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Persistent immune activation and inflammation in people living with HIV (PLWH) are
associated with immunosenescence, premature aging and increased risk of non-AIDS
comorbidities, with the underlying mechanisms not fully understood. In this study, we
show that downregulation of the T-cell immunoglobulin receptor CD96 on CD8+ T cells
from PLWH is associated with decreased expression of the co-stimulatory receptors
CD27 and CD28, higher expression of the senescence marker CD57 and accumulation of
a terminally differentiated T-cell memory phenotype. In addition, we show that CD96-low
CD8+ T-cells display lower proliferative potential compared to their CD96-high
counterparts and that loss of CD96 expression by HIV-specific CD8+ T-cells is
associated with a suboptimal response to HIV antigens. In conclusion, our results
suggest that CD96 marks CD8+ T-cells with competent responses to HIV and the loss
of its expression might be used as a biomarker for CD8+ T-cell senescence and
dysfunction in PLWH.

Keywords: HIV, CD96, people living with HIV (PLWH), T-cell senescence, T-cell dysfunction, IL-32
INTRODUCTION

Since the introduction of anti-retroviral therapy (ART) in 1996, mortality and morbidity associated
with HIV infection have declined in people living with HIV (PLWH) (1, 2). However, as HIV
persists in latent reservoirs, PLWH have to adhere to lifelong therapy to avoid viral rebound (3, 4).
Furthermore, HIV persistence under ART is associated with immune activation and low-grade
inflammation that drive dysregulated immune functions. The hallmark of these dysregulated
functions is a state of immune exhaustion and immunosenescence (premature aging of the
immune system) that are associated with the development of multiple comorbidities. At the T-
cell level, two phenotypes are described: (i) T-cell exhaustion was characterized by the upregulation
of multiple negative immune regulators, such as PD-1 and CTLA-4, which leads to a reversible loss
org May 2021 | Volume 12 | Article 6730611
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of the proliferative capacity and cytokine production in response
to the cognate HIV antigens; and (ii) T-cell senescence was
characterized by the upregulation of surface markers, such as
CD45RA, KLRG1, and CD57, with no expression of the co-
stimulatory receptors CD27 and CD28 (5–7) and a loss of the
proliferative capacity associated with shortened telomeres [a
consequence of intense proliferative pressure in response to
chronic antigenic exposure and unresolved DNA damage (8,
9)]. Although senescent cells have altered replicative capacities,
they remain biologically active and may acquire a senescence
associated secretory phenotypes (SASP) characterized by the
production of pro-inflammatory cytokines, such as IL-6, IL-8,
and IL-1b, which contribute to persistent inflammation,
disruption of tissue functions and development of aging (10,
11). Yet, senescence and exhaustion phenotypes overlap in
multiple characteristics that drive the T-cell dysfunction (12).

Therefore, identification of cellular proteins/receptors
involved in pathways governing the development of both
phenotypes in PLWH is of particular importance for T-cell
potentiation (reversing T-cell exhaustion) while protecting
against chronic inflammation (generation of senescent cells
that may perpetuate chronic inflammation).

In this study, we investigated the role of the human CD96
molecule (also known as TACTILE: T cell-activated increased
late expression) in T-cell functions and senescence. CD96 is an
immunoglobulin-like receptor expressed on both NK and T-cells
(13, 14). Although it was initially discovered on T-cells, much of
the available knowledge on CD96 biology is related to NK cell
functions (14, 15). Here, we show evidence that expression of
CD96 characterizes CD8 T-cells with competent proliferation
potential and function against HIV cognate antigens and the loss
of which is associated with a T-cell phenotype related to
dysfunction and senescence in PLWH.
MATERIALS AND METHODS

Study Population
Peripheral blood mononuclear cells (PBMCs) used in the current
study were isolated from individuals participating in three
different cohorts: i) treatment naïve Elite Controllers (ECs,
n=9) participating in the Canadian Cohort of HIV+ Slow
Progressors (CCHSP), Log10 average viral load 1.67 ± 0.08
copies/ml and median CD4 count 842 ± 246 cells/mm3);
ii) treatment-naïve viremic typical progressors (TP, n=9)
participating in the Montreal Primary Infection (PI) cohort,
Log10 average viral load 4.76 ± 0.51 HIV copies/ml and
average CD4 count 389 ± 97 cells/mm3); and iii) ART-treated
individuals (n=10) participating in the Canadian HIV and Aging
Cohort Study (CHACS), average Log10 viral load 1.84 ± 0.75 HIV
copies/ml and CD4 count 450 ± 292 cells/mm3) in addition to
n=28 HIV seronegative controls.

