy which,
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Fig. 1. Selection controls the evolution of a single-locus, two-allele system
and drives the distribution of the population states, genotype, and phenotype
away from neutrality. (A) Stochastic trajectories of the frequency xA of the
beneficial allele A, under neutrality and under selection (blue and red). The
allele A starts at a single copy, and, under selection, it tends to increase
in frequency. Black arrows indicate the times when the distributions are
plotted in B–D. At time = 500 generations, the system is approximately
stationary. (B–D) The probability distributions of the genotype frequency xA
(B), genotype g (C), and a noisy phenotype z (D) under neutrality (blue) and
under selection (red) after a varying number of generations of evolution.
The associated measures of information D(X), D(G), and D(Z) are indicated.
(B) The neutral distribution ϕX converges to a symmetric U shape, while
the distribution under selection is biased toward high frequencies of the
beneficial allele A. The information D(X) increases over time. (C) The neutral
genotype distribution ϕG converges to a uniform distribution, due to sym-
metry between alleles a and A. Under selection (ψG), the beneficial allele
A has a higher probability, but it does not dominate completely, so the
genotype-level information D(G) is less than the maximum one bit. D(G) is
also upper bounded by D(X). (D) A phenotype with different means and a
Gaussian noise for each allele, ζ(z|g) = N (z; μg , σ) with μa = −1, μA = +1,
and σ = 1. The information D(Z) is upper bounded by D(G), with a gap
due to the partially overlapping distributions ζ(z|a) and ζ(z|A). Generated
using a haploid Wright–Fisher model (SI Appendix, section S4) with popula-
tion size N = 40, mutation rate μ = 0.005, and fitness 1 (allele a) and 1.05
(allele A).

under some assumptions, increases over time (35, 37, 38). This
implies that evolution maximizes the expected log-fitness while
constraining D(X )—see SI Appendix, section S8.

2.2. Genotype-Level Information. If we sample a random geno-
type from a population in a given state x , we find the genotype
g with a probability given simply by its frequency ψG|X (g |x ) =
ϕG|X (g |x ) = xg . Taking into account evolutionary stochasticity,
we average over all population states x with their probabilities
ϕX (x ) or ψX (x ),

ϕG(g) =
∑
x

ϕX (x ) xg , ψG(g) =
∑
x

ψX (x ) xg . [3]

Under symmetric point mutations, the neutral distribution ϕG

converges to a uniform distribution over all genotypes, while
selection typically concentrates ψG among a smaller number of
fit genotypes. This is also the case for the single-locus system in
Fig. 1C. The divergence between ψG and ϕG is the genotype-level
information D(G).

If selection precisely specifies n out of l nucleotides in the
genome—that is, ψG(g) is uniform over a fraction 1/4n out
of 4l possible genotypes—this implies D(G) = 2n bits. This
corresponds to the intuition of 2n bits of information encoded
in the genome. More typically, selection will specify many sites
only weakly (biasing the probability toward some alleles; see
also Fig. 1C ), and may contribute to D(G) through linkage
disequilibrium—correlations between linked or epistatically inter-
acting sites. Without linkage or epistasis, D(G) is approximately
additive across loci (SI Appendix, Fig. S1).

D(G) generalizes some previous definitions of genetic infor-
mation (1, 3, 6) which focused on strong selection or uniform
distributions, and coincides with others in important special cases
(4, 5).

2.3. Phenotype-Level Information. Finally, selection controls
evolution on the level of the phenotype Z . Z could be a
categorical trait such as the presence/absence of a disease
or the correct/incorrect protein fold, a quantitative trait, a
comprehensive characterization of an individual, or its fitness.
Given a genotype g , the probability of the phenotype z
will be given by the possibly noisy genotype–phenotype
relationship ψZ |G(z |g) = ϕZ |G(z |g) = ζ(z |g). When there
are no environmental effects or intrinsic noise, ζ(z |g) will be
concentrated at a single value z for each genotype g . Taking
into account the variation within populations, as well as the
evolutionary stochasticity, the marginal probability of z is

ψZ (z ) =
∑
g

ψG(g) ζ(z |g), ϕZ (z ) =
∑
g

ϕG(g) ζ(z |g).

[4]
We show the distributions ψZ , ϕZ for the single-locus system
in Fig. 1D, where the trait has a genotype-dependent mean and
Gaussian noise. While, under neutrality, ϕZ tends to spread out
over time, selection causes ψZ to be more concentrated. The di-
vergence between ψZ and ϕZ is the phenotype-level information
D(Z ).

If we can take the genotype distribution ϕG to be uniform
over all possible DNA sequences of some length, then ϕZ is the
phenotype distribution among such random sequences. Examples
of this distribution have recently been measured experimentally
for gene expression generated by random promoter sequences in
Saccharomyces cerevisiae and Escherichia coli (26, 28). If a healthy
cell requires the gene expression to be in some narrow range, this
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translates to a requirement on the phenotype-level information
D(Z ), and this requirement will increase if the expression needs
to be specified across cell states.

