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Emerging ideas of brain function emphasize the context-dependency
of regional contributions to cognitive operations, where the
function of a particular region is constrained by its pattern of
functional connectivity. We used functional magnetic resonance
imaging to examine how modality of input (auditory or visual)
affects prefrontal cortex (PFC) functional connectivity for simple
working memory tasks. The hypothesis was that PFC would show
contextually dependent changes in functional connectivity in
relation to the modality of input despite similar cognitive demands.
Participants were presented with auditory or visual bandpass-
filtered noise stimuli, and performed 2 simple short-term memory
tasks. Brain activation patterns independently mapped onto
modality and task demands. Analysis of right ventral PFC functional
connectivity, however, suggested these activity patterns interact.
One functional connectivity pattern showed task differences
independent of stimulus modality and involved ventromedial and
dorsolateral prefrontal and occipitoparietal cortices. A second
pattern showed task differences that varied with modality,
engaging superior temporal and occipital association regions.
Importantly, these association regions showed nonzero functional
connectivity in all conditions, rather than showing a zero
connectivity in one modality and nonzero in the other. These
results underscore the interactive nature of brain processing,
where modality-specific and process-specific networks interact for
normal cognitive operations.
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Introduction

Previous research has shown that functional connectivity, as

measured by the covariance of activity between brain regions,

changes when participants perform tasks that engage different

cognitive processes (Horwitz et al. 1992; Friston 1994). Such

data have been used to establish the notion of neural context,

wherein the response properties of one element in a network

are profoundly affected by the status of other neural elements

in that network. As a result, the functional relevance of a given

neural element will depend on the status of other interacting

elements (Bressler and McIntosh 2007). For example, a func-

tional magnetic resonance imaging (fMRI) study by Lenarto-

wicz and McIntosh (2005) suggests that the anterior cingulate

(ACC) can contribute to both memory and attentional pro-

cesses when there are changes in the brain regions with which

the ACC interacts. Participants performed a standard version of

a 2-back working memory task with strong attentional

demands, and a cued version that promoted memory retrieval.

Although both tasks activated the ACC, its functional con-

nections, and the relation of these connectivity patterns to

memory performance were completely different in the 2 tasks.

Therefore, the contribution of the ACC to memory- and

attention-driven tasks was determined by other coactive brain

regions. Another study of ACC functional connectivity (Stephan

et al. 2003) used fMRI to examine whether hemispheric

functional asymmetry was determined by a word stimulus

(short words, with one letter colored red) or by the task. In one

instance, subjects judged whether the word contained the

letter ‘‘A,’’ ignoring the red letter, and in another instance, they

made a visuospatial judgment indicating whether the red letter

was right or left of center. A direct comparison of brain activity

revealed strong hemispheric differences. The letter task pro-

duced higher activity in the left hemisphere, whereas the

visuospatial task produced higher activity in the right hemi-

sphere. The ACC was similarly active in both tasks relative to

baseline, but showed distinctly different patterns of functional

connectivity between tasks. Specifically, during the letter task,

the ACC was coupled to the left prefrontal cortex (PFC); during

the visuospatial task, the ACC was linked with the right

posterior parietal cortex. These data are a compelling example

of how task demands can modulate the neural context within

which a cortical area (i.e., the ACC) operates. Similar task-

dependent functional connectivity patterns have been reported

for the medial temporal lobe (McIntosh et al. 2003) and for

middle PFC (McIntosh et al. 1997).

In the current study, we were interested in whether or not

PFC functional connectivity varies for simple working memory

tasks when the stimuli are presented through different

modalities. We chose the PFC as our region of interest (ROI)

because it is central for a wide variety of psychological

processes, including attention, memory, and response selec-

tion. For example, dorsolateral regions are engaged in sustained

attention (Stuss et al. 1995; Corbetta 1998). Middle and inferior

regions are engaged in memory retrieval (Stuss et al. 1995;

Nyberg 1998; Grady 1999). Lateral PFC is divided into dorsal/

ventral steams by the working memory literature, and is related

to either spatial versus nonspatial information (Wilson et al.

