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Abstract: The centrosome, an organelle discovered >100 years ago, is the main microtubule-

organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles 

surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of 

cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell 

division. Hundreds of proteins found in the centrosome exert a variety of roles, including 

microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct 

chromosome alignment and segregation. Errors in these processes lead to structural (shape, 

size, number, position, and composition), functional (abnormal microtubule nucleation and 

disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations 

causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes 

are implicated in cancer, because there are important oncogenic and tumor suppressor proteins 

that are localized in this organelle and drive centrosome aberrations. Centrosome defects have 

been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, 

liver, and bladder among many others. Several drugs/compounds against centrosomal proteins 

have shown promising results. Other drugs have higher toxicity with modest or no benefits, 

and there are more recently developed agents being tested in clinical trials. All of this emerging 

evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic 

intervention in cancer research.
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Introduction to the centrosome and its essential 
role in the cell cycle
The centrosome is a small cytoplasmic organelle discovered by Edouard van Beneden, 

and further named and described by Boveri in the late 19th century.1 The centrosome 

is considered the principal microtubule-organizing center (MTOC) in mammalian 

cells; its core is composed of a pair of orthogonally localized centrioles embedded in a 

complex, dense protein matrix known as the pericentriolar material (PCM).2 Centrioles 

are diminutive barrel-shaped organelles (0.5 µm in length and 0.2 µm in diameter)3,4 

organized in a cylindrical arrangement of nine triplet microtubules.5 The older centriole, 

also referred to as the “mother” centriole, duplicates to form a new centriole, known 

as the “daughter” centriole. The mother centriole has distal and sub-distal append-

ages that the daughter centriole lacks and functions mainly in the anchoring of new 

microtubules.6 The daughter centriole eventually matures and transforms into a mother 

centriole.7 In animal cells the centrioles form a cilium in dormant cells, while cells 
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actively cycling form a centrosome. In some invertebrate 

species, such as the fruit fly Drosophila melanogaster, cilia 

are essential for mechano- and chemo-sensing, and flies 

lacking centrioles cannot form cilia and eventually die since 

they are unable to feed.8 Another example is the flatworm 

Schmidtea mediterranea, which does not regenerate through 

centrosomes and forms thousands of cilia for motility through 

the assembly of many centrioles.9 In humans, ciliopathies 

including primary ciliary dyskinesia, autosomal recessive 

primary microcephaly, polycystic kidney disease, and Bar-

det–Biedl disease are linked to defects caused by mutations 

in genes that encode centrosomal proteins.10

Centrosomes are formed when centrioles assemble and 

the PCM forms around centrioles. The PCM changes during 

the mitotic phase by increasing the inner layer and recruiting 

other components; this process culminates in a mature centro-

some with optimal MTOC capacity.11 The PCM is composed 

of hundreds of proteins,12,13 including g-tubulin ring complexes 

(gTuRCs), highly organized into different spatial compart-

ments;11,14 some of them function as signal molecules in the 

organization and nucleation of microtubules,15 anchoring, and 

regulation of the cell cycle. This section of the review will 

focus on the roles that centrosomes play during the cell cycle.

The first evidence shows that centrosomes and the micro-

tubules they nucleate play roles in coordinating timing of 

mitosis and the cell cycle and that centrosome duplication 

which occurred in specific phases of the cell cycle was dis-

covered by Sluder in sea urchin eggs.16 During the cell cycle 

or cell division, centrosomes change morphologically and 

functionally.17  Their duplication is coordinated with the cell 

cycle and also is coupled to DNA replication, mitosis, and 

cytokinesis through regulated pathways.18 Specifically, cen-

trosomes regulate cell cycle transitions during G1 to S-phase 

(G1-S), G2 to M-phase (G2-M), and also from metaphase to 

anaphase (M-A) of the M-phase.