Ethics Statement
This study was approved by the Institutional Review Boards
(IRB) of the Centre de Recherche du Centre Hospitalier de
Frontiers in Immunology | www.frontiersin.org 2
l’Université de Montréal Research (CRCHUM) and at all
participating sites’ IRBs. Experiments were performed in
accordance with the guidelines and regulations approved by
the ethic committees from CRCHUM and all IRBs (Ethical
approval #SL 04–061). Study participants provided written
informed consent for use of plasma and cells in the current
research investigation.

Cells and Reagents
Peripheral blood mononuclear cells (PBMC) were isolated from
blood or from leukapheresis samples by density gradient
centrifugation. Cells were frozen in 90% Fetal Bovine Serum
(FBS, VWR International, Radnor, PA) 10% dimethylsulfoxide
(Sigma-Aldrich, St Louis, MO), and stored in liquid nitrogen
until use.

Flow Cytometry
Flow cytometry analysis was used to study the phenotype of
CD96 on T-cells from HIV-positive and HIV-negative
individuals using a BD LSRII FACS Analyser (BD Biosciences,
San Jose, CA). Stainings was performed on 1 million of PBMCs
with the following fluorochrome-conjugated antibodies: mouse
anti-human CD3-Pacific Blue (Clone UCHT1), mouse anti-
human CD4-Alexa Fluor 700 (Clone SK3), mouse anti-human
CD8- APC-H7 (Clone SK1), mouse anti-human CD45RA-APC
(Clone HI100), mouse anti-human CD27-PE-CF594 (Clone M-
T271), mouse anti-human CD28-V450 (Clone CD28.2), mouse
anti-human CD96-PE (Clone 6F9), and mouse anti-human
CD57-FITC (Clone NK-1) (all from BD Biosciences, San
Jose, CA).

Cell Stimulations and Proliferation Assay
PBMCs were resuspended at 2 million cells/ml in RPMI 1640
medium (Gibco by Life Technologies, Waltham, MA)
complemented with 10% FBS and stimulated with 500 ng/ml
of IL-32a, IL-32b, or IL-32g (R&D Systems, Minneapolis MN) in
final volume of 1 ml. Cells were incubated for 5 days at 37°C and
5% CO2. For cell proliferation, PBMC were labeled with 2.5 mM
of 5-(and-6)-carboxyfluorescein diacetate N-succinimidyl ester
(CFSE) according to manufacturer’s instructions (Sigma-
Aldrich, St Louis, MO) and stimulated with 1 µg/ml of
phytohemagglutinin-L (PHA-L) (Sigma) and 10 ng/ml IL-2
(R&D systems) for 4 days.

Intracellular Cytokine Staining
PBMCs were thawed and rested for 2 h in RPMI 1640 medium
supplemented with 10% FBS, Penicillin-Streptomycin (Thermo
Fisher scientific, Waltham, MA) and HEPES (Thermo Fisher
scientific, Waltham, MA) and stimulated with 0.5 mg/ml of HIV-1
Consensus B Gag peptide pool, HIV-1 Consensus B Pol peptide
pool, HIV-1 Consensus B Env peptide pool or HIV-1 Consensus
B Nef peptide pool (all from JPT Berlin, Germany) corresponding
to 150 15meric peptide/pool derived from Gag, Pol, Env and Nef
polyproteins, respectively. Stimulations were carried out for 6 h in
the presence of mouse anti-human CD107A-BV786, Brefeldin A,
and monensin (BD Biosciences, San Jose, CA) at 37°C and 5%
CO2. DMSO-treated cells served as a negative control. Cells were
May 2021 | Volume 12 | Article 673061
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stained for aquavivid viability marker (Thermo Fisher scientific,
Waltham, MA) for 20 min at 4°C and surface markers (30min,
4°C), followed by intracellular detection of cytokines using the IC
Fixation/Permeabilization kit (Thermo Fisher scientific,
Waltham, MA) according to the manufacturer’s protocol before
acquisition at a Symphony flow cytometer (BD Biosciences, San
Jose, CA). The antibodies used for the surface staining were:
mouse anti-human CD3-BUV395 (Clone UCHT1), mouse anti-
human CD45RA-BUV563 (Clone HI100), mouse anti-human
CD28-BUV737 (Clone CD28.2), mouse anti-human CD107a-
BV786 (Clone H4A3), mouse anti-human CD4-BB630 (Clone
SK3), CD57-FITC, CD96-PE, CD27-PE CF594, CD8-APC-H7,
all from BD Biosciences, San Jose, CA. Antibodies used for the
intracellular staining were the following: mouse anti-human
CD69-BV650 (Clone FN50), mouse anti-human CD40L-BV711
(Clone 24–31) from Biolegend, San Diego, CA, mouse anti-
human IFNg-PECy7 (Clone B27), mouse anti-human Granzym
B-Alexa Fluor 700 (Clone GB11), mouse anti-human TNF-a-
APC (Clone Mab11) all from BD Biosciences (San Jose, CA).