1993) or maintenance versus manipulation of stored informa-

tion (Petrides 1994; Owen et al. 1996). Ventral and orbital PFC

are involved in the use of conditional rules to select a course of

action (Rushworth et al. 2005). Framed in the context of

network operations, the strong involvement of PFC in

attention, memory and response selection arises because it is

well situated, in an anatomical sense, to establish the neural

context of these processes. Its anatomical connections allow it

to integrate information from distributed sensory and motor

networks (Fuster 1997). The idea that a distributed pattern of

activity across several regions differentiates attentional and
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memory processes better than activity in any single region

receives support from the existence of functional overlap

within the PFC. For example, sustained attention, working

memory, and verbal retrieval all engage middle PFC (Cabeza

and Nyberg 2000).

Although there are no previous studies that examine

modality-based differences in PFC functional connectivity using

analogous tasks, there are studies that show input modality-

based dissociations in the PFC. For example, Bushara et al.

(1999) measured brain activity with PET while participants

performed auditory and visual spatial localization tasks. The

auditory stimuli were synthesized band-passed bursts with

spectral and binaural localization cues. The visual stimuli were

peripherally located flashing light emitting diodes. Bushara

et al. found modality-specific areas in the superior parietal

lobule, middle temporal, and lateral PFC. Crottaz-Herbette et al.

(2004) used fMRI to explore modality-based differences in

verbal and written numbers in a working memory task. They

found increased activation in the left posterior parietal cortex

during the visual verbal working memory task, and increased

activation in the left dorsolateral PFC the auditory verbal

working memory task. Both these studies identified small but

significant modality-based dissociations in the PFC. However,

they may have underestimated input modality-based dissocia-

tions in the PFC because in both cases, the stimuli could be

translated into semantic representations that are not linked to

input modality (i.e., a location in personal space for Bushara

et al.’s study, and numbers for Crottaz-Herbette et al.’s study).

We examined input modality and task demand effects on

PFC functional connectivity with simple working memory tasks

using semantically devoid stimuli. We constructed matrices of

one-dimensional band-pass filtered noise and presented them

auditorily as noise bursts or visually as images (Protzner and

McIntosh 2007). Psychophysical work by Visscher et al. (2007)

suggests that auditory and visual representations of stimuli akin

to ours undergo very similar transformations when they are

encoded and retrieved from memory. Participants performed 4

experimental tasks (auditory temporal sequencing, visual

temporal sequencing, auditory comparison, and visual compar-

ison) and 2 control tasks (auditory control and visual control).

These tasks were as similar as possible between modality,

allowing us to look at the effect of input modality on neural

network organization. Within modality, the inclusion of

multiple tasks allowed us to examine the effect of performance

strategy. Comparison tasks were designed to require mainte-

nance and manipulation in working memory. Temporal

sequencing tasks were designed to require maintenance of

information in working memory. Although the comparison and

temporal sequencing tasks have different attentional demands,

task difficulty as measured by accuracy, was equated using

psychophysical thresholds. Control tasks required neither

maintenance nor manipulation because participants were not

asked to compare the stimuli for task performance.

Within the PFC, we chose our ROI statistically. We used task

spatiotemporal partial least squares (task PLS, McIntosh et al.

2004) to identify the PFC voxel whose activity most reliably

differentiated experimental from control tasks. This voxel was

located in the right inferior frontal gyrus, Brodmann’s area (BA)

47 (Montreal Neurological Institute [MNI] coordinate: 44, 32, –

12; see circled region in Fig. 3A for approximate seed location).

Meta-analyses and review papers of working memory have

suggested that ventral PFC, including BA 47, tends to be

recruited for maintenance operations (Courtney et al. 1998;

D’Esposito et al. 1998; Wager and Smith 2003) which would be

a common processing demand for both the temporal sequenc-

ing and comparison tasks. We used seed spatiotemporal PLS

(seed PLS) to examine the functional connectivity of this

prefrontal seed. With this usage of PLS, we analyzed how BA 47

activity correlated across participants with the rest of the brain.

PLS can sort the correlations into what is similar, and what is

different across tasks. This seed PLS was conducted only on

experimental tasks. The control tasks were not included to

focus the analysis on the potential dependence of functional

connectivity on the varying experimenter manipulated cogni-

tive challenges and modality.

