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A universal methodology 
for reliable predicting 
the non‑steroidal 
anti‑inflammatory drug solubility 
in supercritical carbon dioxide
Tahereh Rezaei1*, Vesal Nazarpour2, Nahal Shahini3, Soufia Bahmani3, Amir Shahkar4, 
Mohammadreza Abdihaji5, Sina Ahmadi6 & Farzad Tat Shahdost7

Understanding the drug solubility behavior is likely the first essential requirement for designing 
the supercritical technology for pharmaceutical processing. Therefore, this study utilizes different 
machine learning scenarios to simulate the solubility of twelve non-steroidal anti-inflammatory 
drugs (NSAIDs) in the supercritical carbon dioxide (SCCO2). The considered NSAIDs are Fenoprofen, 
Flurbiprofen, Ibuprofen, Ketoprofen, Loxoprofen, Nabumetone, Naproxen, Nimesulide, 
Phenylbutazone, Piroxicam, Salicylamide, and Tolmetin. Physical characteristics of the drugs 
(molecular weight and melting temperature), operating conditions (pressure and temperature), and 
solvent property (SCCO2 density) are effectively used to estimate the drug solubility. Monitoring and 
comparing the prediction accuracy of twelve intelligent paradigms from three categories (artificial 
neural networks, support vector regression, and hybrid neuro-fuzzy) approves that adaptive neuro-
fuzzy inference is the best tool for the considered task. The hybrid optimization strategy adjusts the 
cluster radius of the subtractive clustering membership function to 0.6111. This model estimates 254 
laboratory-measured solubility data with the AAPRE = 3.13%, MSE = 2.58 × 10–9, and R2 = 0.99919. 
The leverage technique confirms that outliers may poison less than four percent of the experimental 
data. In addition, the proposed hybrid paradigm is more reliable than the equations of state and 
available correlations in the literature. Experimental measurements, model predictions, and relevancy 
analyses justified that the drug solubility in SCCO2 increases by increasing temperature and pressure. 
The results show that Ibuprofen and Naproxen are the most soluble and insoluble drugs in SCCO2, 
respectively.

Separation scenarios, including fluidization1, liquid–liquid extraction2, adsorption3,4, crystallization5, 
membrane6,7, and microfluid absorption8, are continuously engaged in different industrial processes. Moreover, 
the processes operated with the supercritical fluids have a wide range of applications in diverse fields, including 
extraction9, reaction10, food industry11, nanoparticle decoration12, nanosheet fabrication13, tissue engineering14, 
and pharmaceutical processing15. Water16, propane17, and carbon dioxide (CO2)18 are among materials potentially 
used as the supercritical medium. The unique characteristics, such as mild critical temperature (31.1 °C) and 
pressure (73.8 bar)19, provide carbon dioxide with diverse applications as a supercritical solvent20. Furthermore, 
carbon dioxide in the supercritical state is a low-cost and low viscous solvent with high diffusivity and solvating 
ability21.
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Application and interest in using the supercritical CO2 (SCCO2) for pharmaceutical processing have 
been sharply increased recently15,22–28. Understanding the drug solubility in SCCO2 is the central informa-
tion for designing the supercritical-based pharmaceutical technology29. The size26, shape26, surface structure22, 
morphology22, and crystallization process26 of synthesized solid drugs are determined by their solubility in the 
supercritical fluid. In addition, the economic success of the supercritical technology highly depends on reliable 
insight about the solid (drug) solubility in supercritical solvents23.

Therefore, some researchers focused on laboratory measurements of solid drug solubility in supercritical 
CO2

15,22–28. However, experimental determination of pharmaceutical solubility in SCCO2 is complex, expensive, 
and time-consuming23,30. In addition, it is not possible to measure equilibrium solubility in all ranges of desired 
operating conditions26,30.