Statistical Analysis
Data were analyzed using GraphPad Prism 8 (GraphPad
Software, Inc., San Diego, CA). Comparison of two groups for
the same variable were analyzed using non-parametric Mann
Whitney tests (unpaired) or Wilcoxon signed-rank tests (paired
comparisons). Kruskal–Wallis with Dunn’s post-tests were used
to analyze more than two groups for the same variable. Between-
group differences were considered statistically significant when
two-tailed p-values were <0.05.
RESULTS

Down-Regulation of CD96 on T Cells Is
Associated With Disease Progression
We have previously shown that persistent immune activation
and chronic inflammation are associated with increased viral
load and decreased CD4+ T-cell counts in HIV-infected slow
progressors who experience loss of immunological and
virological control (16). Our transcriptomic analysis on
PBMCs collected from these slow progressor individuals failing
control demonstrated that the human immunoglobulin-like
receptor CD96 was significantly down-regulated at the
transcriptional level (Figure 1A, full data set available at the
Gene Expression Omnibus (GEO) database under the accession
number GSE74790 (16)). Given the concomitant downregulation
of CD96 transcription with increased viral load, we aimed to
validate this phenotype at the protein level in HIV-infected
typical progressors; individuals with significantly high viral
loads in the absence of ART (Log10 average viral load 4.76 ±
0.51 HIV copies/ml) that do not meet the criteria of Slow
Progressors as we previously described (16). To this end, we
measured CD96 expression on CD8+ and CD4+ T-cells from
ART-naive typical progressors (TP: n=9) and compared it to that
in HIV-infected Elite Controllers (EC: n=9) and uninfected
controls (HIVneg, n=10) (study participants in Table 1) by flow
Frontiers in Immunology | www.frontiersin.org 3
cytometry. In line with earlier reports (17), we observed that
CD96 expression measured by mean fluorescence intensity
(MFI) was significantly downregulated on total CD8+ T-cells
from both EC and TP compared to HIVneg individuals (p=0.0189
and p < 0.0001, respectively), although it was more pronounced
in TP compared to EC. Meanwhile, differences in CD96
expression on CD4+ T cells in both HIV+ groups compared to
non-infected controls did not reach statistical significance
(Figure 1B).

CD96 expression on CD8+ T cells was previosuly shown to be
downregulated at least in part by LPS stimulation of human
PBMCs (17). Activated CD8 T-cells are known to respond to LPS
via the surface expression of TLR4 and CD14 (18). However, the
mechanism and/or the inflammatory mediator by which LPS
induces CD96 downregulation is not yet clear. Here, we
investigated the potential impact of IL-32, a proinflammatory
cytokine that we have previously shown to be upregulated in
HIV-infected slow progressors upon loss of immunoloogical and
virological control and that coincides with CD96 downregulation
(16). Of note, LPS is known to be a strong inducer of IL-32 (19,
20). Our data demonstrated that the dominantly expressed IL-
32b and IL-32g isoforms (21) significantly downregulated CD96
on CD8+ T-cells upon PBMC stimulation (Figure 1C p=0.031
for both). Together, these results indicated that CD96 expression
on CD8+ T cells is subject to downregulation by IL-32, which
further links this mechanism to disease progression in
HIV infection.

