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Abstract

The disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium

dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized

epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In

individuals of susceptible species, the regulatory function of the amphibian’s skin is dis-

rupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death. Safe

and effective treatments for chytridiomycosis are urgently needed to control chytrid fungal

infections and stabilize populations of endangered amphibian species in captivity and in the

wild. Currently, the most widely used anti-Bd treatment is itraconazole. Preparations of itra-

conazole formulated for amphibian use has proved effective, but treatment involves short

baths over seven to ten days, a process which is logistically challenging, stressful, and

causes long-term health effects. Here, we explore a novel anti-fungal therapeutic using a

single application of the ionic liquid, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfo-

nyl)imide (BMP-NTf2), for the treatment of chytridiomycosis. BMP-NTf2 was found be effec-

tive at killing Bd in vitro at low concentrations (1:1000 dilution). We tested BMP-NTf2 in vivo

on two amphibian species, one that is relatively tolerant of chytridiomycosis (Pseudacris

regilla) and one that is highly susceptible (Dendrobates tinctorius). A toxicity trial revealed a

surprising interaction between Bd infection status and the impact of BMP-NTf2 on D. tinctor-

ius survival. Uninfected D. tinctorius tolerated BMP-NTf2 (mean ± SE; 96.01 ± 9.00 μl/g),

such that only 1 out of 30 frogs died following treatment (at a dose of 156.95 μL/g), whereas,

a lower dose (mean ± SE; 97.45 ± 3.52 μL/g) was not tolerated by Bd-infected D. tinctorius,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231811 April 17, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: DiRenzo GV, Chen R, Ibsen K, Toothman

M, Miller AJ, Gershman A, et al. (2020)

Investigating the potential use of an ionic

liquid (1-Butyl-1-methylpyrrolidinium bis

(trifluoromethylsulfonyl)imide) as an anti-fungal

treatment against the amphibian chytrid fungus,

Batrachochytrium dendrobatidis. PLoS ONE 15(4):

e0231811. https://doi.org/10.1371/journal.

pone.0231811

Editor: Yong-Sun Bahn, Yonsei University,

REPUBLIC OF KOREA

Received: January 9, 2020

Accepted: April 1, 2020

Published: April 17, 2020

Copyright: © 2020 DiRenzo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data and code for

analyses can be reproduced and accessed at the

github repository: https://github.com/Grace89/Bd-

IL/.

Funding: The Undergraduate Research for Creative

Activates grant supported AJM and AG, and the

National Science Foundation Postdoctoral

Fellowship #1611692 supported GVD. UCSB

http://orcid.org/0000-0001-5264-4762
https://doi.org/10.1371/journal.pone.0231811
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231811&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231811&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231811&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231811&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231811&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231811&domain=pdf&date_stamp=2020-04-17
https://doi.org/10.1371/journal.pone.0231811
https://doi.org/10.1371/journal.pone.0231811
http://creativecommons.org/licenses/by/4.0/
https://github.com/Grace89/Bd-IL/
https://github.com/Grace89/Bd-IL/


where 15 of 23 frogs died shortly upon BMP-NTf2 application. Those that tolerated the

BMP-NTf2 application did not exhibit Bd clearance. Thus, BMP-NTf2 application, under the

conditions tested here, is not a suitable option for clearing Bd infection in D. tinctorius. How-

ever, different results were obtained for P. regilla. Two topical applications of BMP-NTf2 on

Bd-infected P. regilla (using a lower BMP-NTf2 dose than on D. tinctorius, mean ± SE; 9.42

± 1.43 μL/g) reduced Bd growth, although the effect was lower than that obtained by daily

doses of itracanozole (50% frogs exhibited complete clearance on day 16 vs. 100% for itra-

canozole). Our findings suggest that BMP-NTf2 has the potential to treat Bd infection, how-

ever the effect depends on several parameters. Further optimization of dose and schedule

are needed before BMP-NTf2 can be considered as a safe and effective alternative to more

conventional antifungal agents, such as itraconazole.

Introduction

Natural systems are increasingly threatened by the emergence of highly virulent, infectious dis-

eases. In recent years, an unprecedented number of fungal and fungus-like diseases have led to

severe population declines and extinctions in natural systems as diverse as bats (white nose

syndrome), corals (sea-fan aspergillosis), and amphibians (chytridiomycosis) [1–3]. Chytridio-

mycosis is a recently emerged disease caused by the amphibian chytrid fungus, Batrachochy-
trium dendrobatidis (Bd) [4]. Worldwide, this disease has caused population declines and

extirpations of more than 500 amphibian species, an impact that has been described as the

“most spectacular loss of vertebrate biodiversity due to disease in recorded history” [5,6].