2.4. The Relationship between the Three Levels. The definitions
above, combined with the chain rule (Eq. 2) lead to a hierarchy
among the three levels,

D(X )≥D(G)≥D(Z ). [5]

This inequality can be observed across the columns of Fig. 1B–D.
Intuitively, the phenotype-level information D(Z ) is bounded

by the genotype-level information D(G), since the information
about the phenotype has to be encoded in the genome. A special
case of this relationship has been noted by Worden (3), who, how-
ever, worked in a deterministic setting (SI Appendix, section S3).
The difference between the two, D(G)−D(Z ) =D(G |Z ), can
have two sources. First, the phenotype distribution ζ(z |g) may
overlap between genotypes, causing the phenotype to be specified
less precisely than the genotype (as in Fig. 1D). Second, selection
may favor genotypes based on criteria other than the phenotype
Z , such as other phenotypes or robustness.

Similarly, D(G) can only be as large as the population-level
information D(X ). To increase the probability of a genotype g ,
selection must increase the probability of population states with
a high frequency of g . However, selection can also shape the
patterns of genetic diversity in populations, without impacting the
average genotype frequencies, therefore contributing to the dif-
ference D(X )−D(G) =D(X |G). In populations with weak
mutation, which tend to have little diversity, this difference is
small—see Fig. 2.

We rely on the inequalities in Eq. 5 in two ways. First, an
upper bound on the population-level information D(X ) which
we prove in Section 3 also implies an upper bound on the genotype
and phenotype-level information D(G) and D(Z ). In other
words, selection can only fine-tune the phenotype to the degree
to which it can control the population state.

Second, D(X ) and D(G) can be difficult to estimate directly
for systems with multiple loci, due to the high dimensionality
(SI Appendix, Fig. S1). In such situations, D(Z ) for fitness or a
low-dimensional phenotype Z can serve as a lower bound on
D(G) and D(X ). If Z is the trait under selection, or fitness itself,
this lower bound can be tight. This approach is applicable even for

Fig. 2. Illustration of D(X) (cyan) and D(G) (orange) for a single-locus, two-
allele system at stationary distributions ψX , ϕX as a function of selection
strength Ns for two different mutation strengths Nμ. The genotype-level
information D(G) grows with Ns; from zero up to one bit, when one out of
the two alleles dominates, with the steepest increase around Ns = 1. The
population-level information D(X) can be much greater than D(G) when mu-
tation is strong, and generates diversity within the population that selection
can shape (or suppress). When mutation is weak, D(X) and D(G) are similar,
since the population state can be specified by the allele that is currently fixed,
and D(X|G) = 0. Computed using a Wright–Fisher model as in Fig. 1, with
population size N = 100.

essentially black box genotype–phenotype models, such as models
of gene regulation or protein folding.

3. Accumulation of Information

In this section, we show how the rate at which D(X ), the
population-level information, increases over time is limited by the
population size and the variation in fitness. We start by pointing
out a connection between population genetics and control theory.

3.1. Accumulation of Information and the Cost of Control.
We consider a population evolving over time, with a trajectory
X 0,X 1, . . . ,XT forming a Markov chain between generations
0 and T (such as in Fig. 1A). The divergence of the trajectories’
distribution from neutrality,D(X 0,X 1, . . . ,XT ), has been pro-
posed as a measure of predictability of evolution (21). Using the
chain rule (Eq. 2), we can decompose it in two ways,

D(X 0,X 1, . . . ,XT )

= D(X 0)︸ ︷︷ ︸
Initial

information

+

T−1∑
t=0

D(X t+1|X t)

︸ ︷︷ ︸
KL cost of control

[6]

=D(XT )︸ ︷︷ ︸
Final

information

+

T−1∑
t=0

D(X t |X t+1)

︸ ︷︷ ︸
Effect of selection on

trajectories reaching XT

. [7]

In Eq. 6, we distinguish between the divergence of the initial states
X 0 and the additional conditional divergence in each generation,
D(X t+1|X t). The latter can be recognized as the KL cost of
control, averaged over the initial states x t (30, 31). In the context
of population genetics, selection takes the role of control.

Eq. 7 makes the distinction between the distribution of end-
points XT , and the conditional distribution of the states that
precede those endpoints. Selection can shape the full trajectories,
but only the effects on XT constitute the final population-level
information.

Together, Eqs. 6 and 7 imply a bound on the information
accumulated between times 0 and T in terms of the KL cost of
control,

D(XT )−D(X 0)≤
T−1∑
t=0

D(X t+1|X t). [8]

Specifically, the information accumulated over a single generation,
ΔD(X t) =D(X t+1)−D(X t), is upper bounded as

ΔD(X t)≤D(X t+1|X t). [9]

Analogous bounds for continuous time Markov chains and the
diffusion approximation are provided in SI Appendix, sections
S6 and S7.