Hence, several empirical31,32 and thermodynamic-based23,33 correlations have been proposed to calculate the 
solid drug solubility in the CO2 at the supercritical state. Traditionally equations of state are the most utilized 
thermodynamic-based correlations for predicting the phase equilibria of drugs/SCCO2

34–36. Unfortunately, these 
thermodynamic-based methods have at least one temperature-dependent interaction parameter that must be 
adjusted appropriately23. Surprisingly, there is no general thermodynamic-based method for effectively moni-
toring the solubility of several solid drugs in SCCO2

23. Furthermore, it is claimed that equations of state often 
provide high levels of uncertainty34 and sometimes wholly fail35. On the other hand, available empirical correla-
tions have usually been developed for estimating the solubility of a specific solid drug in supercritical CO2, and 
it is impossible to find which correlation is better to use22.

The non-steroidal anti-inflammatory drugs (NSAID) are often prescribed to reduce pain/fever/inflamma-
tion and prevent blood clots26. The current research intends to propose a universal intelligent model to predict 
the solubility of twelve NSAIDs (Fenoprofen, Flurbiprofen, Ibuprofen, Ketoprofen, Loxoprofen, Nabumetone, 
Naproxen, Nimesulide, Phenylbutazone, Piroxicam, Salicylamide, and Tolmetin) in SCCO2. For doing so, 2150 
intelligent paradigms from three different categories (i.e., artificial neural networks, hybrid neuro-fuzzy, and 
support vector regression) have been constructed, and their accuracy monitored. The ANFIS model with the 
subtractive clustering membership function and cluster radius of 0.6111 presents the most reliable prediction 
results. This straightforward model can accurately predict the solubility of 12 NSAIDs in supercritical CO2 in 
wide ranges of operating pressures and temperatures. To the best of our knowledge, it is the most generalized 
approach developed for phase equilibria modeling of NSAIDs/SCCO2 up to now.

Material and methods
The collected drug solubility data, their sources, and ranges of experimental measurements have been reported in 
this section. Furthermore, the current section has concisely introduced the applied machine learning methods.

Experimental data for anti‑inflammatory drug solubility in SCCO2.  Development, as well as vali-
dation stages of all machine learning techniques, require an experimentally measured databank about the given 
problems. Therefore, in the current research, the information of 254 experiments related to the anti-inflam-
matory drug solubility in supercritical CO2 has been gathered from eight trusted literature15,22–28. A complete 
description of these experiments, including their range of operating pressures and temperatures, the observed 
solubility levels, and numbers of available data for all anti-inflammatory drug/SCCO2 systems, have been intro-
duced in Table 1. It is also necessary to highlight that subscript 1 and 2 are associated with the anti-inflammatory 
drug and supercritical carbon dioxide, respectively.

Since the solubility of all anti-inflammatory drugs in supercritical CO2 is planned to be estimated by a single 
model, it is necessary to include the drugs’ inherent characteristics in the modeling stage, too. Table 2 shows the 
molecular weight and melting temperature of the considered anti-inflammatory drugs. It is better to note that 
each anti-inflammatory drug has its unique values for these properties. Therefore, the molecular weight and 
melting temperature can be incorporated in the model’s entry to differentiate among different anti-inflammatory 
drugs.

Table 1.   Available laboratory measurements for solubility of anti-inflammatory drugs in supercritical CO2.

CO2 (1) + drug (2) Temperature range (K) Pressure range (MPa) Solubility range (mole fraction) No. of data