The infective life stage of Bd is a flagellated zoospore that can swim in water [4,7,8]. Zoo-

spores attack the keratinized skin of post-metamorphic amphibians and mouthparts of larvae

[4,9]. Once the fungus has infected the host, the fungus develops into a stationary zoosporan-

gium in the epidermis, which eventually discharges a new generation of zoospores onto the

skin, causing either re-infection of the same individual or transmission to other hosts [10].

Chytridiomycosis develops in individuals when fungal infection intensity reaches a critical

pathogen burden [11,12] and damage to the skin causes loss of water and electrolyte equilib-

rium, leading to eventual death [9,13–15].

The rapid declines in amphibian biodiversity have been unprecedented [6,16]. Therefore,

safe and effective therapeutics for chytridiomycosis are urgently needed to stabilize popula-

tions of endangered amphibian species in the wild. Active amphibian management (e.g., rein-

troductions, in situ intervention, ex situ mitigation) take proactive (pre-emergence) and

reactive (post-emergence) approaches to dealing with emerging infectious diseases [17]. There

are active amphibian conservation projects to mitigate chytrid impacts on amphibian popula-

tions using habitat management [18], amphibian translocations [19,20], amphibian reintro-

ductions [21], and amphibian capture-treat-release [22]. Other research has searched for cures

of infected individuals, including but not limited to probiotics/microbiomes [13,23–28]; anti-

microbial peptides [29–33]; anti-fungal baths and elevated body temperature [34–36]), or nat-

ural selection of resistance/tolerance genes (e.g., mycobiome [37]; MHC/immunogenes [38–

41]).

Here, we explore the potential for the use of an ionic liquid (IL) as an alternative anti-fungal

treatment against Bd. Ionic liquids (ILs) are a class of materials most often characterized by

their low melting point (<100˚C) and extremely low volatility [42,43]. Because they can be

tuned for specific applications by simple alterations in their ionic components, ILs are widely
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used in the chemical industry in a variety of roles including catalysts and solvents [44]. This

tuneability, coupled with the fact that ILs have been shown to affect biological systems includ-

ing plants, animals and microbial life, has also made them important in biotechnology [45,46].

Understanding how ILs affect different species allows researchers to tailor them for a variety of

roles including drug synthesis or drug delivery [45–47]. For example, ILs can improve drug

solubility and increase absorption [48,49]. Most relevant to amphibian chytridiomycosis,

many ILs possess anti-fungal activity [50–52]. In addition, toxicity profiles for a wide variety of

ILs against aquatic species including Danio rerio, Daphnia magna, and Vibrio fischeri have

shown that toxicity of ILs vary by species and dose [53,54], but there are few studies investigat-

ing their effect on amphibians [55].

In this study, we used a commercially available ionic liquid 1-Butyl-1-methylpyrrolidinium

bis(trifluoromethylsulfonyl)imide (BMP-NTf2; Fig 1). BMP-NTf2 is a hydrophobic ionic liq-

uid with an EC50 value for Vibrio fischeri that falls in the “practically harmless” category of the

hazard ranking for aquatic organisms [56,57]. The hydrophobicity of BMP-NTf2 is especially

relevant since it reduces its distribution in aqueous ecosystems.

We aim to determine whether BMP-NTf2 (i) is effective at killing Bd and inhibiting its

growth in vitro, (ii) is tolerated by frogs in vivo (i.e., toxicity trial), (iii) remains on the amphib-

ian skin once applied, and (iv) has a therapeutic effect on Bd infection in frogs in vivo (i.e., effi-

cacy trial). Efficacy of BMP-NTf2 is compared to the current standard treatment of daily doses

of the commonly used anti-fungal itraconazole. The goal is to find a safe and inexpensive anti-

fungal treatment that field ecologists could either paint or swab onto the skin of an amphibian

in a single application to treat Bd infection without the need to hold frogs in captivity. If suc-

cessful, BMP-NTf2 treatment could help reduce the impact of Bd on amphibian populations

Fig 1. The chemical structure of BMP-NTf2.

https://doi.org/10.1371/journal.pone.0231811.g001
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by allowing a one-time topical application to clear Bd infections, instead of a multi-day treat-

ment that is dangerous to the animals and logistically difficult.

We performed in vivo experiments with two amphibian species: Pseudacris regilla and Den-
drobates tinctorius. Pseudacris regilla is thought to be a reservoir species for Bd in the Sierra

Nevada [58]. This species carries high Bd infection intensities and seems to tolerate Bd infec-

tion (i.e., does not die from infection). In contrast, Dendrobates tinctorius is highly susceptible

to Bd infection, and dies between 13 and 31 days post-exposure [59,60].

Material and methods

In vitro assessment of BMP-NTf2-treated Bd viability

To test the effects of varying BMP-NTf2 concentrations on Bd life stages in vitro, we used Bd

growth as a standardized metric from flow cytometry and a viability plating assay. Zoospores

of Sierra Nevada Bd isolate CJB7 were harvested from 1% tryptone/agar plates, and 1% tryp-

tone broth was seeded with 105 zoospores per mL. Resulting cultures (~40–45 mL) were

allowed to grow for five days at room temperature. One mL aliquots of these well-mixed five-

day-old Bd cultures were spun down, decanted and incubated in 1 mL millipore water con-

taining BMP-NTf2 at varying concentrations (0, 1:10, 1:100, 1:1000 by volume, all treatments

performed in triplicate) for 30 minutes at room temperature with continuous mixing.