Loss of CD96 Expression Is Associated
With a Differentiated CD8+ T Cell Memory
and Senescence-Like Phenotypes
Similar to earlier reports (17), we observed significant loss of
CD96 expression on the different CD8 T-cell subsets; Naïve
(TN; CD8+CD45RA+CD27+), Central Memory (TCM;
CD8+CD45RAn e gCD27+ ) , E ff e c to r Memory (TEM ;
CD8+CD45RAnegCD27neg) and terminally differentiated
e ff e c to r memory re - expre s s ing CD45RA (TEMRA ;
CD8+CD45RA+CD27neg) from HIV-infected TP (Figure 2,
p=0.0027, p=0.0002, p=0.0044, and p=0.0008, respectively).
However, in the EC group, loss of CD96 expression was only
significant for TN and TEMRA (p=0.0186 and 0.0163, respectively,
Figure 2). To further investigate the contribution of these subsets
to the pool of CD8 T-cells losing CD96 expression, we
determined the frequency of TN, TCM, TEM, and TEMRA in
CD96+ and CD96− cellscells (gated on total CD8 T-cells as
shown in Figure 3A) from multiple groups of HIV+

individuals including EC, TP as well as ART-treated (Table 1).
Interestingly, the CD8+CD96− population was enriched with the
more differentiated cells; TEM (CD8+CD45RAnegCD27neg) and
terminal ly di fferent iated effector memory (TEMRA;
CD8+CD45RA+CD27neg), in the three groups of HIV+

individuals (Figure 3B, right panels, p<0.0001 for both). In
contrast, the CD8+CD96+ population was enriched with the
less differentiated TN and TCM cells from all the HIV+

individuals (Figure 3B, left panels, p=0.0007 and p<0.0001,
respectively). Similar phenotypes were also observed in the
May 2021 | Volume 12 | Article 673061
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HIVneg controls with the exception of the TN that were not
different between CD96+ and CD96− subsets (Figure 3C).

Given the fact that differentiated cells are enriched in CD96−

CD8+ T-cells and that the down-regulation of CD96 is associated
with disease progression as shown in Figure 1, we hypothesized
that the loss of CD96 expression might be associated with T-cell
senescence. To validate this hypothesis, we assessed the expression
Frontiers in Immunology | www.frontiersin.org 4
of CD96 on CD8 T-cells with the CD28−CD57+ phenotype (a
hallmark of cell senescence) within each of the four subsets; TN,
TCM, TEM and TEMRA. As shown in Figures 4A, B, cells with
CD28−CD57+ phenotype expressed significantly lower CD96
levels, determined by the mean fluorescence intensity (MFI),
when compared with CD28+CD57− cells (p<0.0001 for all
subsets). This was further confirmed by measuring CD96 on
A

B

C

FIGURE 1 | Down-Regulation of CD96 on total CD8 T-cells in HIV infection. (A) Heat map showing transcriptional analysis by microarrays of total PBMC from HIV+

slow progressor participants losing virological and immunological control (increased viral load and decreased CD4 counts, n=5) between Visit 1 (before loss of
control) and Visit 2 (after loss of control). Selection of modulated genes with a cutoff of 1.3 fold and a p value <0.05. CD96 is highlighted by red square. (B) Mean
fluorescence intensity (MFI) of CD96 expression assessed by flow cytometry on CD4 (left) and CD8 T-cells (right) from HIVneg (n=10) as compared to Elite Controllers
(EC) and Typical Progressors (TP) (n=9 per group). Data analyzed with the non-parametric test Kruskal-Wallis and Dunn’s subtest. (C) Impact of the proinflammatory
cytokine IL-32 (isoforms a, b and g) on CD96 expression on CD8 T-cells (from n=5 non-infected donors) following 5 days of stimulation. Data are shown as fold
increase/decrease relative to mock-stimulated cells and analyzed with the matched pair Wilcoxon test. NS, Non-significant.
May 2021 | Volume 12 | Article 673061
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total CD8 T-cells after gating on the co-stimulatory molecules
CD28 and CD27 [the loss of both is associated with cell senescence
(22–24)]. As shown in Figure 4C, cells with the double negative DN
phenotype (CD27−CD28−) expressed significantly lower levels of
CD96 compared to their double positive DP counterparts
(p<0.0001). We further adjusted these data for age as a
confounder. ANCOVA test was run to determine the effect of
different readouts (flow cytometry values) after controlling for age.
Prior to linear modeling, MFI values were log2-transformed and
tested for normality before testing and the effect size was reported as
GES (generalized eta squared). As shown in Table 2, differences in
CD96 expression between the different subsets remained significant
suggesting these differences are age-independent. Taken together,
these results demonstrate that downregulation of CD96 on CD8+ T-
cells is associated with a senescence-like phenotype.