Fenoprofen22 308.00–338.00 12.00–40.00 0.000020–0.004200 32

Flurbiprofen23 303.00–323.00 8.90–24.50 0.000017–0.000197 27

Ibuprofen24 313.15–313.15 12.12–23.1 0.002100–0.007700 9

Ketoprofen25 312.50–331.50 10.00–22.00 0.000013–0.000155 10

Loxoprofen26 308.00–338.00 12.00–40.00 0.000014–0.001280 32

Nabumetone27 308.20–328.20 10.00–22.00 0.000039–0.002680 21

Naproxen24 313.15–313.15 12.11–27.98 0.000010–0.000042 9

Nimesulide25 313.10–333.10 13.00–22.00 0.000019–0.000099 8

Phenylbutazone27 308.20–328.20 10.00–22.00 0.000020–0.002650 21

Piroxicam25,28 308.15–338.15 13.00–40.00 0.000012–0.000512 37

Salicylamide27 308.20–328.20 10.10–22.00 0.000028–0.000210 21

Tolmetin15 308.00–338.00 12.00–40.00 0.000019–0.002590 32
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Although it is possible to extract some features from the experimental database37 and utilize them as model’s 
entry, the current research aims to relate anti-inflammatory drug solubility in SCCO2 ( y2 ) to the molecular 
weight ( Mw2 ), melting temperature ( Tm2 ), operating pressure (P), temperature (T), and SCCO2 density ( ρ1 ). 
The mathematical statement of this expression is shown by Eq. (1).

Three trustful relevancy analysis approaches, namely Spearman, Pearson, and Kendal, have been utilized to 
check whether the selected independent variables are appropriate features for the model development38. These 
techniques show the relevancy level between a pair of dependent-independent variables by a coefficient in the 
range of minus one to plus one39. The negative coefficients indicate indirect dependency, positive ones show a 
direct relationship, and zero coefficient value is associated with no relevancy39.

Figure 1 presents the observed coefficients of Spearman, Pearson, and Kendall techniques for interrelations of 
the anti-inflammatory drug solubility in SCCO2 with the selected independent variables. This analysis approves 
that increasing the molecular weight and melting temperature of anti-inflammatory drugs reduces their dissolu-
tion in the supercritical CO2. On the other hand, raising pressure, temperature, and solvent density enhance drug 
solubility in the SCCO2. Furthermore, molecular weight and pressure have the weakest indirect and strongest 
direct influences on the drug solubility in the SCCO2, respectively. The performed relevancy analysis results can 
be considered a justification for the appropriate selection of the independent variables.

Computational methodologies.  Machine learning methods have been extensively engaged in 
approximation40,41, interpretation42, action recognition43, and classification44,45 porpuses. This study focuses on 
five artificial neural networks (ANN), four hybrid neuro-fuzzy types, and three kinds of support vector regres-
sion (SVR) to simulate anti-inflammatory drug solubility in supercritical CO2. The considered ANN models are 
multilayer perceptron neural network (MLPNN)46,47, cascade feedforward neural network (CFFNN)48, recur-

(1)y2 = fML (Mw2, Tm2, T , P, ρ1)

Table 2.   Physical properties of the considered anti-inflammatory drugs.

Anti-inflammatory drug Molecular weight (g/mole) Melting temperature (K)

Fenoprofen 244.27 386.15

Flurbiprofen 206.00 347.65

Ibuprofen 254.29 367.65

Ketoprofen 246.10 383.00

Loxoprofen 228.30 353.15

Nabumetone 230.00 430.65

Naproxen 308.31 421.65

Nimesulide 308.30 378.58

Phenylbutazone 331.30 469.15

Piroxicam 137.10 413.58

Salicylamide 257.29 429.00

Tolmetin 244.27 386.15
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Figure 1.   The value of Spearman, Pearson, and Kendall factors for relevancy between drug solubility and the 
corresponding influential variables.
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rent neural network (RNN)49,50, general regression neural network (GRNN)48, and radial basis function neural 
networks (RBFNN)51. The efficiency of the support vector regression with the linear kernel (LSSVR-L)52, polyno-
mial kernel (LSSVR-P)52, and Gaussian kernel (LSSVR-G)53 are also evaluated over the considered purpose. The 
neuro-fuzzy models with the subtractive clustering membership function trained by the hybrid (ANFIS2-H) 
and backpropagation (ANFIS2-BP) algorithms have also been applied in the current study54. The last intelligent 
tools used in the present research are the neuro-fuzzy models with the C-means clustering membership function 
trained by hybrid (ANFIS3-H) and backpropagation (ANFIS3-BP) optimization strategies55.