BMP-NTf2 was removed by aspirating the culture from the tube after the BMP-NTf2 settled to

the bottom, and samples were washed twice and resuspended in ultrapure water. Heat-treated

zoospores (100˚C, 15 minutes), and untreated Bd cultures were used as positive and negative

controls, respectively.

Differing ratios (1:4, 1:1, 4:1) of live:heat-killed zoospores were used to optimize live/dead

staining protocols (S1 Fig). For the live/dead analysis, Bd was stained with fluorescein diacetate

(FDA) and propidium iodide (PI) according to manufacturer’s instruction (ThermoFisher).

Samples were analyzed using a BD FACSAria I flow cytometer, which distinguishes between

Bd life stages (i.e., zoospore versus zoosporangium) by size distribution. Unstained samples

were used to determine background levels and perform gating for each dye. Single-stain sam-

ples were also analyzed to perform compensation, which corrects for any spectral overlap

between the two fluorophores. Flow cytometry plots were prepared using DeNovo Software’s

FCS Express 6 Flow (DeNovo Software) and viability vs. concentration data was analyzed

using two-way ANOVA (Sidak’s multiple comparisons test) in GraphPad Prism 7.0.

Unstained BMP-NTf2-treated and live/dead control Bd cultures prepared as above for flow

cytometry were plated in triplicate on 100 mm petri dishes containing 1% tryptone and 1%

agar. Growth was recorded over nine to ten days to determine the longer-term effects of

BMP-NTf2 at various concentrations on Bd growth in vitro.

Animal use and ethics statement

All experiments presented comply with the current laws of the USA. Collections of P. regilla
eggs were obtained by permits from the state of California Department of Wildlife (permit

#SC-10167), and D. tinctorius were obtained from a commercial vendor. The use of vertebrates

in our experiment was approved by the University of California, Santa Barbara Institutional

Animal Care and Use Committee (IACUC; protocol #: 919; see S1 Table for a summary of the

number of animals used).

Chytridiomycosis is frequently lethal to amphibians, and death due to chytridiomycosis can

come on very suddenly in some species, and under some conditions. In practice, we have

found that it is nearly impossible to identify and treat or euthanize all sick individuals prior to

death. Therefore, death of individuals is a potential outcome for any infection experiment
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involving Bd. Dendrobates tinctorius are likely to experience some distress, which we alleviated

via euthanasia at the predetermined humane endpoints. Frogs were examined, at least once

daily, for any clinical abnormalities and/or chytridiomycosis (e.g., lethargy and lack of righting

reflex). Animals were euthanized if they did not right themselves within 5 seconds, if they

appeared thin in body condition or are anorexic (not eating for >48 hrs), or experienced

excessive shedding of skin. The animal observations were performed by protocol personnel

who are trained and qualified to recognize these clinical abnormalities and perform euthanasia

on animals that have reached these endpoints. All protocol personnel are within compliance of

all IACUC training requirements, and they were subsequently trained to handle/work with

frogs in the Briggs Lab by other researchers.

Animal husbandry

Pseudacris regilla sub-adult frogs aged between three to four months were captured in April

2017 as eggs and reared in the laboratory until August 2017. Dendrobates tinctorius sub-adult

frogs aged between two to three months were purchased from a commercial breeder (Josh’s

Frogs1; Missouri, USA) in November 2017. Frogs were allowed to acclimate to the lab environ-

ment for one month prior to the start of the experiment. Animals were housed individually in 21

x 7 x 12 cm plastic containers in a dedicated animal facility. Three sheets of wet, unbleached

paper towels were placed on the bottom of each container along with a plastic hide. Animal

tanks were changed weekly and sprayed with water as needed. Individuals were fed either fruit

flies (D. tinctorius), or a combination of crickets and fruit flies (P. regilla), every other day. Daily

health checks were performed, and frogs (g) were weighed and measured (snout-vent-length;

mm) weekly. Average temperature and humidity of the lab over the course of the experiment

was 20.4˚C (min = 17.7˚C; max = 22.2˚C) and 47.8% (min = 16%; max = 74%) humidity; how-

ever, the humidity inside the containers was likely much higher given the quantity of water. All

animal procedures were carried out in compliance with the guidelines approved by the Animal

Research Committee at the University of California, Santa Barbara (Santa Barbara, CA).