Loss of CD96 Expression on CD8+ T Cells
Is Characteristic of Low Proliferative
Capacity and Poor Response to
HIV Stimulation
T-cell senescence is associated with a low proliferative potential
(25). To validate this hypothesis as related to CD96
downregulation, we assessed the proliferative capacity of
CD96− and CD96+ CD8+ T-cells, from HIVneg individuals, in
response to the mitogenic stimulation with PHA. Interestingly,
we observed that proliferating cells (CFSElo cells) in both
CD45RA+ and CD45RAneg CD8+ T cel ls expressed
significantly higher levels of CD96 compared to non-
proliferating cells (CFSEhi cells) (Figure 5, p = 0.0079 and p =
0.0079, respectively).

To further investigate this phenotype on HIV-specific T cells,
we developed an intracellular staining (ICS) to identify the
specific cytokine responses of the CD8+ T cells from ART-
treated individuals (n = 6, Log10 average viral load 1.6 HIV
copies/ml plasma and average CD4 count 590 ± 343 cells/mm3)
to HIV-1 peptides (HIV-1 consensus B pools of Env, Gag, Nef or
Pol, peptides). Following a 6-h stimulation, we characterized two
cell populations: (I) activated cells that expressed one or more of
the following proteins, TNF-⍺, CD40L, CD107a, and IFNg and
co-expressed the activation marker CD69 (called responding
cells [R]); and (II) non-activated cells, negative for the above
markers and CD69 expression [called non-responding cells
[NR)] (Figure 6A). Interestingly, we observed that TN, TCM,
Frontiers in Immunology | www.frontiersin.org 5
and TEMRA CD8+ T-cells from responding cells had a
significantly higher expression of CD96 compared to their
counterparts of non-responding cells (Figure 6B, p<0.0001,
p<0.0001 and p = 0.0058, respectively). However, differences in
CD96 expression within the TEM subsets from responding
compared to non-responding cells did not reach statistical
significance. Furthermore, we observed a negative correlation
between the expression of CD96 and the senescence marker
CD57 on the pool of responses from the different memory
subsets to the 4-peptide pools (Figure 6C, r = −0,41, p =
0.0008). In line with these observations, CD96 expression was
significantly higher on CD27+CD28+ double positive (DP) CD8+

T-cells when compared to the senescent-like cells with the
CD27−CD28− double negative (DN) subsets from either R or
NR CD8+ T-cells (Figure 6D, p=0.0005 and p<0.0001,
respectively). Taken together, these observations demonstrated
that CD96 expression is associated with functionally competent
responses to HIV and its loss contributes to altering the
effectiveness of T-cell responses and potentially contributes to
cell senescence.
DISCUSSION

In this study, we showed that CD96 was downregulated on
CD8+ T-cells from HIV-infected slow progressors who
experienced loss of virological and immunological control.
We confirmed these observations in HIV+ TP, in whom
CD96 downregulation was more pronounced than in EC.
These data suggested that CD96 downregulation is linked to
HIV disease progression and, in accordance with previous
studies supporting a protective role for this protein (17).
CD96 is a member of the immunoglobulin superfamily
(IgSF), which is expressed on both NK and T-cells and
contains an immunoreceptor tyrosine-based inhibitory motif
(ITIM) (26). The presence of this ITIM suggests that CD96 may
function as an inhibitory receptor. Indeed, CD96 binds to the
poliovirus receptor (PVR)/CD155 to facilitate cell adhesion and
also to play a positive co-stimulatory role by promoting NK
redirected killing through increased adhesion to target cells
(27). However, recent data, both in vitro and in vivo mouse
models, showed that CD96 negatively regulates cytokine
production by NK cells (15). In these studies, CD96−/− mice
TABLE 1 | Demographic and clinical parameters for the study participants.