Note that control theory is concerned with computing optimal
control policies, which maximize an imposed objective while
minimizing the cost

∑T−1
t=0 D(X t+1|X t). This is analogous

to computing the optimal artificial selection—in fact, the KL
divergence control theory framework has recently been used to
study artificial selection on quantitative traits (32).

In contrast, natural selection is typically given by the biological
or ecological circumstances, and not necessarily optimized in this
sense. Still, the KL cost of control provides bounds on the rate
at which selection accumulates information (Eqs. 8 and 9), and
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it has a meaning in population genetics, which we discuss in the
next section.

We also note that Eq. 9 is related to the proof that free fitness
increases over time (37, 38); see SI Appendix, section S8.

3.2. Variation in Fitness as Cost of Control. To compute
D(X t+1|X t) in population genetics, we need to specify a
model. We analyze multiple general model classes in SI Appendix:
Wright–Fisher and discrete Moran models in SI Appendix, section
S5, continuous time Moran model in SI Appendix, section S6,
and the diffusion approximation in SI Appendix, section S7. In
summary, the bound in Eq. 9 always takes the form

ΔD(X t)≤ kN
∑

xt

ψXt

(x t)C (x t) = kN 〈C 〉t , [10]

where N is the population size, kN is the number of individuals
that are sampled with selection in each generation (k = 1 under
asexual reproduction and k = 2 under sexual reproduction when
two parents are sampled with selection for each individual).
C (x t) is the cost of selection at the population state x t (see
below), and 〈C 〉t is the expected cost at time t . To upper bound
information accumulated over multiple generations, we need to
sum over them,

D(XT )−D(X 0)≤kN

T−1∑
t=0

∑

xt

ψXt

(x t)C (x t) = kN 〈C 〉0,T .

[11]
The cost C (x ) is a measure of fitness variation in a population

in the state x ,

C (x ) =
∑
g

xg ŵg(x ) log2 ŵg(x ), [12]

where ŵg(x ) is the (frequency dependent) relative fitness of
genotype g . When sampling genotypes as parents for the next
generation, g is picked with probability xg under neutrality and
xg ŵg(x ) under selection—C (x ) is the KL divergence between
these two distributions.

C (x ) is related to two more established measures of cost in
population genetics—the relative fitness variance V (x ) and the
genetic load L(x ), which have been studied under a number
of circumstances—for example, mutation–selection balance (39),
genetic drift (40, 41), certain types of epistasis and the evolution
of sex (42, 43), ongoing substitutions (44–46), or stabilizing
selection on quantitative traits (47). They are defined as

V (x ) =
∑
g

xg (ŵg(x )− 1)
2 [13]

L(x ) = 1− 1

ŵmax(x )
, [14]

where ŵmax(x ) is the maximum relative fitness present in the pop-
ulation x , ŵmax(x ) = maxg; xg>0 ŵg(x ). We derive the relation-
ships between C (x ), V (x ), and L(x ) in SI Appendix, section S9.
V (x ) andL(x ) satisfy the inequalityV (x )≤ [L(x )]/[1− L(x )]
(see also ref. 48), and both provide an upper bound on C (x ),

C (x )≤ V (x )

ln 2
, C (x )≤ log2

1

1− L(x )
. [15]

In addition, under weak selection and in the diffusion approxi-
mation, C (x ) = V (x )/(2 log 2). The bounds in Eqs. 10 and 11.
can therefore also be rewritten in terms of V (x ) or L(x ) using
Eq. 15.

Assuming constant population size, relative fitness is propor-
tional to the expected number of offspring, and therefore limited
by the species’ reproductive capacity. The quantities ŵmax(x ),
L(x ), V (x ), and C (x ), and, as a consequence, ΔD(X ), are
therefore all limited in realistic settings (SI Appendix, section S9).

In the context of artificial selection or genetic algorithms, an
alternative measure of cost is the population size N , which is
the number of cultivated plants or animals, or fitness function
evaluations (49, 50). We note that, according to the bounds in
Eqs. 10 and 11, the maximal accumulation rate is also propor-
tional to N . Furthermore, increasing the strength of selection
(and therefore C (x )) beyond an optimal value may increase the
immediate response to selection, but it reduces the long-term
response, due to loss of genetic diversity (49, 50). Therefore, in
practice, C (x ) will be limited even in this context.

3.3. Example 1: The Fates of a Beneficial Allele. The bounds in
Eqs. 10 and 11 hold in genetically diverse populations with clonal
interference or recombination. Still, it is interesting to consider
the case of sequential fixation/loss of mutations, as was done
previously (1, 7, 44).

Suppose that a beneficial allele A appears in one copy at
time t = 0, and is guaranteed to be fixed or lost before another
mutation appears that could interfere with it. The population and
genotype-level information, D(X t) and D(G t), start at zero and
accumulate over time, as selection tends to increase the frequency
of A (Fig. 3A). The cumulative cost of selection N 〈C 〉0,t serves
as the upper bound on both D(X t) and D(G t).