Determining BMP-NTf2 toxicity in vivo
Bd-naïve D. tinctorius frogs were painted with a volume of BMP-NTf2 from 4 μL to 120 μL,

using a pipette to dispense the solution and a swab to cover the surface area of the frog (see

Table 1 for dose and sample sizes); frogs were held in individual, plastic containers with 4 mL

Table 1. Sample size and fraction of individuals that survived for BMP-NTf2 toxicity trial for Dendrobates tinctor-
ius. The only individual that died was in the 70 μL group.

Total BMP-NTf2 applied Froglet sample size Fraction survived

4 μL 1 100%

10 μL 1 100%

14 μL 1 100%

20 μL 1 100%

30 μL 1 100%

40 μL 5 100%

50 μL 4 100%

60 μL 7 100%

70 μL 5 80%

80 μL 2 100%

100 μL 1 100%

120 μL 1 100%

https://doi.org/10.1371/journal.pone.0231811.t001
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of Kents RO treated DI water for one hour after BMP-NTf2 application, then the frogs were

placed back into their cages. A total of 30 frogs were used in the dosage trial with between one

and six frogs used per dose (Table 1). When converting amount of BMP-NTf2 to dose per frog

weight (μL/gram), there was a range of 6.51 to 213.90 μL of BMP-NTf2 per gram of frog

(mean ± SE; 93.80 ± 9.11 μl/gram). Frogs were monitored continuously for 30 days following a

single application of BMP-NTf2 to allow frogs to fully recover from the potential effects of

BMP-NTf2. Frogs weighed between 0.39 grams to 1.05 grams (mean ± SE; 0.60 ± 0.02 g). This

experiment was not performed on P. regilla because only a few individuals were available.

Measuring the amount of BMP-NTf2 removed in an aqueous environment

To evaluate if BMP-NTf2 remained on frog skin or if it was washed off, we used the water sam-

ples collected directly after BMP-NTf2 application described below (see In vivo assessment of

efficacy). Following BMP-NTf2 application, frogs were placed in plastic condiment containers

with 25 mL of water for one hour. After one hour, frogs were returned to their cages, and sam-

ples were stored in a -20˚C freezer and analyzed with 19F NMR spectra four months after

collection.

A calibration curve was constructed using six calibration solutions that ranged from 0 μL to

33 μL of BMP-NTf2. The NMR tubes were filled with standard solutions and deuterated

dichloromethane (DCM) to a constant volume and 19F NMR spectra were recorded against

internal reference standard trifluoroacetic acid (15μl). Standard solution samples were run on

the 500MHz SB Bruker Avance NMR Spectrometer for Solution in the Materials Research

Laboratory at the University of California, Santa Barbara. The calibration points were calcu-

lated by measuring the NMR peak areas, using integration procedures available on Top Spin

2.1 software, according to the methods in Jastrzębska et al. [61].

BMP-NTf2 was extracted from the water solution using Liquid-Liquid extraction with sol-

vent DCM that was then removed by boiling. The BMP-NTf2 was resuspended in deuterated

DCM. The NMR tubes were filled with extracted solutions and deuterated DCM to a constant

volume and 19F NMR spectra were recorded against internal reference standard trifluoroace-

tic acid (15μl). Samples were run on the 500MHz SB Bruker Avance NMR Spectrometer for

Solution in the Materials Research Laboratory at the University of California, Santa Barbara.

The points were calculated by measuring NMR peak areas and we calculated BMP-NTf2 vol-

ume by comparing the extracted BMP-NTf2 integration values to the calibration curve.

Bd infection in vivo
Bd was grown in 100 mm petri dishes containing 1% tryptone and 1% agar at room tempera-

ture. Plates were flooded with sterile distilled water, zoospores were harvested after 20 minutes

and counted using a hemocytometer. P. regilla frogs were inoculated with 10 million Bd zoo-

spores per day for three consecutive days to ensure that the frogs became infected. D. tinctorius
frogs were exposed to 38 million zoospores for a single 24-hour period. All frogs were swabbed

twice weekly to quantify Bd loads.

In vivo assessment of efficacy

We assign “day 0” of the experiment as the day animals reached high, but not lethal, Bd infec-

tion intensities, at which time P. regilla individuals were randomly assigned to one of three

treatment groups: (1) BMP-NTf2 treatment group (N = 8): 10 μL of BMP-NTf2 mixed with in

90 μL of water was applied only on the ventral side of P. regilla frogs on day 0 and day 9. The

range of BMP-NTf2 doses from a single application ranged from 4.36 to 33.33 μL/gram

(mean ± SE; 9.42 ± 1.43 μL/gram). (2) Itraconazole treatment group (N = 7): individuals were
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bathed in 5 mL of 0.01% itraconazole for five minutes per day for seven consecutive days start-

ing on day 0; and (3) controls (N = 5): individuals did not receive any treatment for Bd infec-

tions. After each anti-fungal application, the cages were changed. The experiment lasted a total

of 16 days. Frogs weighed between 0.30 grams to 2.29 grams (mean ± SE; 1.28 ± 0.10 grams).