It should be mentioned that these paradigms can be viewed as advanced regression-based tools. Therefore, 
they have all limitations of the conventional regression-based methods. Indeed, the developed intelligent schemes 
are only valid for the ranges of experimental data reported in Table 1. Utilizing these models for extrapolation 
purposes is not suggested.

Results and discussions
The focus of the present section is devoted to constructing different numbers of the considered intelligent 
paradigms through the trial-and-error tactic and determining models with the lowest deviation from experi-
mental measurements. Then the model with the highest accuracy is found applying the ranking analysis. After 
this, several visual inspections have been directed to evaluate the selected model efficiency for estimating anti-
inflammatory drugs’ solubility in supercritical CO2. The ability of the fabricated intelligent model to recall the 
physical-based behavior of the anti-inflammatory drug in the supercritical fluid (variation of drug solubility by 
the operating conditions) has also been inspected in the present section.

Smart models’ construction.  The present research employs five types of artificial neural networks 
(MLPNN, CFNN, RNN, GRNN, and RBFNN), three support vector regression kinds (LSSVR-L, LSSVR-P, and 
LSSVR-G), and four hybrid neuro-fuzzy approaches (ANFIS2-H, ANFIS2-BP, ANFIS3-H, and ANFIS3-BP) for 
simulating the anti-inflammatory drugs’ solubility in the supercritical CO2. All these intelligent tools have their 
own unique features required to be appropriately determined. Table 3 expresses both fixed and tunable elements 
of the applied machine learning methodologies in the present research. This table also indicates the range of the 
tunable features of the intelligent paradigms during the trial-and-error process. The last column of Table 3 shows 
the numbers of the constructed models for all individual smart categories. Cumulatively, 2150 intelligent estima-
tors have been fabricated during the development stage.

Training process.  The actions followed to adjust hyperparameters of machine learning methods is known as the 
training process56. This process utilizes historical data of a given phenomenon and an optimization algorithm to 
perform this duty. The literature has already compared the accuracy and computation time of some well-known 

Table 3.   Complete information about 2150 constructed computational techniques by the trial-and-error 
procedure.

AI model Fixed parameters Deciding parameters No. of models

MLPNN
Two neuronic layers
Levenberg–Marquardt optimization scenario
Tangent and logarithm sigmoid activation function

1–10 Hidden neurons
Weights and biases 300

CFFNN
Two neuronic layers
Levenberg–Marquardt optimization scenario
Tangent and logarithm sigmoid activation functions

1–9 Hidden neurons
Weights and biases 180

RNN
Two neuronic layers
Scaled Conjugate Gradient optimization scenario
Tangent and logarithm sigmoid activation functions

1–6 Hidden neurons
Weights and biases 120

GRNN Two neuronic layers
Gaussian and linear activation functions

1 × 10–6 < Spread factor < 10
Weights and biases 200

RBFNN Two neuronic layers
Gaussian and linear activation functions

1–10 Hidden neurons
1 × 10–6 < Spread factor < 10
Weights and biases

250

ANFIS2-H Subtractive clustering membership function
Hybrid optimization scenario

0.5 < Radius of cluster < 1
Membership function parameters 200

ANFIS2-BP Subtractive clustering membership function
Backpropagation optimization scenario

0.5 < Radius of cluster < 1
Membership function parameters 200

ANFIS3-H C-means clustering membership function
Hybrid optimization scenario

2–11 Cluster
Membership function parameters 200

ANFIS3-BP C-means clustering membership function
Backpropagation optimization scenario

2–11 cluster
Membership function parameters 200

LSSVR-L Linear kernel function Weights and biases
Linear kernel parameter 100

LSSVR-P Polynomial kernel function Weights and biases
Polynomial kernel parameters 100