After cytokinesis a single centrosome starts to duplicate 

during the G1-S transition, finishing duplication at the S 

phase.19 Its duplication consists of the dissociation of the two 

preexisting centrioles to form a single procentriole proximal 

to the mother centriole.20 The existence of only two centro-

somes before entering mitosis facilitates bipolar spindle for-

mation and organization, and equal chromosomal division to 

each daughter cell.3 Microsurgery experiments using BSC-1 

African green monkey kidney cells, where centrosomes 

on either interphase or in prophase were extirpated, led to 

failure of cells to enter into the next S-phase; these experi-

ments demonstrated that centrosomes are needed to enter 

into the S phase of the cell cycle. Later it was  demonstrated 

that this event is mediated by the formation of a complex of 

cyclin-dependent kinase 2 (Cdk2) with cyclin E and cyclin A 

complexes that are necessary for progression through the S 

phase. Now it is known that many cell cycle regulator proteins 

are involved in the regulation of centrosome duplication at 

late G1 and S phases and they mediate centrosome amplifica-

tion (CA), including cyclin E, Cdk2, Cdk4, nucleophosmin 

(NPM) – a phosphorylation target of Cdk2 and Cdk4, as well 

as the E2F transcription factors.21–31 This subject has been 

thoroughly reviewed by several groups, including ours.19,20,32 

Other important proteins that are specific to the regulation 

of the centrosome cycle include polo like kinase 4 (Plk4) 

and monopolar spindle 1 kinase (Mps-1) and many reviews 

have discussed those proteins thoroughly.33–35 The Doxsey 

lab demonstrated using small interfering ribonucleic acids 

against several centrosome proteins that cells can also arrest 

at G1-S due to p53 (tumor suppressor protein), p21, and 

p38-dependent checkpoints activation.36

Previous studies demonstrated the role of centrosomes 

in the G2-M transition of the cell cycle, by purifying human 

centrosomes and microinjecting them into starfish oocytes 

arrested in the G2 phase, leading to the formation of some 

normal embryos, demonstrating that centrosomes support the 

progression from G2 to mitosis.37 Further, it was established 

that activation of Cdk1/cyclin B (Cdk1–CycB) is necessary 

to mitotic entry,38 and recruitment and activation of this 

complex is mediated through Aurora A kinase (AURKA).39 

Also, centrosome localization of Cdk1 and inhibition of 

checkpoint kinase 1 (Chk1), which inhibits Cdk1 activity, 

exists in cells during mitosis.40 Centrosome localization of 

Plk1 is also another key step for the centrosome to exert 

its function to entry to mitosis. Plk1 regulates centrosome 

maturation,41 centrosome disjunction by regulating never in 

mitosis gene A (NIMA)-related kinase 2 (Nek2)/protein phos-

phatase 1-gamma antagonism,42 and centrosome–microtubule 

attachments.43 Thus, regulatory proteins recruited within 

the centrosome at the G2-M transition suggest an important 

role of centrosomes in mitosis.

Once the cell is in the mitotic phase, specifically at pro-

phase, the two centrosomes migrate to the opposite poles of 

the cell and the mitotic spindle forms between centrosomes, 

facilitating cell division.44 At this point, the spindle assembly 

checkpoint (SAC) ensures the kinetochores attachment of 

chromosomes to spindle microtubules for faithful chromo-

somal segregation. Activation of the anaphase-promoting 

complex or cyclosome is required for the proper degradation 

of CycB and inactivation of Cdk1–CycB and changing the 

microtubule dynamics to exit mitosis.45
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As centrosomes contain hundreds of proteins with differ-

ent biological functions, it is not surprising that this  cellular 

component is involved in regulating many processes, includ-

ing microtubule dynamics.