Note that, under relatively strong selection (Ns = 3; Fig. 3A,
Right), A increases in frequency considerably faster than under
neutrality, leading to high D(X t). But some of these gains are
later lost as A is fixed or lost. This is an example of how only the
probabilities of endpoints, and not the shape of the trajectories,
matters for the information that is ultimately accumulated (the
two terms in Eq. 7).

The increments in D(X t) and D(G t) in each generation are
plotted in Fig. 3B, along with the bound by N 〈C 〉t , Eq. 10. The
bound on ΔD(X t) is relatively tight. ΔD(G t) can temporarily
exceed N 〈C 〉t , since the accumulation bound in Eq. 10 does not
directly apply to the genotype level, but this is only a transient phe-
nomenon due to the inequality between the cumulative genotype-
and population-level information D(G t)≤D(X t).

BothD(X t) andD(G t) saturate at the same valueD(X∞) =
D(G∞), since the ultimate fate of the population is given simply
by whether the allele A is fixed or lost. The fixation probability is
1/N under neutrality and ψfix = ψX∞

((1)) = ψG∞
(A) under

selection, and the accumulated information is a function of this
probability,

D(X∞) =D(G∞) = [16]

= ψfix log2(Nψfix) + (1− ψfix) log2
N (1− ψfix)

N − 1
. [17]

This function is plotted in cyan in Fig. 3C. According to Eq.
11, it provides a lower bound on the total cost, N 〈C 〉0,∞ ≥
D(X∞), given a fixation probability. This holds when the allele
A has a constant, frequency-independent selective advantage, as
in the three examples in Fig. 3A and B (full black line and
black points in Fig. 3C ). By computing a suitable frequency-
dependent selection, which optimizes the fixation probability
while constraining the total costN 〈C 〉0,∞, we can reduce the cost
considerably (dash-dotted black line in Fig. 3C ; see SI Appendix,
section S11 and Fig. S4 for details). This is achieved by making
selection weaker at high frequencies, where the risk of losing A is

PNAS 2022 Vol. 119 No. 36 e2123152119 https://doi.org/10.1073/pnas.2123152119 5 of 10

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123152119/-/DCSupplemental
https://doi.org/10.1073/pnas.2123152119


A C

B D

Fig. 3. Information accumulation associated with the fixation or loss of a beneficial allele in a haploid single-locus, two-allele system. The beneficial allele starts
at a single copy and evolves under drift and selection, but no mutation. (A) The population-level information (D(Xt), cyan) and genotype-level information (D(Gt),
orange) over time, for three different strengths of selection: Ns = 1 (Left), Ns = 2 (Middle) and Ns = 3 (Right). Both D(Xt) and D(Gt) start at zero, accumulate over
time as selection tends to increase the frequency of the beneficial allele, and saturate as the allele is fixed or lost. The black line is the upper bound according
to Eq. 11 with k = 1. (B) The increments in D(Xt) and D(Gt) per generation (cyan and orange dashed lines), and the upper bound according to Eq. 10 with k = 1
(black dashed line). (C) The cyan line shows the total information accumulated, D(X∞) = D(G∞), as a function of the fixation probability ψfix. D(X∞) serves as a
lower bound on N times the total cost of selection, plotted in black, regardless of the form selection takes. The full black line corresponds to constant selection
coefficient, with black points showing the three cases in A and B. The dash-dotted black line shows frequency-dependent selection that maximizes ψfix (and
therefore also D(X∞)) while constraining N〈C〉0,∞. (D) Same data as in C, but the vertical axis now shows the ratio of the information D(X∞) and the total cost
of selection 〈C〉0,∞ for constant selection (full black) and optimized frequency-dependent selection (dash-dotted black line). At most, N bits can be accumulated
per unit cost, and this is achieved at weak selection. At strong selection, this reduces to as low as one bit per unit cost. Figure computed using the Wright–Fisher
model as in Fig. 1, with population size N = 100.

low. Still, the cost stays above D(X∞), as it has to under arbitrary
frequency and time-dependent selection.

Under both forms of selection, the bound is only tight when
selection is weak. To emphasize this, we plot the information
accumulated per unit cost, D(X∞)/〈C 〉0,∞, as function of the
fixation probability ψfix in Fig. 3D. At weak selection, ψfix is only
perturbed a little from its neutral value 1/N , but up to N bits can
be accumulated per unit cost. A special case of this was shown by
Barton (7). Similar scaling with N was also found in a different
setting by Kimura (45).