Study participants HIV+ EC HIV+ TP (ART-naïve) HIV+ (On ART) HIVneg

Number/group 9 9 10 28
(Men/Women) (7/2) (9/0) (10/0) (19/9)
Age (Years) 43 ± 5 40 ± 10 59 ± 6 52 ± 8*
Log10 Viral load 1.67 ± 0.08 4.76 ± 0.51 1.84 ± 0.75 N/A
Time since ART initiation (Years) N/A N/A 16 ± 6 N/A
CD4 count (Cells/mm3) 842 ± 246 389 ± 97 450 ± 292 NA
CD8 count (cell/mm3) 710 ± 281 911 ± 210 637 ± 400 NA
CD4/CD8 ratio 1 ± 0.32 0.40 ± 0.06 0.88 ± 0.62 NA
May 2021 | Volume 12 | Article
Numbers are shown in mean ± SD.
*Unknown age for n = 8 individuals.
N/A, non-applicable; NA, non-available.
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developed NK-mediated hyperinflammatory response to toxic
bacterial toxins, such as lipopolysaccharide (LPS), which led to
decreased animal survival and increased death mediated by
septic shock (15). These observations support the inflammatory
potential of cells lacking CD96 expression. In contrast to NK
Frontiers in Immunology | www.frontiersin.org 6
cells, less is known about the exact functions of CD96 on T-
cells. In line with our observations, Eriksson et al. (17), reported
that CD96 expression is lower on T-cells from HIV+ viremic
individuals and EC compared to uninfected individuals. Their
studies showed that CD96− CD8+ T-cells expressed higher
A

B

FIGURE 2 | Decreased CD96 expression on CD8 T-cell subsets. (A) Representative ex vivo Flow cytometry dot plots showing the gating strategy for CD96+ and
CD96− expression on each of the four CD8 T-cell subsets; Naïve (TN; CD8

+CD45RA+CD27+), Central Memory (TCM; CD8
+CD45RAnegCD27+), Effector Memory (TEM;

CD8+CD45RAnegCD27neg) and terminally differentiated effector memory re-expressing CD45RA (TEMRA; CD8
+CD45RA+CD27neg) based on the Fluorescence Minus

One (FMO) staining. (B) Analysis of CD96 on the different CD8 T-cell subsets from HIVneg (n=10), TP (n=9) and EC (n=9) showing the decreased frequency of CD96+

cells in HIV+ individuals. Data analyzed with the non-parametric Kruskal-Wallis and Dunn’s subtest.
May 2021 | Volume 12 | Article 673061

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bunet et al. Downregulation of CD96 in HIV Infection
levels of perforin although both CD96+ and CD96neg cells
produce similar levels of IFN-g. These observations suggested
that CD96 may play a selective or a regulatory role on the
functions of some, but not all, T-cell subsets where the functions
of subsets producing perforin are more regulated by CD96
expression. In line with these observations, the regulatory role
of CD96 on specific T-cell functions was also supported by data
from murine models where Th9 (cells producing IL-9) but not
Th1 (cells producing IFN-g) lacking CD96 expression showed
Frontiers in Immunology | www.frontiersin.org 7
highly inflammatory profiles contributing to intestinal and
colonic inflammation (28). Paradoxically, an emerging role
for CD96 as a negative immune checkpoint was recently
proposed, since antibodies targeting CD96 seemed to enhance
the anti-tumor potential of CD8+ T-cells in a number of mouse
tumor models (29). However, it is still unclear whether this
proposed role of negative regulation of T-cells by CD96 is
linked with immune exhaustion, which is a typical characteristic
for the expression of negative immune checkpoint receptors
A