Centrosome-associated proteins 
that regulate microtubule dynamics 
and the spindle assembly checkpoint
The centrosome plays an important role as the main MTOC in 

mammalian cells. The fidelity of a dynamic spindle is critical 

for proper alignment of chromosomes and faithful segrega-

tion of sister chromatids. Functional changes in microtubule/

spindle mechanisms commonly give rise to disturbances in 

the dynamics and abnormal structures, which in turn leads 

to increases in segregation errors and consequently aneu-

ploidy.46,47 The centrosome contains a significant number of 

proteins that are associated with the regulation of microtubule 

dynamics and the SAC, and we will briefly discuss some of 

them in this section.

The presence of alpha tubulin (a-tubulin), which is con-

tained in the gTuRC, strengthens the structure of the centrosome 

in part by interacting with the centrosomal protein pericentrin.48 

The Oakley group discovered g-tubulin in Aspergillus nidulans 

and demonstrated that it influenced microtubule dynamics by 

binding g-tubulin.49 g-Tubulin is conserved throughout evolu-

tion, its gene highly conserved in Xenopus laevis, Schizosac-

charomyces pombe, maize, diatom, and budding yeast,50 and it 

is also present in centrosomes of human and drosophila cells.51 

An in vitro system from Xenopus egg extracts demonstrated 

that g-tubulin and adenosine triphosphate help assemble cen-

trosomes and that the complex assembles around centrioles of 

the sperm and binds microtubules.52

The centrosome protein pericentrin is required for 

spindle microtubule nucleation during the mitotic phase. 

Experimental depletion of pericentrin using ribonucleic 

acid interference disrupted microtubule nucleation from 

centrosomes during mitosis, through the mislocalization of 

g-tubulin, a microtubule-nucleating protein from spindle 

poles.53 Further studies confirmed the role of pericentrin in 

microtubule nucleation because recruitment of g-tubulin by 

Plk1 needs the presence of pericentrin.54

In prometaphase, a group of proteins including Aurora 

kinase B (AURKB), microtubule-associated serine/threo-

nine kinase-like (MASTL), and Mps-1/TTK are involved 

in the processes of spindle assembly and chromosome 

attachment.55 Moreover, during the next stage, metaphase, 

AURKB, Mps-1/TTK, and Nek are some of the proteins 

in charge of chromosome alignment and the SAC, which 

 monitors the attachment of spindle microtubules to the 

kinetochores of chromosomes.34 We will discuss these pro-

teins in more detail now.

AURKB functions in the regulation of corrections of 

kinetochore–microtubule attachments during spindle assem-

bly ensuring normal mitotic progression. Specifically, this 

protein corrects the destabilization of the interactions of 

kinetochore–microtubules through a mechanism involving 

phosphorylation of EB2.56

One of the main roles of the MASTL involves the regula-

tion of the mitotic phase progression by the inactivation of 

the tumor suppressor protein phosphatase 2A/B55d, as the 

mechanism for maintaining the activity of cyclin B/Cdk1.57 

In the same line, Malumbres discovered that a mouse model 

with conditional knockout of MASTL has mitosis with 

normal kinetics, however after nuclear envelope breakdown 

MASTL absence causes mitotic collapse.58

Mps-1/TTK was identified in budding yeast as a kinase 

required for spindle pole body duplication.59 TTK has its 

maximal activity and expression during mitosis, where it 

promotes efficient chromosome alignment.60 Another major 

function of TTK is that it supports the function of the SAC 

through the recruitment of mitotic arrest deficient 1 (Mad1) 