Stronger selection accumulates more information, but at a
disproportionately higher cost, since a large part of it is spent on
shaping trajectories rather than outcomes. In the extreme case,
to achieve ψfix = 1, only individuals carrying the A allele can be
allowed to reproduce, and A gets fixed in only one generation—
a highly unlikely way to fixation under neutrality. In this case,
selection has the same effect on each genotype sampled as a parent
in the first generation as it does on the allele that is ultimately
fixed (both are A with probability 1/N under neutrality and one
under selection). As a result, the cost is equal to the accumulated
information, 〈C 〉0,∞ =D(G∞) =D(X∞), and only one bit
per unit cost is accumulated (Fig. 3D). This is why previous
results derived in deterministic settings (1, 3) claimed much more
stringent limits on accumulation of information.

3.4. Example 2: Accumulation of Information under Mutation.
Unlike the example above, real systems experience ongoing mu-
tation. On the one hand, mutation is necessary to supply ben-
eficial alleles for adaptation, but, on the other hand, mutation
can disrupt existing adaptation. In this section, we assume that
the single-locus, two-allele system starts at the neutral stationary

distribution with D(X 0) =D(G0) = 0, and then selection is
turned on. Adaptation exploits copies of the allele A that either
segregate in the population by chance at time 0, or arise later by
mutation.

Fig. 4A shows the information D(X t) and D(G t) over time.
Accumulation take place on the time scale of 1/μ. Note that the
bound Eq. 11 is not very tight. This is even more apparent in
Fig. 4B, where the average cost per generation N 〈C 〉t remains
positive even after the system has reached the new stationary
state, while the increments in D(X t) and D(G t) are zero. This
corresponds to the cost of maintaining information, which we
discuss in Section 4.

In summary, the accumulation of information is upper
bounded by the KL cost of control, which, in turn, corresponds
to the population size times the variation in fitness. However,
if selection changes not only the probabilities of the final states
but also the paths that lead there (because it is strong, because
adaptation is maintained for a long time, or because adaptation
is reversed by time-dependent selection), then the information
accumulated is less than the total cost.

3.5. Comparison with the Fitness Flux Bound. The fitness flux
theorem (35) implies another upper bound on information accu-
mulation rate, ΔD(X t)≤ 2N 〈φ〉t , where 〈φ〉t is the expected
fitness flux per generation. It is plotted in gray in Fig. 4. It differs
from the cost of selection bound both quantitatively and in terms
of interpretation.

Quantitatively, neither bound is tighter in general. In Fig. 4B,
the cost of selection bound is tighter in early stages of adaptation,
and the fitness flux bound is tighter in the late stages. This is
consistent with the interpretation of fitness flux as the rate of
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A

B

Fig. 4. Information accumulation in a single-locus, two-allele system and
the associated upper bounds. The system starts from a neutral stationary
distribution over allele frequencies, where D(X0) = D(G0) = 0. Then it evolves
under selection with varying strengths (Ns = 1 (Left), Ns = 2 (Middle) and
Ns = 3 (Right)) for 2 × 104 generations. (A) The cumulative information at the
population level (D(Xt), cyan) and genotype level (D(Gt), orange) over time.
Due to the weak mutation Nμ = 0.01, the two measures of information are
similar. The black and gray lines show upper bounds by the cumulative cost
of selection and the cumulative fitness flux. (B) The increments in information
per generation, ΔD(Xt) (cyan dashed line) and ΔD(Gt) (orange dashed line)
and the upper bounds on these increments in terms of the cost of selection
kN〈C〉t (black, in this case k = 1) and the expected fitness flux 2N〈ψ〉t (gray)
Ns = 1 (Left), Ns = 2 (Middle) and Ns = 3 (Right). Note that the cost of selection
bound is briefly nearly tight under weak selection (Ns = 1, Left), and the fitness
flux bound is tight near stationarity, when both the accumulation rate and the
fitness flux approach zero. Figure computed using the Wright–Fisher model
as in Fig. 1. The population size is fixed at N = 100. For technical reasons,
the expected fitness flux curves were computed using an equivalent Moran
model; see SI Appendix, section S10 and Fig. S2.

ongoing adaptation, or the rate of ascent in the mean fitness
landscape/seascape (35). This rate is high in the early stages of
adaptation, when the population is far from the fitness peak and
tends to climb up quickly. Later, when the population approaches
a stationary distribution, there is no more adaptation, on average,
and 2N 〈φ〉t as well as ΔD(X t ) vanish. Meanwhile, the cost of
selection bound kN 〈C 〉t is tighter in the earlier stages when most
of the cost is spent on new adaptation, but it remains positive
under stationarity, due to maintenance costs.

Technically, the fitness flux theorem was originally derived
in ref. 35 under the diffusion approximation, and requires an
additional assumption that the neutral process is at a station-
ary distribution with detailed balance. We derive and discuss
the technical aspects of the fitness flux bound in SI Appendix,
section S10 and Figs. S2 and S3.

4. Maintenance of Information

In this section, we ask how much information can be maintained
in the genome for a given cost of selection. A general bound
analogous to Eq. 10 seems to be out of reach for now, but
we can study how the information maintained depends on key
evolutionary parameters. We start by analyzing the single-locus,
two-allele system, and then proceed to systems with large numbers
of loci.