Note that with this experimental design, it is not possible to know what exact dose was effica-

cious in this species.

Bd-infected D. tinctorius frogs were randomly grouped into three treatments: (1)

BMP-NTf2 treated group (N = 23): individuals were painted with 60 μL of BMP-NTf2 on the

dorsal and ventral sides. The range of BMP-NTf2 doses ranged from 85.10 to 113.42 μL/gram

(mean ± SE; 97.45 ± 3.52 μL/gram). 60 μL of BMP-NTf2 was chosen for this treatment, because

we wanted an amount of liquid that would cover the entirety of the skin of the animal.

BMP-NTf2 was directly applied onto the skin of the frog using a pipette and then distributed

across the surface on using a swab. The swab likely collected some of the excess IL off of the

animal. For this treatment, we did not use the 10-fold dilution (as we did with P. regilla)

because BMP-NTf2 is not water soluble and remained separate when it was mixed in the P.

regilla experiment. (2) Itraconazole treated frogs (N = 12): individuals were bathed in five mL

of 0.01% of itraconazole solution for five minutes per day for a total of ten consecutive days

starting on day 0. (3) Controls (N = 12): individuals did not receive any treatment for Bd infec-

tions. After each anti-fungal application, the cages were changed. Skin swabs were collected

twice weekly to determine Bd fungal loads. This experiment lasted approximately 24 days.

Frogs weighed between 0.44 grams to 0.98 grams (mean ± SE; 0.75 ± 0.01 grams).

Finally, we caution the reader in making a direct comparison between the effects on two

species tested and the effects of BMP-NTf2 on Bd load. We note the following differences

between the treatments of the two species:

(i) The dose of BMP-NTf2 is variable between the two species.

(ii) The application formulation was neat BMP-NTf2 on D. tinctorius and a 10-fold dilution

in P. regilla.

(iii) BMP-NTf2 was applied only on the dorsal side of P. regilla and the entire animal for D.

tinctorius.
Because of these reasons, we limit our inference of the effects of BMP-NTf2 on each of the

respective species and their respective doses.

Quantification of Bd on frog skin using realtime PCR

Each frog was swabbed using a sterile synthetic tipped swab (Dry Swab MW113, Medical

Wire). DNA was extracted from skin swabs using PrepMan™ Ultra Sample Preparation

Reagent (Applied Biosystems by Life Technologies, Woolston, UK) according to the manufac-

turer’s instruction. Quantification of Bd on frogs was analyzed using real-time PCR (StepOne

Plus realtime PCR System, Applied Biosystems) as described previously [62,63]. DNA from Bd

zoospores served as standard control from the same Bd isolate used to inoculate frogs, and Bd

infection intensity results are reported in zoospore equivalents (ZE) per swab.

Statistical analyses

We ran the following statistical analyses using R[64]. To determine if BMP-NTf2 was toxic to

D. tinctorius, we used a logistic regression where the response variable was census (1 = alive,

0 = dead) and BMP-NTf2 dose as the explanatory variable. We did not use a repeated measures

test because we used the census data at the last time point for each individual at the end of the

experiment (day = 30).
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To determine if the amount of BMP-NTf2 applied and the amount recovered in water sam-

ples were correlated, we used a linear model with BMP-NTf2 applied as the explanatory vari-

able and the amount of BMP-NTf2 recovered as the response variable. Only one sample was

collected per individual from the toxicity trial.

To determine if the anti-fungal treatments affected Bd infection intensity over time for

either P. regilla or D. tinctorius, we used two linear mixed effect models, one for each species,

with log10 transformed Bd infection intensity plus one as the response variable and treatment

(BMP-NTf2, itraconazole, or control), experimental day, and their interaction as fixed effects.

We also included individual as a random effect to account for repeated sampling events over

time. We used linear models rather than any other type because of the relatively linear change

in individual log(Bd load) over time (S2 & S3 Figs), although there is a lot of scatter between

individuals when the data are combined.

We fit two other models with an autoregressive correlation structure, but the model results

were all comparable to the linear mixed effect model (i.e., same conclusions were reached). To

determine differences in the rate of Bd growth over time (i.e., did slopes differ significantly?),

we used the package emmeans [65] and the functions emmeans() and CLD(). These functions

perform pairwise comparisons among variables and adjust p values for multiple comparison

using the Tukey method.

Results

Efficacy of BMP-NTf2 against Bd in vitro
Zoospores and zoosporangia in a culture sample resolved into two distinct populations due to

their differing cell size and internal granularity when analyzed with flow cytometry. The two

populations are distinguished by the amount of forward (size) and side (granularity) light scat-

tering they exhibit; zoospores are smaller and less complex internally, so exhibit lower forward

and side scatter (blue-boxed populations, Fig 2). Flow cytometry on unstained samples

revealed qualitative information about cell viability. Cells from a live culture show one zoo-

spore grouping (Fig 2, top left). In a mixed culture of live and dead cells, there are two distinct

zoospore groups, one at higher side scatter (Fig 2, top middle). In a heat-killed culture, there is

again only one zoospore group, at higher side scatter (Fig 2, top right). While the zoosporan-

gium structures (purple-boxed populations, Fig 2) containing multitudes of new zoospores do

not resolve into two distinct live/dead groups, there is a significant upward shift in side scatter

for cultures containing dead cells, suggesting there is effect on the zoosporangia from

treatment.