and mitotic arrest deficient 2 (Mad2) to the unattached 

kinetochores.61–64 Also, Plk1 phosphorylates TTK to fully 

activate the SAC.65 Albeit that the mechanism is unknown, 

deregulation of TTK in breast cancer cells results in CA.66

Budding uninhibited by benzimidazoles 1 (Bub1) and 

BubR1 are serine/threonine kinases that stabilize kineto-

chore–microtubules and also play a major role in the attach-

ment and alignment of the chromosome.67 Bub1 is required 

for the localization of SAC components to kinetochores, and 

recently it was discovered that Bub1 binds to the transforming 

growth factor-β receptor which is involved in development 

of abnormal cell growth, epithelial–mesenchymal transition, 

and tumors.68,69

Nek2 is a protein required for centrosome disjunction and 

the formation of a bipolar mitotic spindle.70 It exerts centro-

some disjunction by phosphorylating c-Nap and rootletin.71,72 

Nek2 exerts its role in the SAC through the interaction with 

Hec-1 (a protein involved in spindle checkpoint signal-

ing), also known as Ndc80, and also with Mad1.73–76 Nek2 

is particularly abundant in cells during the G2-M phase. 

Abnormal Nek2 expression induces CA in breast cancer 

cells, and alters microtubule dynamics that can trigger  tissue 

 reorganization during tumorigenesis.34,77–80 Thus, Nek2 is 

critical for  microtubule organization and ensures fidelity of 

chromosome segregation during mitosis.
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Overview of structural and 
functional aberrations in the 
centrosome associated with 
abnormal cell proliferation
Structural or functional centrosomal disturbances are known 

to cause abnormal cell proliferation leading to the forma-

tion of tumors. The proposed role of centrosomes in cancer 

disease arose more than a century ago with the German 

zoologist, Theodor Boveri (1862–1915) and his chromo-

some theory of cancer.81 After observing the consequences 

of abnormal mitoses in sea urchin eggs, Boveri further sug-

gested in his monograph that “malignant tumors might result 

of a certain abnormal condition of the chromosomes, which 

may arise from multipolar mitosis”. After this theory, many 

discoveries and interests have risen in this research area.82

Centrosome defects in cancer can be classified into two 

main categories based on structural or functional alterations. 

Among the structural aberrations that can be found in centro-

somes are changes in shape or structure (amorphous, string-

like structures, ring-like, atypical filaments, and corkscrew); 