4.1. Single Locus: Weak Selection Is Most Efficient. Fig. 5A
shows the information, D(X ) and D(G), maintained by the
single-locus, two-allele system at the stationary state under var-
ious strengths of selection. Stronger selection maintains more

A

B

C

Fig. 5. Maintenance of information in the single-locus, two-allele system.
(A) The stationary values of information, D(X) (cyan) and D(G) (orange), as
function of selection strength Ns. Stronger selection keeps the beneficial
allele at higher frequencies, but this is associated with higher average cost
of selection 〈C〉, shown in B. Note that, much of the time, one of the alleles
is fixed, and the cost C is zero. 〈C〉 is the average cost per generation
over the stationary distribution of allele frequencies. (C) The ratio of the
maintained information and the average cost of selection, D(X)/〈C〉 (cyan)
and D(G)/〈C〉 (orange). Selection is most efficient when it is relatively weak
(Ns � 1), maintaining up to N/μ(1 + 4Nμ) bits per unit cost at the genotype
level, and inefficient when strong (Ns � 1), maintaining only about ln(2)/μ
bits per unit cost (dotted horizontal lines). The population size is N = 100, and
the mutation rate is μ = 10−4.

information—up to one bit at the genotype level, and more on
the population level. However, it comes with a higher cost of
selection 〈C 〉 (Fig. 5B). Notably, the cost increases faster than
the maintained information. As a result, the amount of infor-
mation maintained per unit cost decreases with selection strength
(Fig. 5C ).

There are two important asymptotic regimes. When selection
is very strong, Ns � 1, deleterious mutations are purged as
soon as they arise, and D(G)≈ 1 bit. Mutations arise with a
probability Nμ per generation, and purging each costs C ≈
1/(N ln(2)) (assuming truncation selection with α= 1− 1/N ;
see SI Appendix, section S9). In this regime,

Strong selection:
D(G)

〈C 〉 ≈ ln 2

μ
, [18]

bits can be maintained per unit cost (Fig. 5C ). Similar arguments
apply when Nμ > 1. The inverse scaling with μ is expected
based on the deterministic mutation load (39) or Eigen’s
error catastrophe (2) which occurs when selection cannot
maintain sequences without error, and it was also derived by
Watkins (5).

Selection is much more efficient when it is weak, Ns � 1.
Both the cost and the maintained information can be calculated
under the diffusion approximation (see SI Appendix, section S4B
for details). If mutation is also weak, Nμ� 1, the amount of
genetic variation (pairwise diversity) scales with 2Nμ, and the
cost (variation in fitness) is approximately 〈C 〉 ≈Nμs2/(2 ln 2).
Meanwhile, selection shifts the mean frequency of A away from
1/2 by about Ns/2, and this is associated with genotype-level
information D(G)≈ N 2s2/(2 ln 2) bits. In this regime, up to
N /μ bits per unit cost are maintained. When mutation Nμ is
not negligible, a more accurate result is

Weak selection:
D(G)

〈C 〉 ≈ N

μ(1 + 4Nμ)
; [19]

see SI Appendix, section S4. This limit is also highlighted in
Fig. 5C. The special case when Nμ� 1, D(G)/〈C 〉 ≈ 1/(4μ2),
was previously derived by Watkins (5).
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By itself, a single locus under weak selection cannot contribute
much to biological function. However, selection can act on a
polygenic trait influenced by many loci. If they are unlinked, we
expect both the maintained information and the cost of selection
to be approximately additive, and the ratio D(G)/〈C 〉 to scale
according to Eq. 19. To confirm this, we next study a polygenic
system.

4.2. Information Stored among Many Loci. We use an
individual-based model to study a population of N haploids
with l = 1, 000 biallelic loci, mutation and free recombination.
Offspring are produced by sampling pairs of parents with selec-
tion, shuffling their genomes (at each locus, the allele from either
parent is inherited with probability 1/2), and flipping each allele
with probability μ. Selection acts on a fully heritable, additive
trait with equal effects, zg = (the number ofA alleles in g), with
fitness being wg = (1 + s)zg .

The results are shown in Fig. 6. Fig. 6A shows an example
of a stochastic population trajectory, indicating the phenotypes
present in the population over time. The system is initialized
with random genomes that contain the beneficial allele at each
locus with probability 1/2, with z taking values around l/2 =
500 with binomial noise. Selection with s = 0.01 makes the
beneficial alleles more frequent over time. The stationary distri-
bution over phenotypes is shown in Fig. 6B. Under neutrality,
ϕZ = Binom(l , 1/2) by symmetry. The distribution ψZ under
selection is shifted relatively far fromϕZ , leading toD(Z ) = 88.0
bits of information on the phenotype level.