BMP-NTf2 induced an effect on zoospores that was clearly detectable using live:dead stain-

ing (Fig 3A). Quantification of the flow cytometry data indicated that BMP-NTf2 produced a

dose-dependent efficacy in killing zoospores. Specifically, a single 30-minute treatment with

1:100 (1%) BMP-NTf2 was sufficient to reduce the zoospore viability by 70% (Fig 3B).

BMP-NTf2 also reduced zoosporangia viability; however, a concentration trend was not

observed (Fig 3C).

In the BMP-NTf2-treated Bd culture plates using a viability plating assay, Bd cultures

treated with 1:10 or 1:100 BMP-NTf2 showed no growth within 9 to 10 days after treatment.

This indicates that 10% and 1% dilutions of BMP-NTf2 may reduce viability less than

100% in the short term, as observed in flow cytometry results, but long-term growth is reduced

by 100%. 1:1000 BMP-NTf2 decreased growth in terms of plate coverage compared to

untreated controls but did not control growth in a way that would be meaningful in an in situ
setting.
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Fig 2. Identifying Bd populations in flow cytometry. Top: Zoospore and zoosporangia populations can be

distinguished by their differing forward and side scatter, an indicator of cell size and internal granularity, respectively.

Flow cytometry also reveals qualitative information about cell viability in a culture since dead cells exhibit higher side

scatter. In the leftmost panel, cells from a live culture show one zoospore grouping. In the middle panel (a mixed

culture of live and dead cells) there are two distinct zoospore groups, one at higher side scatter. The right panel, a heat-

killed culture, exhibits one zoospore group, again at higher side scatter than the live culture. While the zoosporangia do

not resolve into two different groups, there is a significant upward shift in side scatter for cultures with dead cells. The

ungated population at low forward scatter signal is debris. Bottom: Zoospore and zoosporangia via light microscopy

from samples sorted via flow cytometry. Microscope magnification 10x. In addition, images were enlarged 1430x

(zoospores) or 530x (sporangia) to show detail.

https://doi.org/10.1371/journal.pone.0231811.g002

Fig 3. BMP-NTf2 treatment of Bd cultures reduces viability of both zoospores and zoosporangia. A single

30-minute treatment of BMP-NTf2 resulted in a loss of Bd viability in vitro. A) Flow cytometry plots of FDA/PI-

stained cultures treated with differing concentrations of BMP-NTf2 show a reduction in live cells and increase in dead

cells for both zoospore (blue circled) and zoosporangia (purple circled) populations. B) Quantification of live and dead

populations in the stained samples via gating showed that zoospores were susceptible to BMP-NTf2 in a dose-

dependent manner. The 1:1000 and 1:10 doses were significantly different from one another (p< 0.05). C) BMP-NTf2

also reduced the zoosporangia viability; however, a dose-dependent trend was not observed. Mean ± SE for N = 6.
��p< 0.01, ����p< 0.0001.

https://doi.org/10.1371/journal.pone.0231811.g003
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In vivo tolerance of BMP-NTf2

BMP-NTf2 was generally well tolerated by healthy (uninfected) D. tinctorius. 97% of healthy

frogs survived a single BMP-NTf2 application, ranging in dose from 6.51 μL/gram to

213.90 μL/gram, with only one frog exhibiting mortality at the dose of 156.95 μL of BMP-NTf2

per gram of frog. We found that there was no correlation between BMP-NTf2 dose and sur-

vival (logistic regression, z-value = 1.42, p = 0.15). Animals exhibited lethargy and reduced

mobility after application of BMP-NTf2 at all doses (i.e., 4 μL − 120 μL), thus indicating some

acute toxicity, which was eventually resolved (S4 Fig).

High retention of BMP-NTt2 on frog skin

BMP-NTf2 exhibited partial leaching into the surroundings after application on the frog skin

(Fig 4). On average 40 ± 29% (mean ± SD) of the applied BMP-NTf2 was collected in the wash

water after one hour. These results suggest that a majority of the applied dose remains on the

frog skin, but the amounts of BMP-NTf2 released from the skin surface was correlated to the

applied dose (S1 Appendix).

In vivo effect of BMP-NTf2 on Bd infected D. tinctorius
Frog mortality varied among the treatment groups. Sixty-five percent of Bd-infected

D. tinctorius died shortly after application of BMP-NTf2 (15 of 23 animals died). Those that

survived the BMP-NTf2 application died within 45 days of treatment. None of the itraconazole

treated animals died, and 50% of the Bd infected animals (untreated) died within 24 days post-

infection.