size (usually seen as large patchy aggregates, but may range 

from tiny flecks); number (three or more per cell); position 

(diffuse patchy cytoplasmic staining, scattered, or clustered), 

and/or composition (inappropriate proteins levels, inappropri-

ate phosphorylation, and absence of centrioles). Regarding 

functionality, centrosome defects can have consequences 

leading to abnormal microtubule nucleation and disorga-

nized mitotic spindles, leading to abnormal segregation of 

chromosomes and aneuploidy.18,47

Several studies in this area have established abnormal 

centrosomes as potential players in cancer disease. A cru-

cial study by Pihan et al analyzed various primary tumors 

derived from breast, lung, prostate, colon, and brain, as well 

as metastatic tumors from breast, lung, and colon to examine 

centrosomal abnormalities. High magnification of malignant 

tumors showed centrosome structural abnormalities in size 

(3- to 10-fold increase in centrosomal diameter), shape, 

number (several pericentrin foci indicating the presence of 

supernumerary centrosomes), and diffuse patchy cytoplasmic 

pericentrin staining in tumor tissues when compared to non-

tumoral cells from the adjacent normal tissue.47 Centrosomal 

abnormalities are not only exclusive to solid tumors, but 

also are present in leukemia and  lymphomas. Evidence of 

that was obtained by the group of Fonseca, demonstrating 

that abnormal patterns of string-like structures and ring-like 

patterns are predominant in multiple myeloma and that CA 

was observed in all stages of gammopathies.82 Also, they 

noticed an increase in the percentage of plasma cells with 

CA that progressed from monoclonal gammopathy of unde-

termined significance to multiple myeloma. Another study 

analyzing cells derived from tissues of 33 patients diagnosed 

with hepatocellular carcinoma showed various centrosome 

abnormal patterns, including abnormal shape and size and 

also supernumerary centrosomes.83 Despite the fact that the 

frequency of centrosomal abnormalities found was lower 

when compared with other studies previously done, 30 of 

the 33 tissues showed abnormal centrosomes from which the 

non-diploid tumors were in their majority associated with 

defects in p53. A recent study by Garcez et al84 showed that 

neurons silenced for centromere protein J (Cenpj), a protein 

expressed in mitotic cells in developing brains, showed 

decreased centrosome size in Cenpj-silenced cortical pro-

genitor cells. Garcez et al also counted centrioles in centrin-

green fluorescent protein (GFP) in co-electroporated cells 

finding an increase in single centrioles in Cenpj-silenced cells 

as well as asymmetric spindles with reduced fluorescence for 

a-tubulin that was associated with a smaller centrosome at 

one pole.84 All of these studies have provided vast evidence 

correlating centrosome abnormalities to cancer. In Table 1 

we summarize additional studies of different types of tumors 

associated with centrosome disturbances with the protein(s) 

involved, the corresponding histologic characteristic, or other 

related information.

Potential as an anticancer target
Centrosomes play an important role in the control of cell 

cycle, a process deregulated in many cancers.93 The many 

associated proteins found in the centrosome orchestrate 

the control of microtubule nucleation and organization 

for the proper progression of cell cycle. Abnormal func-

tion of these proteins leads to numerical centrosome 

 abnormalities, referred to as CA.

The hypothesis of CA as a cause in the development of 

cancer has long been suggested.94 A vast majority of evidence 

supports the presence of aberrant centrosomes in several 

types of tumors, and its implication as the major mechanism 

driving the generation of multipolar mitoses, chromosome 

instability (CIN), and aneuploidy.18,95 This fact makes the 

centrosome a promising therapy to target cancer.

Several oncogenes and tumor suppressors are known 

to localize within centrosomes, and their malfunction trig-

gers centrosome abnormalities.19 Two of the most studied 

 centrosomal kinases with oncogenic properties are AURKA 

and AURKB. AURKA dysfunction is related to CA and CIN 

and it is highly overexpressed in colon, pancreatic, head 

and neck, bladder, ovary, and breast cancers.96–102 Moreover, 
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AURKB is overexpressed in non-small cell lung cancer 

(NSCLC), glioblastoma, prostate, and breast cancers.102,103

Plk1 is part of the serine/threonine kinases related to the 

cell cycle regulation and is activated by AURKA. Besides 

the role of Plk1 in cell cycle, this protein is also involved 

in anti-apoptotic and invasiveness regulation.55 This protein 

represents an important potential target in cancer due to the 

promising results obtained using inhibitors that have been 

used in clinical trials.104

Cdks are central regulators of the centrosome cycle 

and represent potential target proteins, broadly studied in 

cancer.19,105 There have been ~30 small-molecule inhibitors 

developed against Cdks,106 and one third of them have been 

used in clinical trials studies.107 The G1 phase Cdks, Cdk2 

and Cdk4, regulate the centrosome cycle by phosphorylat-

ing centrosome kinases such as NPM and TTK,26,35,108,109 

and by phosphorylation of Rb leading to the transcriptional 

activation of the E2F transcription factors. In turn, the E2Fs 

regulate the centrosome cycle.31,110 Our laboratory has shown 

that the Cdks mediate CA in breast cancer cells and mammary 

epithelial cells by regulating the E2F transcription factors, 

which regulate the expression of several centrosome regula-

tors, including Plk4 and Nek2.77–79 Thus, controlling CA by 

the use of small-molecule inhibitors against the G1 Cdks is 

a potential avenue for suppressing CA in cancer, as long as 

the Rb pathway is functional.111

Tubulin seems to be another important target, as this pro-

tein functions during cellular growth, division, and  migration. 