The population state distribution and the genotype distribution
are inaccessible due to their dimensionality (SI Appendix, Fig. S1).
However, we know that they are lower bounded by D(Z ), which
is easy to compute, and D(Z )≈D(G), since Z is the only
trait under selection. Since the loci are unlinked and have equal
effects, the information D(Z ) can be divided evenly among them.
The marginal distribution over allele frequencies is only slightly
different from neutrality (Fig. 6C ), by about D(X single) = 0.095
bits in terms of allele frequency distribution and D(Gsingle) =
0.088 in terms of allele probabilities. The 1,000 loci, however,
combine to produce a large shift in the phenotype distribution,
D(Z )≈ 1, 000D(Gsingle).

This information is maintained at a very low cost of selection,
〈C 〉= 0.0012 bits per generation, or relative fitness variance
〈V 〉= 0.0017. This amounts to D(Z )/〈C 〉= 7.1× 104 bits
per unit cost, only a little below the single-locus limit N /μ/(1 +
4Nμ) = 7.4× 104 under weak selection.

4.3. Interference between Loci. In practice, the selection on
different loci might interfere, and this can hinder the maintenance
of information. The interaction may be due to Hill–Robertson
interference, linkage, or epistasis.

In Fig. 6D, we vary the selection coefficient s on individual
alleles in an l = 104 locus system, and plot the maintained D(Z )
against the cost 〈C 〉. We use the individual-based model to
compute these with free recombination (as in Fig. 6A–C ) and with
zero recombination (offspring genotypes are identical to those of
single parents, up to mutation). We compare the results with the
weak selection scaling according to Eq. 19, and results for 104 loci
that evolve independently (cost and information are summed over
104 single-locus systems).

With free recombination, weak selection maintains about as
much information as if the loci were independent (brown points
and gray line in Fig. 6D, Inset), approximately according to Eq. 19
(gray dotted line). However, when selection is strong (〈C 〉 ≈ 0.1
or more), individual alleles experience additional fluctuations in

A

B

D

C

Fig. 6. Maintenance of information in a system with l = 1, 000 biallelic loci.
Selection is directional on an additive trait Z (= the number of beneficial
alleles). (A) A heatmap showing the number of individuals in a population
occupying each value of the phenotype z at each generation. The population
is initialized as a collection of random genomes, each containing the beneficial
allele at around l/2 = 500 loci. Over time, this number stochastically increases
due to selection. Only the first 1,500 generations of the trajectory are shown;
the full trajectory was 5 × 103 generations of burn-in and 2 × 105 to estimate
the stationary distributions in B and C. (B) The stationary distribution over the
phenotype Z, under neutrality (ϕZ , blue) and selection (ψZ , red), along with
the phenotype-level information D(Z). Due to symmetry between loci and
alleles, ϕZ(z) = Binom(z; l, 0.5) is binomial. Under selection, ψZ is obtained as
the histogram over individuals and over 2 × 105 generations at stationarity.
(C) The marginal distribution over allele frequencies at individual loci, under

neutrality (ϕXsingle
, blue, computed using a transition matrix for the single-

locus system) and under selection (ψXsingle
, red, computed as a histogram

over all loci and 2 × 105 generations at stationarity). The associated D(Xsingle)

and D(Gsingle) correspond to information maintained at one locus, and, be-
cause the loci are approximately independent, the total information is about
l = 1,000 times more. The population size is N = 40, the mutation strength
is Nμ = 0.02, and the selection strength is Ns = 0.4. (D) The relationship
between the maintained information D(Z) and the cost of selection 〈C〉, with
recombination (brown points) and without recombination (olive points). This
is compared with predictions under the assumption of independent loci (gray
line; computed using single-locus diffusion approximation and multiplying
both information and cost by the number of loci) and the linear scaling with
〈C〉 based on Eq. 19 (dotted gray line). Computed for a system with l = 104

loci, population size N = 40, mutation strength Nμ = 0.02, and variable Ns.
Distributions estimated from a stochastic trajectory over 5 × 104 generations,
after 5 × 103 generations of burn-in. Inset shows identical data with a log
vertical scale.

frequency, due to random associations with alleles at other loci in
a finite population (51, 52), reducing the efficiency of selection.
As a result, the freely recombining loci maintain less information
than if they were independent. This is in addition to the fact
that, under strong selection, maintenance is more costly even for
independent loci (full gray line departs from dotted gray line,
Fig. 6D). Extremely strong selection, which removes potentially
adaptive variation at other loci, maintains even less information
than more moderate selection, and it makes recombination inef-
fective (brown points at high 〈C 〉 in Fig. 6D).
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Without recombination, less information is maintained at any
given cost (olive points in Fig. 6D). In fact, Watkins (5) has shown
that, due to clonal interference, organisms with no recombination
cannot maintain more than the order of ln(N )/μ bits of infor-
mation even if the cost is unlimited, making Haldane’s (39) and
Eigen’s results (2) pertinent to asexual populations.