When tasks and stimuli presented in different modalities

differ both physically and semantically, they enlist different

neural networks. When the same tasks and stimuli are

presented through different modalities, several possibilities

exist for neural network organization. Seed PLS could identify

1) functional connections that are common for all experimen-

tal tasks, 2) functional connections that differentiate task

demands (i.e., temporal sequencing tasks vs. comparison tasks),

3) functional connections that differentiate input modality (i.e.,

auditory versus visual tasks), and 4) functional connections that

show an interaction between task demands and modality. The

most interesting outcome would be the interaction between

task demands and modality because it would indicate that

functional network configuration is dependent on both task

demands and input modality.

Materials and Methods

Participants
The experimental design has been described in detail in another paper

(Protzner and McIntosh 2007). Briefly, seventeen participants took part

in the study. Data from 5 participants were excluded because of

improper task performance or technical difficulties. Data from the 12

remaining participants (6 males; mean age 27.4 years, range 20--36

years) were used in the analyses. All were right handed, reported no

history of major medical, neurological or psychiatric disorders, normal

hearing, and normal or corrected to normal vision. All participants gave

informed consent in accordance with the Institutional Review Board of

University of Toronto and Baycrest Centre.

Procedure
Each participant performed the following experimental tasks: auditory

temporal sequencing, auditory comparison, visual temporal sequenc-

ing, and visual comparison with bandpass-filtered white noise stimuli. In

the auditory conditions, the noise stimuli were played as sound bursts.

In the visual conditions, the noise stimuli were displayed as visual

textures. These tasks were as similar as possible between modality, and

as different as possible within modality (given the constraint that we

used identical stimulus presentations for each task). On the day of

scanning, observers also performed an auditory and a visual control

task.

In each experimental trial, 3 noise stimuli appeared successively for

500 ms, with a blank (silent/gray) interstimulus interval (ISI) of 500 ms.

The center frequency of the bandpass filter differed for each stimulus.

After the onset of the third stimulus, participants pressed one of 3

response keys to indicate their response. For auditory temporal

sequencing, participants indicated when the tone with the highest

pitch sounded: first, second, or third. For auditory comparison,

participants compared the third sound to the first 2 sounds. They

indicated if the third sound was lower, intermediate, or higher in pitch

as compared to the first 2 sounds. For visual temporal sequencing,

participants indicated when the visual texture with the highest spatial
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frequencies appeared. For visual comparison, participants compared

the last texture to the first 2 textures. They indicated whether the last

texture’s spatial frequency content was lower, intermediate, or higher

than the first 2 textures. Control trials were identical to experimental

trials, except that the center frequency of the bandpass filter was the

same for all 3 stimuli, and participants pressed all 3 response buttons

after the third stimulus was presented. On the day of scanning, the

intertrial interval was chosen pseudorandomly, and lasted 3, 5, 7, 9, or

11 s. Specifically, each trial type had an identical distribution of inter-

trial interval (ITI) lengths, but the order of ITI lengths was chosen

randomly. This ensured minimal contamination of the average blood

oxygen level--dependent (BOLD) response for a trial type with

preceding trials (see below for specifics of fMRI analysis).

Experimental participation took place across 4 days. To reduce

potential learning effects and to obtain a stable threshold, all

participants performed the tasks outside of the scanner on the first 3

days of testing. Based on the data collected, psychometric functions for

center frequency ratio were determined (see stimulus description

below), and 80% correct thresholds were estimated from best fitting

Weibull curves using the QUEST adaptive staircase procedure (Watson

and Pelli 1983; Press et al. 1989). On the day of scanning, each

participant performed 40 trials of each experimental task as well as

40 trials of each control task. The trials were presented in 4 runs, with

2 blocks of 5 trials of each task. Blocks within runs were presented in

random order across participants. Before each block, participants were

presented with an instruction image indicating which task they would

perform next, and which response the first response key indicated.