BMP-NTf2 exhibited limited efficacy in treating Bd infection in D. tinctorius (Fig 5A; S2

Fig). Control group (no anti-fungal treatment) exhibited no clearance of Bd by day 24 of the

experiment, and their Bd infection intensity increased (day 0 = 57,244 ± 25,576 ZE; day

24 = 77,271 ± 22,420 ZE). A similar result was found for BMP-NTf2 treated frogs (single appli-

cation of 60 μl per frog), where Bd infection intensity increased (day 0 = 27,050± 19,409 ZE;

day 24 = 35,865± 21,816 ZE). All twelve Bd-infected D. tinctorius frogs treated with itracona-

zole cleared their infection by day 24 of the experiment, and their Bd infection intensity

decreased by 100% (day 0 = 30,032 ± 14,443 ZE; day 24 = 0 ± 0 ZE). The slopes of Bd infection

intensity over time were indistinguishable between BMP-NTf2 and control groups; both were

significantly different from the itraconazole treatment (Fig 5A; S2 Fig; S2 Appendix,

p< 0.001).

Effect of BMP-NTf2 on Bd infection in Pseudacris regilla
Topical application of 10 μl twice on P. regilla yielded different results (Fig 5B; S3 Fig). 50% of

Bd-infected P. regilla frogs treated BMP-NTf2 cleared their infection by day 16, and their aver-

age Bd infection intensity decreased (day 0 = 657 ± 342 ZE; day 16 = 233 ± 151 ZE); whereas,

only 20% of untreated frogs cleared the infection in the same time, and the average Bd infec-

tion intensity remained in the hundreds of zoospores (day 0 = 144 ± 67 ZE; day 16 = 513 ± 474

ZE). Daily doses of itraconazole cleared Bd-infection in 100% P. regilla frogs, and their Bd

infection intensity decreased by 100% (day 0 = 822 ± 421 ZE; day 16 = 0 ± 0 ZE). The slopes of

the control and itraconazole treated groups were significantly different (S3 Appendix); while,

the slope of the BMP-NTf2 individuals was not distinguishable from the control or itracona-

zole treated individuals. This suggests that the efficacy of BMP-NTf2 was in between untreated

and daily itracanozole.
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Discussion

The results presented here demonstrate that BMP-NTf2 has some potential to treat Bd infec-

tion in frogs, but its safety and efficacy are context-dependent. BMP-NTf2 treated P. regilla
individuals cleared Bd infection more rapidly than untreated control animals, but not as rap-

idly as those treated with daily itraconazole. Keep in mind that BMP-NTf2 was only applied to

the ventral side of P. regilla, suggesting that BMP-NTf2 application that covers the entire body

might yield a better outcome; but this was not the case of D. tinctorius, where BMP-NTf2

application was on both ventral and dorsal sides. The itracanozole bathes for both species cov-

ered their entire body and was applied for 7 (P. regilla) or 10 (D. tinctorius) consecutive days;

thus, leading to the treatment of all infection sites on an individual.

Fig 4. The relationship between the amount of BMP-NTf2 applied to amphibian skin versus the amount of BMP-NTf2 recovered in water samples (μL). Following

BMP-NTf2 application, frogs were placed in plastic condiment containers with 25 mL of water for one hour to determine the amount of BMP-NTf2 that did not adhere

to the skin. The thick line represents the predicted values from a linear model, and the points are samples collected.

https://doi.org/10.1371/journal.pone.0231811.g004
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Amphibian tolerance to BMP-NTf2 application may be species-dependent. There are a cou-

ple non-mutually exclusive explanations for this pattern. First, Hylids (Family of P. regilla)

have a higher level of cutaneous resistance, defined by a measure of skin thickness and perme-

ability, than Dendrobatids (Family of D. tinctorius) [66]. Dendrobatidae are a tropical family

of frogs that rely on their skin for respiratory gas exchange, water evaporation, and are sensi-

tive to their environment (reviewed by [66]). It might have also been possible to expose P.

regilla to higher doses of BMP-NTf2 without inducing toxicity effects. Second, Bd infection on

P. regilla is confined to isolated patches on the ventral skin, making it possible for animals to

carry high infection intensities and tolerate infection [58], suggesting that the low dose of

BMP-NTf2 might not have been high enough to clear Bd infection. A BMP-NTf2 dose of

10 μL was applied to individuals, without a toxicity trial being performed. Lastly, the fungal

burden of P. regilla was about 100 times less than that of D. tinctorius, potentially resulting in

the improved efficacy in the former species. We caution readers in attributing too much

weight on any one of these explanations given the large number of differences in experimental

procedures used between species.