The advantage of recombination has also been recognized in a
similar context by MacKay (4) and Peck and Waxman (6), and
relates to the evolution of sex and epistasis. Recombination is ad-
vantageous when facing unconditionally deleterious or beneficial
alleles (43), but can be disadvantageous when adaptation depends
on beneficial combinations of alleles (53). However, it is not clear
whether any form of selection can maintain more information at
a given cost than N /[μ(1 + 4Nμ)] achieved by weak directional
selection with recombination.

5. Discussion

Selection exerts control on evolving populations, but its capacity is
limited. The limits to selection have been approached from various
angles. Here we build upon previous work that had developed the
idea that selection accumulates and maintains information in the
genome (1, 2), and that this is associated with a cost in terms of
variation in fitness, such as genetic load or fitness variance (39, 44).
The early work has suggested remarkably simple limits to selection:
that the maximal rate of accumulation is bounded by the cost itself
(1, 3), and that maintenance is limited to about 1/μ functional
sites in the genome (2, 39).

Later work has pointed out that both accumulation (4, 7)
and maintenance (5, 6) can exceed these limits, notably when
recombination is involved. However, the general bounds remained
unclear, possibly, in part, due to the difficulty of defining genetic
information in general.

The measures of information that we have introduced in Sec-
tion 2 coincide with or generalize previous definitions, and offer
two advantages. First, they facilitate connections between different
levels—for example, between the abstract population-level infor-
mation that has been studied theoretically in different contexts
(34–36) and the effect that selection has on the distribution of
phenotypes.

Second, the generality of our definition allows proving a general
bound on information accumulation rate. This turns out to be a
factor N faster than the early bounds, but depends on selection
on individual loci being weak. The bound relies on a measure of
cost of selection that connects the genetic load and fitness variance
(48) with the KL cost in control theory (30, 31), recently used in
the context of artificial selection (32).

How much information can be maintained in the genome at
a given cost remains an open problem, but we have discussed
how this might scale with the population size and the mutation
rate. The scaling in Eq. 19 generalizes a result by Watkins (5) for
realistic populations with Nμ < 1. Still, more work is needed to
make claims about the information content of any real organism’s
genome. Typical populations have Ne/μ much greater than the
genome size, suggesting that the genome size or other factors are
more limiting than Eq. 19. The maintenance can be made more
difficult by linkage or epistasis, and parts of the genome are likely
under strong selection which is more costly. Still, Eq. 19 suggests
that, in theory, the genome could contain a substantial amount of

information among weakly selected loci, for example, coding for
polygenic traits. This is consistent with recent work (54) pointing
out that mutation load does not pose severe limitations to the
functional fraction of the human genome.

Similarly, the bound on accumulation rate in Eq. 10 hypo-
thetically allows accumulation of information amounting to 10%
of the human genome in about 106 generations (6× 108 bits,
assuming effective population size Ne ≈ 104, k = 2, and meager
cost 〈C 〉 ≈ 0.03 or relative fitness variance 〈V 〉 ≈ 0.018 devoted
to accumulation). But this is unlikely to have happened. Some
selection was likely strong and more costly, and selection could
have fluctuated, reversing previous adaptation. However, under
the right conditions, information can accumulate very fast.

Our findings are complementary to the point raised by
Kondrashov (41), that the survival of populations could be threat-
ened by large numbers of weakly deleterious mutations (Ns < 1).
While selection cannot purge them, it can perturb the allele
frequency distribution of each by a small amount, and thus shift
the distribution of higher-level traits very far from neutrality. This
is similar to the resolution by Charlesworth (55). In fact, informa-
tion accumulation and maintenance are most cost efficient in this
regime. This does not mean that a genomic architecture, where
most mutations operate at Ns < 1 and information is encoded
among many weakly specified sites, would evolve as an adaptation
to maximize information gain. Nevertheless, such an architecture
might arise in multicellular organisms as a side effect of their small
effective population sizes and long genomes (56, 57).

Focus on the information content of genomes, rather than their
fraction under selection, could help better frame the controversy
sparked by some publications from the Encyclopedia of DNA
Elements (ENCODE) project (12–16, 54, 58). On the one hand,
genomic regions under detectable selection [less than 15% in
humans (59)] likely contain less than two bits per base pair,
because their current function could be achieved by a number
of alternative sequences (e.g., due to synonymous mutations in
coding regions, or flexibility of transcription factor binding site
sequence and location). On the other hand, regions without
detectable selection could contain a considerable amount of infor-
mation in the aggregate, at a low cost, encoding polygenic traits.

In bioinformatics, there already is a measure of informa-
tion content applicable to short regulatory motifs (18, 19).
Future work could examine the precise relationship between
this measure and our theoretical definitions. The generality of
our framework also opens directions for future research. One
is to predict the maximal amount of information that can be
maintained in genomes and populations with realistic parameters.
Another is to study the information content of genomic elements
with well-described genotype–phenotype maps [e.g., promoters
(26, 27)], under different hypotheses about selection on the
phenotype.

5.1. Data, Materials, and Software Availability. There are no data underly-
ing this work.
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