LSSVR-G Gaussian kernel function Weights and biases
Gaussian kernel parameters 100



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1043  | https://doi.org/10.1038/s41598-022-04942-4

www.nature.com/scientificreports/

training algorithms engaged in the training stage of machine learning methods56. The training stage begins 
with randomly generated hyperparameters. The estimated targets have been obtained by entering independent 
variables into an intelligent estimator. The deviation between the calculated and actual values of the dependent 
variable is considered an objective function of the optimization algorithm. Indeed, the optimization algorithm 
continuously updates the hyperparameters of the machine learning method to minimize the objective function 
or at least reduce it as much as possible. The training stage finishes when the maximum number of iterations is 
reached or the objective function converges to the prespecified value57.

A trained machine learning method is then possible to employ for estimating the target variable in unknown 
situations. All trained intelligent tools only require the independent variables to do their duty.

It can be understood from Table 3 that the radial basis function and general regression neural networks, and 
support vector regression benefit from the Gaussian function58. Indeed, the first two models have the Gaussian-
shape activation function, but the latest uses the Gaussian as the kernel function.

Smart models’ selection.  In order to find the best structure of each smart method, it is necessary to quan-
tize the prediction errors of the engineered models using appropriate statistical criteria. Those models provided 
the lowest prediction errors finally selected as the best ones. In this way, it is also possible to determine the most 
appropriate structural features. Table 4 presents the final twelve smart paradigms (one model per category) with 
the slightest prediction errors. This table also displays the prediction errors of these selected models in terms of 
six uncertainty criteria (AAPRE%, MAE, RAE%, RRSE%, MSE, and R2). The calculated uncertainties have been 
separately reported for the training and testing categories. Equations  (2) to (7) express that only laboratory-
measured ( yexp

2
 ) and calculated ( ycal

2
 ) drug solubility, numbers of data (N), and the average value of solubilities 

( yexp2  ) are needed to quantize these accuracy criteria38,59.
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Table 4.   The best-selected property for the employed intelligent models and their related prediction accuracy.

Model Best feature Group AAPRE% MAE RAE% RRSE% MSE R2

MLPNN Nine hidden neurons
Training stage 9.03 6.66 × 10–5 8.25 11.9 2.49 × 10–8 0.99574

Testing stage 18.34 1.10 × 10–4 21.00 27.8 3.19 × 10–8 0.96206

CFFNN Seven hidden neurons
Training stage 13.31 6.07 × 10–5 8.01 9.4 1.40 × 10–8 0.99574

Testing stage 17.68 1.02 × 10–4 12.91 17.0 4.20 × 10–8 0.98940

RNN Five hidden neurons
Training stage 35.91 1.59 × 10–4 24.17 33.5 1.36 × 10–7 0.94773

Testing stage 35.63 3.24 × 10–4 25.76 32.7 3.56 × 10–7 0.94759

GRNN 216 Hidden neurons
Spread factor = 0.00013

Training stage 0.00 0.00 0.00 0.0 0.00 1.00000

Testing stage 26.05 9.45 × 10–5 26.94 33.0 2.17 × 10–8 0.97892

RBFNN Ten hidden neurons
Spread factor = 0.4167

Training stage 84.99 4.24 × 10–4 56.50 77.6 8.41 × 10–7 0.66882

Testing stage 84.12 4.87 × 10–4 57.97 77.2 1.51 × 10–6 0.74943

ANFIS2-H Cluster radius = 0.6111
Training stage 3.04 1.99 × 10–5 2.48 4.2 2.87 × 10–9 0.99915

Testing stage 3.69 1.49 × 10–5 2.82 2.9 9.6 × 10–10 0.99963

ANFIS2-BP Cluster radius = 0.5556
Training stage 10.43 8.66 × 10–5 10.92 14.8 3.50 × 10–8 0.98975