Stimuli
The visual stimuli were generated by filtering one-dimensional Gaussian

white noise fields with a 2-octave frequency filter. During each trial,

3 textures appeared, differing in center frequency. The base frequency

was jittered around 2 cycles per degree (cpd) by plus or minus 20%. The

remaining 2 center frequencies increased by a constant ratio (e.g., at

a ratio of 2, and a base frequency of 2 cpd the center frequencies were 2,

4, and 8 cpd). Task difficulty could be increased by decreasing the center

frequency ratio. The order of presentation for the textures was chosen

randomly. Each texture was 256 by 256 pixels in size, and was generated

randomly. Peak Michelson contrast was 38%, and was modulated with

a 2-dimensional Gaussian envelope. The average luminance of the

stimulus was 15 cd/m2. The backgroundwas gray with a luminance of 15

cd/m2. Finally, the display was gray during the ISI, and had a luminance of

15 cd/m2.

The auditory stimuli were generated and presented in the same

manner as the visual stimuli, except that the 500-ms stimulus

presentation included a rise and decay of 50 ms, and the base

frequency was jittered around 600 Hz. The stimuli were presented at

a sound level that was identified as comfortable by the participant at the

beginning of each experimental session (e.g., approximately 80 dB

sound pressure level).

Apparatus
A MacIntosh iBook (Apple Computers, Cupertino, CA) controlled

stimulus presentation and response recording. On the first 2 days of

testing, participants viewed the stimuli binocularly on the iBook’s

monitor, or listened to the stimuli presented through the iBook’s

speakers binaurally from a comfortable distance. Participants indicated

their responses by pressing one of 3 specified keys (F, J, or K) on the

iBook’s keyboard. The experiment took place in a dimly lit, quiet room.

On the third day, participants performed the tasks in an MRI simulator.

Visual stimuli were projected using a Boxlight 6000 projector (Box-

light, Poulsbo, WA) onto a rear-projection screen, and viewed by the

participants through a mirror mounted in the simulator’s headcoil.

Auditory stimuli were delivered to the participant at a comfortable

sound level by fMRI compatible, acoustically padded headphones

(Avotech, Jensen Beach, FL). Participants used their right index, middle,

or ring fingers to indicate their responses on a Lumitouch Reply System

response box (Lightwave Medical Industries, Burnaby, BC, Canada). On

the fourth day, participants performed the tasks during fMRI

acquisition. Stimulus presentation and response recording was per-

formed in the same manner as in the MRI simulator.

fMRI Procedure
Regional cerebral activity was measured using a 1.5T Signa MR scanner

with a standard quadrature headcoil (CV/I hardware, LX8.3 software:

General Electric Medical Systems, Waukesha, WI). For each participant,

a structural MRI was obtained by using a 3D T1-weighted pulse

sequence (time repetition [TR] = 12.4 ms, time echo [TE] = 5.4 ms, flip

Figure 1. Behavior measures for the 4 experimental tasks. (A) Mean proportion
correct. (B) Mean threshold. (C) Mean reaction time. Error bars show standard error.
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angle 35�, 22 3 16.5 field of view, 256 3 192 acquisition matrix, 124 axial

slices 1.4 mm thick). Functional imaging measured brain activation by

means of the BOLD effect with optimal signal contrast. Eighteen axial

slices were acquired, each with a thickness of 7 mm. Functional scans

were obtained using a single shot T2*-weighted pulse sequence with

spiral readout, offline gridding, and reconstruction (TR = 2000 ms, TE =
40 ms, flip angle 80�, 90 3 90 effective acquisition matrix).

Data processing was performed using Analysis of Functional Neuro-

Imaging software (http://afni.nimh.nih.gov/, Cox 1996). Time series

data were spatially coregistered to correct for head motion by using

a 3D Fourier transform interpolation. Motion-corrected images were

then spatially transformed to an fMRI spiral scan template generated

from 30 participants scanned locally. This template was registered to

the MNI305 template. The transformation of each participant to the

spiral template was achieved using a 12-parameter affine transform

with sinc interpolation as implemented in SPM99 (http://www.fil.ion.

ucl.ac.uk/spm/, Friston et al. 1995). Images were smoothed with an

8-mm isotropic Gaussian filter before analysis. For each participant,

‘‘brain’’ voxels in a specific image were defined as voxels with an

intensity greater than 15% of the maximum value in that image. The

union of masks was used for group analyses as described below.