B

C

FIGURE 3 | Loss of CD96 expression is associated with more differentiated phenotypes. (A) Representative ex vivo staining showing the gating strategy for CD96+/−

cells based on FMO (upper panels) and gating on memory subsets; TN, TCM, TEM and TEMRA from CD96− and CD96+ CD8 T-cells (lower panels). (B) Pair analysis for
the frequency of TN, TCM, TEM, and TEMRA between CD96− and CD96+ cells from the HIV+ individuals EC (n=9) TP (n=9), and ART-treated (n=10). (C) Same analysis
as in (B) on HIVneg (n=28). Data analyzed with Wilcoxon matched pair test. NS, Non-significant.
May 2021 | Volume 12 | Article 673061
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(30). Intriguingly, recent data on CD96 functions challenge the
hypothesis of the negative regulation of T-cells (31). In these
studies, antibody-mediated cross-linking of CD96 on CD8+ T-
cells from both human and mouse clearly demonstrated that
CD96 had positive co-stimulatory functions. The authors
showed that CD96 triggering enhanced cytokine production
and T-cell proliferation through MEK-ERK dependent
pathway (31).
Frontiers in Immunology | www.frontiersin.org 8
To gain insights into the potential role of CD96 on T-cell
functions in HIV infection, we characterized the memory
phenotype of cells with low compared to high expression of
this immunoglobulin-like receptor. Indeed, we observed that
CD96 downregulation was associated with a differentiated
memory phenotype (effector memory and terminally
differentiated effector memory) compared to cells with high
expression of CD96 that were enriched in naïve and central
A

B

C

FIGURE 4 | Low CD96 expression is associated with a senescence-like phenotype. (A) Representative ex vivo Flow cytometry dot plots showing the gating strategy
on CD28 and CD57 from TN, TCM, TEM and TEMRA CD8 T-cells. (B) Analysis of CD96 expression on CD28+CD57− senescent compared to their counterparts of
CD28−CD57+ cells from HIV+ EC (n=5), TP (n=5), ART-treated (n=10) and HIVneg controls (n=23). (C) Analysis of CD96 expression on total CD8 T-cells with
CD27+CD28+ double positive (DP) cells and CD27−CD28− double negative (DN) cells from the same individuals as in (B) Data analyzed with Wilcoxon matched pair test.
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memory T cell subsets. In addition, downregulation of CD96
expression was associated with loss of CD27 and CD28. In this
regard, signaling provided by the co-stimulatory receptors
CD27 and CD28 in the context of T-cell receptor (TCR)
stimulation plays an important role in T-cell survival and IL-
2 production (32, 33). However, these co-stimulatory receptors
are known to be progressively downregulated as cycles of cell
activation increase, consequently leading to progressive loss of
the replicative capacity and accumulation of cells with the
CD28−CD27− phenotype. These later cells are compromised
in their ability to up-regulate the telomerase activity (34). Such
a progressive loss of surface markers is widely believed to
correspond to the impairment or loss of T-cell functions (35).
In addition, loss of CD27 and CD28 expression is typical of a
cellular phenotype characterizing effector memory cells that re-
express CD45RA (TEMRA), as we observed in our current
Frontiers in Immunology | www.frontiersin.org 9
studies. These cells acquire the expression of markers
associated with dysfunction and senescence, such as PD-1,
CD57, and KLRG-1 (36, 37).

Indeed, in our studies, we observed that cells negative for CD27
and CD28 expressed significantly lower levels of CD96, but higher
levels of CD57, which links the loss of CD96 with cell senescence.
This is further supported by inferior proliferative capacity of cells
with lower CD96 expression in response to PHA stimulation. In
addition, CD8+ T-cells expressing lower levels of CD96 responded
poorly to HIV peptides as reflected by the absence of cytokine
production compared to their counterparts with higher CD96
expression. In this regard, the absence of cytokine production by
the CD96− senescent-like cells is intriguing as senescent cells are
known for their production of inflammatory cytokines (38, 39).
These observations may suggest that loss of CD96 expression may
characterize T-cells with an intermediate state preceding the
A

B

FIGURE 5 | Down-regulation of CD96 is associated with poor T-cell proliferation. (A) Representative flow cytometry dot plots showing the gating strategy on
proliferating (CFSElo) and non-proliferating (CFSEhi) cells from CD8+CD45RA+ and CD8+CD45RAneg T-cells. (B) Expression of CD96 on proliferating (CFSElo) and
non-proliferating (CFSEhi) in CD8+CD45RA+ and CD8+CD45RAneg T-cells in response to PHA stimulation (1 mg/ml) and IL-2 (10 ng/ml) and 4 days incubation (n=5).
Data analyzed with the non-parametric Mann-Whitney test.
TABLE 2 | ANCOVA analysis for adjustment of CD96 expression by age on T-cell subsets.