Testing stage 47.79 1.73 × 10–4 29.44 24.6 8.21 × 10–8 0.96944

ANFIS3-H Eight clusters
Training stage 10.50 5.88 × 10–5 8.59 11.1 1.47 × 10–8 0.99390

Testing stage 13.34 1.09 × 10–4 8.98 10.4 3.80 × 10–8 0.99553

ANFIS3-BP Nine clusters
Training stage 25.16 2.15 × 10–4 29.13 45.0 2.81 × 10–7 0.89418

Testing stage 47.29 1.96 × 10–4 21.51 31.7 2.60 × 10–7 0.95163

LSSVR-L γ = 2.247
Training stage 121.19 7.16 × 10–4 101.00 158.2 3.63 × 10–6 0.14052

Testing stage 78.95 7.66 × 10–4 75.69 103.4 2.28 × 10–6 0.64925

LSSVR-P γ = 4.58 × 103, σ2 = [0.5004 3]
Training stage 41.35 5.26 × 10–4 67.53 186.0 5.88 × 10–6 0.88485

Testing stage 59.27 2.73 × 10–4 40.91 55.5 2.51 × 10–7 0.85235

LSSVR-G γ = 436.9, σ2 = 0.7322
Training stage 14.16 8.45 × 10–5 11.93 18.4 4.59 × 10–8 0.99148

Testing stage 41.23 2.43 × 10–4 22.65 35.2 3.42 × 10–7 0.96612
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Ranking analysis for finding the highest accurate smart model.  The previous two sections applied 
a coupling technique based on the trial-and-error process and accuracy tracking to find the best topology of 
each smart machine. Indeed, twelve models with the highest accuracy have been extracted from 2150 fabricated 
approaches.

The ranking technique is directed to find the most accurate estimator among these twelve smart methods. The 
outcome of performing the ranking technique on the reported results in Table 4 has been plotted in Fig. 2. Indeed, 
AARPE%, MAE, RAE%, RRSE%, and R2 with the same weight have been utilized for conducting this ranking 
analysis. The GRNN and ANFIS2-H are the first ranked during the training and testing stages, respectively. On 
the other hand, the worst model is the LSSVR-L, with the twelve ranking places for training and testing. The 
GRNN fails to extend its excellent ability in the training step to the testing phase (it places at the fifth ranking). 
This finding may indicate the overfitting of the GRNN with the 216 hidden neurons and spread index of 1.3 × 10–4. 
The ANFIS2-H efficiency in the testing stage is better than its performance in the training stage (second and first 
rankings in the training and testing phases). Figure 2 also indicates the performance of the selected intelligent 
approaches for the combination of the testing and training datasets.

It can be easily realized that the hybrid neuro-fuzzy model trained by the hybrid optimization methodol-
ogy (ANFIS2-H) has the highest accuracy among 2150 initially constructed models. As Tables 3 and 4 report, 
this hybrid neuro-fuzzy tool has the Subtractive clustering membership function, and its adjusted cluster 
radius is 0.6111. This optimized topology machine provides AAPRE = 3.13%, MAE = 1.92 × 10–5, RAE = 2.51%, 
RRSE = 4.06%, MSE = 2.58 × 10–9, and R2 = 0.99919 for simulating twelve anti-inflammatory drugs’ solubility in 
SCCO2.

Performance evaluation.  This section concentrates on different graphical inspections to visually inves-
tigate the proposed ANFIS2-H’s performance. The cross-plot for calculated and actual drug solubilities in the 
SCCO2 have been separately depicted for the development (training) and validation (testing) stages in Fig. 3. The 
legend of Fig. 3 shows that the red hexagonal symbols show training subdivision, while the blue squared symbols 
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are associated with the testing phase. Revisit the reported results in Table 4 clears that the regression coefficients 
for the development and validation stages are 0.99915 and 0.99963, respectively. It is clear that the constructed 
ANFIS2-H approach accurately estimated both databases, i.e., training and testing subdivisions.