This target has been demonstrated to be successful due to 

the effects of taxanes (paclitaxel and docetaxel) and vinca 

alkaloids (vinblastine, vincristine, and vinorelbine).112 Pacli-

taxel, vinblastine, and vincristine are well-known compounds 

clinically used for targeting tubulin as their mechanisms of 

action.113,114 There are two mechanisms of action for targeting 

microtubules: 1) microtubule-stabilizing agents, which bind 

to the tubulin-binding site of paclitaxel, and 2) microtubule 

destabilizing-agents, which bind to the tubulin vinblastine 

or colchicine site.115 In addition, a new series of acridinones 

have been recently developed against microtubule-assembly 

inhibitors showing reduced cell migration, inhibition of tubu-

lin polymerization, and arrest in the G2-M phase.112

Thus, there are many promising inhibitors against asso-

ciated centrosome proteins and many of these drugs/com-

pounds are being tested in preclinical and clinical models. 

The last topic of this review will summarize some compounds 

developed that have been obtaining successful results in 

targeting centrosomal regulatory proteins.

Drug development activity
Cancer disease is characterized by the loss of normal cell 

cycle control. As the centrosome plays a major role in the 

regulation of cell cycle control, it has become an attractive tar-

get for cancer treatment. Interestingly, a variety of compounds 

have been used against proteins involved in the regulation 

of different cell cycle points including drugs targeting the 

microtubule dynamics, Plks, Cdks, and AURK inhibitors.

Targets against microtubule dynamics including taxanes 

(paclitaxel and docetaxel) and vinca alkaloids (vinblastine, 

vincristine, and vinorelbine) have been found to be successful 

in the treatment of different cancers, including breast, ovarian, 

and lung. However, they have shown adverse effects on organ-

elles and protein trafficking in non-dividing cells, indicating 

that these compounds do not distinguish between malignant 

and non-malignant cells.116 A recent study discovered four 

acridinones compounds that seem to be promising therapies 

against cancer due to their potent anticancer effects with 

Table 1 Correlation of centrosome aberrations in different types of tumors

Cancer type N Co-expression  
of cancer marker

Histology/other information References

Breast 362 Pericentrin, Ki67 Higher CA in higher stage and grade tumors; higher CA and ploidy 
or acentriolar in triple negative and HER2 tumors

Denu et al85

Prostate 99 ⇑ Nek2 Correlated with a Gleason score >8, metastasis, PSA failure, and OS Zeng et al86

Gastric 186 ⇑ TACC3 Extracapsular extension and tumor relapse, shortened OS and DFS Yun et al87

Bladder 
(NMIBC)

78 Pericentrin CA was correlated with disease progression Miyachika et al88

Breast 31 ⇑ Plk4 ⇓ KLF14 Not provided Fan et al89

Colon 15
Esophageal 78 ⇑ Aurora A Better prognosis regarding clinical response to chemoradiation Tamotsu et al90

Pancreas 133 PP4C Correlated with distal metastasis and poor survival in patients in 
stage II

Weng et al91

Ovarian 43 high grade  
SC 37 STIC

CCNE1 Higher CA in SC compared with STIC Kuhn et al92

Abbreviations: DFS, disease free survival; N, sample size; NMIBC, non-muscle invasive bladder cancer; OS, overall survival; PSA, prostate-specific antigen; SC, serous 
carcinoma; STIC, serous tubal intraepithelial carcinoma; CA, centrosome amplification.
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selective toxicity against MDA-MB-231 and DU-145, causing 

G2-M arrest, inhibition of cell migration, and apoptosis.112

Targeting the Plks showed interesting results in preclinical 

cancer studies, but with minimal efficacy in clinical trials. 