Population Effect on CD96 DFn DFd F P P < 0.05 GES P. Sig

CD8 subsets
Naïve CD28/CD57 1 66 17.531 8.55E-05 * 0.210 ****
TCM CD28/CD57 1 66 57.699 0.00E+00 * 0.466 ****
TEM CD28/CD57 1 66 52.672 0.00E+00 * 0.444 ****
TEMRA CD28/CD57 1 58 35.477 2.00E-07 * 0.380 ****
Total CD8 CD27/CD28 1 66 59.856 7.84E-11 * 0.476 ****
May 2021 | Volu
me 12 | Article 6
Data analysis account for comparisons of populations from the same individual.
Dfn, degrees of freedom in the numerator; Dfd, degrees of freedom in the denominator; F, statistic test for ANCOVA; P. Sig, P Significance.
*p < 0.05, ****p < 0.0001.
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senescence phase. Accumulation of such cells might contribute
to the accelerated and premature aging observed in the HIV-
infected individuals, which are associated with the increased
burden of non-AIDS co-morbidities (40–42). This premature
aging was even shown in children < 5 years old where the
Frontiers in Immunology | www.frontiersin.org 10
infection was associated with shorter telomere length (43),
which is characteristic of cell senescence (44). In this regard, we
acknowledge the limitation of our current study where we
investigated the senescence-like phenotype of cells with low
CD96 expression (cells upregulating CD57 and downregulating
A

B

DC

FIGURE 6 | Higher expression of CD96 on responding CD8+ T-cells from ART-treated individuals, stimulated with HIV antigens. (A) Gating strategy used to identify
CD3+CD8+ T-cells responding to HIV-1 peptide pools (6 h stimulation with Env, Gag, Nef, or Pol peptide pools) evaluated by intracellular cytokine staining in n=6
individuals on continuous ART (upper and middle panels). Responding cells are represented by R, whereas non-responding cells are represented by NR.
Responding cells to each peptide pool (cells expression CD69 together either TNFa, CD40L, CD107, or IFNg) were grouped together by OR Boolean gating followed
by gating on the memory subsets TCM, TEM, TEMRA and TN as well as gating on CD27 and CD28 (lower left panels). Similar gating strategy was also used for non-
responding cells (lower right panels). (B) Mean fluorescence intensity (MFI) of CD96 on TCM, TEM, TEMRA and TN from responding compared to non-responding cells
(responses corresponding to cells from six participants stimulated with four peptide pools). (C) Correlations between CD96 MFI and CD57 MFI on all responding
cells (corresponding to the pool of responses from TCM, TEM, TEMRA and TN from n=6 participants). (D) Comparison of CD96 MFI on CD27+CD28+ double positive
(DP) and CD27−CD28− double negative (DN) subsets from both responding and non-responding cells (corresponding to cells from 6 participants stimulated with 4
peptide pools). P values were calculated by matched-pair Wilcoxon test in (B, D) and Spearman correlation in (C).
May 2021 | Volume 12 | Article 673061
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CD27 and CD28) and their proliferation potential without
characterizing the telomere length of these cells. However, future
studies are planned to address this question.

Since we observed the downregulation of CD96 in PBMCs
from HIV+ slow progressors and a significant upregulation of the
proinflammatory cytokine IL-32 in their plasma (16), it was
important to study the link between these two proteins. Our data
showed that IL-32 decreases CD96, consistent with earlier
studies on the activation-induced downregulation of this
immunoglobulin-like molecule (17). Our present study
suggests that IL-32 is likely contributing to T-cell dysfunction
since cells downregulating CD96 showed a poor response to
challenge with HIV cognate peptides. However, it remains
unclear by which mechanism IL-32 interferes with CD96
expression on CD8+ T-cells and further studies are needed to
answer this question.

Together, our data suggest that CD96 expression is linked to
T-cell differentiation and plays a protective role against loss of T-
cell proliferative potential and cytokine production. The
compromised expression of CD96 on T-cells by IL-32 and
potentially with other inflammatory cytokines in HIV infection
may lead to the accumulation of senescent-like cells with biased
replicative capacities. This phenotype impairs the potential of the
memory T-cells to respond to persistent HIV infection, which
represents a major hurdle to viral control and a significant
contributor to the development of inflammation-associated
comorbidities in PLWH (45).
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