Average values of solubility of the concerned anti-inflammatory drugs in the supercritical CO2 for experi-
mental measurements and ANFIS2-H predictions have been illustrated in Fig. 4. This figure can readily approve 
a satisfactory agreement between actual measurements and the proposed model predictions. Moreover, it can be 
seen that Ibuprofen and Naproxen are the most soluble and low soluble anti-inflammatory drugs in the SCCO2. 
Nabumetone and Phenylbutazone with an almost equal average solubility level are the subsequent high soluble 
drugs in the considered supercritical fluid.

The capability of the generated ANFIS2-H with the optimized topology for estimating the phase equilibria of 
all possible drug/SCCO2 systems has been depicted in Fig. 5. This figure exhibits the model’s capability in terms of 
AAPRE%. It can be seen that the drug/SCCO2 phase equilibria are simulated with the AAPRE ranges from 1.04% 
(Phenylbutazone) to 6.05% (Nabumetone). As mentioned earlier, an overall AAPRE of the developed ANFIS2-H 
for predicting 254 solubility datasets is 3.13%. It should be noted that an AAPRE of lower than 10% is an accept-
able accuracy from the modeling perspective. Meanwhile, the highest observed uncertainty for predicting the 
Nabumetone solubility in supercritical carbon dioxide may be associated with either accompanied measurement 
error in experimental data or ANFIS2-H inability to estimate the Nabumetone/SCCO2 equilibrium accurately.
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Investigating the physical‑based ability of the ANFIS2‑H.  The solubility of anti-inflammatory 
drugs in the given supercritical fluid is affected by the operating conditions, i.e., pressure and temperature. 
This physical-based behavior is investigated from experimental and modeling perspectives. Indeed, this section 
explores the ability of the designed NAFIS2-H model for correct tracing this type of behavior.

The variation of Fenoprofen solubility in the supercritical CO2 by the isobaric temperature alteration has 
been shown in Fig. 6. This figure states that the ANFIS2-H successfully understands and persuades the physi-
cal behavior of the Fenoprofen/SCCO2 system at different operating conditions. Moreover, this figure explains 
that the Fenoprofen solubility in the concerned supercritical fluid increases by increasing pressure as well as 
temperature. The positive effect of the temperature on the drug solubility improves by increasing the pressure. 
It can be claimed that the highest amount of solubility in the SCCO2 is achievable at the maximum allowable 
pressure and temperature.

It is worth noting that all other anti-inflammatory drugs also show a similar response to the alteration of the 
pressure/temperature. These experimental and modeling discoveries fully agree with the previously anticipated 
results by the relevancy analysis (“Experimental data for anti-inflammatory drug solubility in SCCO2” Section).

Endothermic drugs’ dissolution in the supercritical carbon dioxide may be responsible for the increasing 
effect of the temperature. On the other hand, increasing the pressure increases the mass driving force to transfer 
the drug’s molecules to the supercritical phase. Increasing the density of the supercritical fluid by increasing the 
pressure may be seen as another responsible for this observation.

The influence of isothermal pressure alteration on the Tolmetin dissolution in carbon dioxide in the super-
critical state has been exhibited in Fig. 7. Excellent compatibility between laboratory-measured data points and 
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Figure 5.   The ANFIS2-H uncertainty in terms of AAPRE for estimating the phase equilibria of all drug/SCCO2 
systems.
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ANFIS2-H predictions is observable from this figure. Like the previous analysis, the Tolmetin solubility in the 
SCCO2 continuously intensifies by raising pressure or temperature. It can also be observed that the effect of 
pressure on the drug solubility at high temperatures is stronger than the lower ones.