BMP-NTf2 was tolerated by uninfected D. tinctorius when exposed to doses in the range of

4 μL to 120 μL per frog (corresponding to doses of 6.51 μL/gram to 213.90 μL/gram). However,

the tolerance decreased significantly when BMP-NTf2 was applied to Bd-infected frogs. The

interaction between high Bd infections and a 60 μL/frog dose of BMP-NTf2 was toxic, result-

ing in the death of 15 of 23 animals shortly after application. The variation in toxicity may be

explained to some extent by the average Bd load of animals. The average Bd load of animals

that survived the BMP-NTf2 application was 27,050 ± 54,898 (mean ± SD), whereas the Bd

load of individuals that did not survive was 168,233 ± 276,352. It is also possible that the differ-

ence in the tolerance of frogs to BMP-NTf2 originated from the difference in the skin barrier

function between healthy and infected frogs, which could have impacted the systemic exposure

of the frogs to BMP-NTf2. Behavioral changes were also observed in D. tinctorius between

BMP-NTf2 treatment and control individuals at all doses (4 μL– 120 μL), including lethargy,

lack of righting reflex, reduced eating, and change in posture (S4 Fig).

Fig 5. Bd infection intensity over time for (A) Dendrobates tinctorius and (B) Pseudacris regilla. The time series of individual Bd infection intensity over time for three

treatment groups in each of two species. Blue represents Bd + BMP-NTf2 group, black indicates the control Bd only group, and yellow are Bd + itraconazole group.

Dashed vertical lines represent day of treatments, and solid lines represent model predictions from linear mixed effects models.

https://doi.org/10.1371/journal.pone.0231811.g005
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BMP-NTf2 was moderately effective in adherence to the frog skin and correlated to the

application dose. At a low dose of BMP-NTf2 (10 μL), approximately 54% of the BMP-NTf2

applied on amphibian skin will leach into wash water, but that percent decreases rapidly as the

application dose increases (e.g., at 100 μL, 14% will leach). Future studies should investigate

the impact of leached BMP-NTf2 on the aquatic life as well as the impact of adhered

BMP-NTf2 on birds, snakes, or fish, that eat amphibians to examine if bioaccumulation

occurs.

Conclusion

We show that BMP-NTf2 is a potential therapeutic drug that might help prevent disease-

induced extinction of amphibian populations in some species. We hypothesized that a few top-

ical applications can treat Bd infections, instead of a multi-day treatment that could be hazard-

ous to amphibians and logistically difficult to implement. In species that can tolerate

BMP-NTf2 treatment, a single topical application, rather than a series of baths, allows for sim-

pler disease treatment. Our studies demonstrated that BMP-NTf2 exhibits efficacy in vitro.

However, its efficacy and tolerance in vivo are context-dependent. Species with a higher epi-

dermal barrier such as P. regilla exhibited higher tolerance and feasibility of Bd clearance. It is

possible that the necessary doses are species-dependent, and hence, the differences in

responses between the species can be mitigated through optimization. Future studies should

address this question.

Supporting information

S1 Fig. Live: Dead staining of Bd populations. To test the staining protocol, samples of live

and dead (heat-killed) Bd cultures were used to create a series of blended samples. Numbers

represent portion live:dead in a sample. (Top panels) Forward vs. side scatter plots qualitatively

showed loss of cell viability. (Bottom panels) Staining with FDA and PI showed distinct popu-

lations for both zoospores and sporangia.

(DOCX)

S2 Fig. Individual Bd infection intensity trajectory for the three treatment groups (Bd

+ BMP-NTf2 [BMP], Bd only [Control], and Bd + itraconazole [ITCZ]) of Dendrobates
tinctorius. Note that the sample size for Bd + BMP-NTf2 is 23 animals, but 15 of 23 animals

died immediately upon BMP-NTf2 application.

(DOCX)

S3 Fig. Individual Bd infection intensity trajectory for the three treatment groups (Bd

+ BMP-NTf2 [BMP], Bd only [control], and Bd + itraconazole [ITCZ]) of Pseudacris
regilla.

(DOCX)

S4 Fig. The posture most Dendrobates tinctorius individuals assumed after application of

BMP-NTf2. After several days, they regained movement.

(DOCX)

S1 Table. Summary of the number of animals used, number euthanized, and the number

of animals found dead. The cause of death for most of these animals is likely chytridiomyco-

sis, given the Bd infection intensities recorded from swab collections. In practice, we have

found that it is nearly impossible to identify and treat or euthanize all sick individuals prior to

death. Note that we were unable to euthanize the animals in the Bd+BMP-NTf2 group that

succumbed to death shortly after BMP-NTf2 application because it happened too quickly to
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prepare the euthanasia materials. It was unexpected that these animals have such a strong reac-

tion given the results of the in vivo toxicity trial.
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S1 Appendix. Model output of BMP-NTf2 applied vs. BMP-NTf2 recovered in water sam-

ples.
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S2 Appendix. Model output of Dendrobates tinctorius.
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S3 Appendix. Model output of Pseudacris regilla.
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