The compound BI 2536 (a potent small-molecule inhibitor of 

mammalian Plk1) has been tested in phase I/II for the treat-

ment of various cancers with partial or complete response, 

but with neutropenia and leukopenia present in 30%–40% 

of patients. This treatment showed response in 9% of acute 

myeloid leukemia (AML) patients and partial response in 

4% of NSCLC patients. Other drugs such as GSK461364A 

and TAK-960 have been retired from clinical trials due to 

the toxicity or lack of effectivity. However, BI 6727 resulted 

in being efficacious in the treatment of AML as 12% of 

patients obtained total remission. Moreover, administration 

of a combination of BI 6727 with cytaribine increased the 

response with 31% total remission, compared to cytarabine 

alone with 13%.117

Inhibitors against Cdks have been used as cancer targets as 

they mediate the arrest in G1-S and G2-M phases. Flavopiridol, 

the first Cdk inhibitor used in clinical trials, inhibits in vitro cell 

growth by targeting Cdk2, Cdk4, and Cdk6 in G1-S or G2-M 

phases of the cell cycle.118,119 In addition, flavopiridol induces 

apoptosis pathways through caspases.120 Specifically, flavopiri-

dol has been effective in the treatment of AML and chronic 

lymphocytic leukemia (CLL).55 Dinaciclib, a novel inhibitor of 

Cdks 1, 2, 5, and 9, is superior to flavopiridol in AML and CLL 

because patients have much less myelosuppression; however, 

it has not been successful for the treatment of solid tumors.55 

Among the newest anti-Cdks agents to be used in clinical tri-

als are PD0332991 (palbociclib), LEE011 (ribociclib), and 

LY2835219 (abemaciclib), which are Cdk4/6 inhibitors.121–123 

The US Food and Drug Administration has recently approved 

the use of palbociclib combination with letrozole for the treat-

ment of breast tumors expressing estrogen receptor and human 

epidermal receptor 2 in their advanced stages.

Another important protein target against centrosome 

for cancer therapy is the AURKs. More than 30 AURK 

inhibitors have been developed and used in clinical stud-

ies.124 For example, the inhibitor MLN8237 (alisertib), which 

targets AURKA, showed promising efficacy in several solid 

tumors, however, the same efficacy was not observed in 

AML patients.125 Also, Alisertib showed effective results in 

13% of non-Hodgkin’s lymphoma and CLL patients, and 

a 50% effectivity rate in patients with T-cell lymphoma.126 

AZD1152 (barasertib) is a selective inhibitor of AURKB and 

has been effective in AML patients with an overall response 

rate of 25%, but with no effective results in patients with 

solid tumors. In addition, AURKB/AURKC kinase inhibitor 

GSK1070916A is actually being tested in patients with solid 

tumors and phase I has been completed.

Recently, other inhibitors have been approved for 

phase I clinical trials,55 including those against Plk4 (CFI-

400945)127–129 and TTK (BAY1161909).130 A preclinical trial 

of BAY1161909 reports abrogation of the SAC, moderate 

suppression of tumorigenesis, and more significant inhibition 

of tumor growth when combined with paclitaxel.130 Phase I 

clinical trial (clinical trials.gov) using BAY1161909 along 

with paclitaxel is currently under recruitment phase. On the 

other hand, treatment of cells with CFI-400945 resulted in 

defective centriole duplication, cell death, and tumor sup-

pression in xenograft mouse models.128

There are many ongoing studies to test the efficacy of 

targeting different centrosomal proteins in order to achieve 

cancer control. The continuing development of these com-

pounds shows the magnitude of the centrosome as an organ-

elle that can be targeted to control different types of cancer.

Conclusion
The discovery of the centrosome more than a century ago 

represented a major achievement in cancer research. The 

centrosome has become a main character in the regulation of 

the cell cycle, and as a result, an important target for cancer 

therapy, because loss of control of the cell cycle represents 

a hallmark in cancer disease, and the centrosome cycle is in 

part regulated by the cell cycle machinery. Abnormal cen-

trosomes including CA lead to CIN, and aneuploidy, which 

are commonly found in malignant tumors. Many drugs/

compounds targeting centrosomal proteins including Cdks, 

Aurora kinase family, and tubulin among others have been 

developed and used for the treatment of different cancers, 

while others are currently being tested in clinical trials or 

remain to be elucidated. Thus, this tiny organelle has arisen 

as a good candidate for cancer treatment.
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