As previously stated, the drug type also affects the magnitude of the solubility in supercritical CO2. The 
y2-pressure profiles of several anti-inflammatory drugs in the presence of CO2 in the supercritical state have been 
presented in Fig. 8. This figure shows outstanding compatibility between laboratory-measured information and 
those results calculated by the designed ANFIS2-H machine. Indeed, the proposed estimator easily distinguishes/
discriminates the solubility of different anti-inflammatory drugs in the SCCO2. This figure easily justifies the 
gradual increase of the anti-inflammatory drugs’ solubility by equilibrium pressure.

Analyzing data validity.  Machine learning strategies gain their knowledge from the historical behavior 
of a concerning phenomenon (here, anti-inflammatory drug solubility in CO2 at supercritical state). Experi-
mentations have the highest importance level to provide machine learning strategies with such insights. On 
the other hand, the laboratory-measured or real-field historical data is inevitably poisoned by outliers60. The 
measurement error, instrument’ wrong calibration, and environmental side effects on the experimentation are 
the primary sources of the outlier52. If the outlier information highly poisons an experimental databank used for 
model development, the reliability of the constructed approach is under question. Hence, the leverage tactic is 
suggested to inspect the validity of the experimental data56. This tactic plots the standard residual (SR) against 
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Figure 7.   Experimental and modeling tracking of the pressure–temperature phase behavior of the Tolmetin/
SCCO2 system.

Figure 8.   The way that anti-inflammatory drug solubility in supercritical CO2 changes by the pressure 
(T = 313.15 K).
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the Hat index (H) to find valid as well as suspect information. Equations (8) to (11) define the formula of these 
variables.

here, REave and SD represent the average value of the residual error and standard deviation, respectively.
The consequence of applying the leverage tactic on the gathered database for anti-inflammatory drug-SCCO2 

systems has been published in Fig. 9. Only one segment of Fig. 9 is valid, and all other five parts are suspect. This 
tactic confirms that 244 out of 254 experiments are valid, and the outlier may poison only less than four percent 
of the historical datasets. The accomplished analysis in this stage reveals that the collected databased used for 
model construction is mainly valid. Thus, the proposed ANFIS2-H is solely allowed to be used for estimating 
anti-inflammatory drug solubility in supercritical CO2 from molecular weight, melting temperature, pressure, 
solvent density, and temperature.

Conclusion
This study systematically compared the prediction accuracy of 2150 intelligent estimators from three different 
categories (artificial neural networks, hybrid neuro-fuzzy, and support vector regression) to estimate anti-inflam-
matory drug solubility in supercritical CO2. The conducted comparisons approved that the adaptive neuro-fuzzy 
inference system with the subtractive clustering membership function (ANFIS2-H) has the highest accuracy 
for the considered objective. The cluster radius of this ANFIS2-H model adjusted by the hybrid optimiza-
tion algorithm is 0.6111. The ANFIS2-H model estimated 254 laboratory-measured solubility data with the 
AAPRE = 3.13%, MSE = 2.58 × 10–9, and R2 = 0.99919. Furthermore, the AAPRE associated with each NSAID-
SCCO2 phase equilibrium ranges from 1.04 to 6.05%. In addition, the LSSVR with the linear kernel function 
shows the worst predictive performance for estimating the NSAID’s solubility in the SCCO2. The relevancy 
analyses performed by three diverse scenarios justified that increasing the drug’s molecular weight and melting 
temperature decreases their solubility in supercritical CO2. In addition, experimental observations, modeling 
findings, and relevancy analyses indicated that increasing pressure, temperature, and SCCO2 density raise the 
drug solubility in supercritical solvents. The leverage methodology showed that only ten datasets are potential 
outliers, and all other experiments have been conducted on a valid basis. Both modeling and experimental 
observations clarified that the maximum and minimum tendency of the supercritical CO2 is devoted to the 
Ibuprofen and Naproxen drugs, respectively. Coupling the developed intelligent scenario with an optimization 
technique to precisely locate the operating conditions that maximize each anti-inflammatory drug’s solubility 
in supercritical carbon dioxide may be considered as a next research step in this field.
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