Data Analysis
The primary image analysis was done with spatiotemporal PLS

(McIntosh et al. 2004), a multivariate method that enables the

identification of the optimal spatial and temporal patterns that either

differentiate tasks in terms of activation, or in terms of functional

connectivity. PLS operates on the entire data structure at once, which

requires that the data be in matrix form. The rows of the data matrix

are arranged as follows; condition blocks are stacked and each

participant has a row of data within each condition block. With n

Figure 2. (A) Singular image for the nonrotated task PLS modality LV. On the singular image, time from stimulus onset, expressed in seconds, is indicated on the y-axis of the
singular image. The approximate location of the axial slice in MNI atlas space is indicated on the x-axis. Voxels in the image are highlighted according to the magnitude of the ratio
of their parameter estimate to the bootstrap-estimated standard error (bootstrap ratio). The singular image is superimposed on a T1-weighted MRI template. On the singular
image, brain regions in blue are more active during visual tasks, and brain regions in yellow are more active during auditory tasks. (B) HRF from BA 22, identified in the modality LV
as more active during the visual tasks (MNI template coordinates: x 5 68, y 5 �40, z 5 12). Auditory tasks are shown in blue and visual in red to emphasize that change in
response was greater for auditory than visual tasks. Responses are expressed as percent change from stimulus onset (T 5 0) and are averaged across subjects (±SE).
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participants and k conditions, there are n 3 k rows in the matrix. The

columns of the data matrix contain the signal intensity measure for

each voxel at each time point. The first column has intensity for the

first voxel at the first time point, the second column has the intensity

for the first voxel at the second time point. With m voxels and t time

points, there are m 3 t columns in the matrix. The hemodynamic

response function (HRF) for any given condition normally lasts for

several scans; thus, a ‘‘lag window’’ is defined for as a short signal

segment within a trial that represents the response of each voxel. In the

current experiment, the lag-window size was 8 (TR = 2, 16 s),

beginning at the onset of each trial. The HRF for each trial is expressed

as the intensity difference from trial onset.

Two formsof PLSwereperformed.Thefirst, nonrotated taskPLS, assessed

whether there were differences between groups in task-dependent brain

activity. This analysis also allowed us to identify a seed voxel whose activity

differentiated task demands, located in BA 47. The second, seed PLS,

identified cortical regions that were functionally connected with the BA 47

voxel. These analyses are explained further below.

Nonrotated Task PLS
Task PLS is able to identify time-varying distributed activity patterns, or

latent variables (LVs), that differentiate experimental conditions.

Usually, task PLS uses singular value decomposition to rotate the data

matrix to identify the strongest effects in the data. We used

a nonrotated version of task PLS, in which a priori contrasts restrict

the patterns derived from task PLS (McIntosh and Lobaugh 2004). The

effects of interest were a main effect of modality (i.e., auditory vs.

visual), a main effect of task demands, and an interaction between

modality and task demands. A ‘‘singular image’’ is computed for each

contrast representing the distributed voxel pattern that embodies the

effect. The strength of the relationship between the singular image and

the contrast is given by the singular value. For the nonrotated task PLS,

the singular image is simply the cross product of a contrast and the data

matrix and the singular value is the sum of squared voxel values for the

singular image. This version of task PLS has the advantage of allowing

a direct assessment of hypothesized experimental effects. There is,

however, no guarantee that these effects are the strongest which can

be identified using the original version of task PLS with singular value

decomposition.

Statistical assessment for PLS is done using permutation tests for the

LVs and bootstrap estimation of standard errors for the voxel saliences.

The permutation test assesses whether the effect represented in

a given LV, captured by the singular value, is sufficiently strong to be

different from random noise. The standard error estimates of the voxel

weights/saliences in each singular image from the bootstrap tests are

used to assess the reliability of the nonzero saliences in significant LVs.

Table 1
Local maxima from the nonrotated task PLS

Lag x (mm) y (mm) z (mm) BSR Cluster
size (voxels)

Region

Modality LV
2 8 �28 �28 5.4523 25 Colliculus
2 �52 16 �36 4.8237 15 GTs (BA 38)
2 12 24 48 �7.0958 18 GFd (BA 8)
4 �8 �52 �20 6.8221 18 Cerebellum
4 16 �52 �24 5.9915 15 Cerebellum
4 4 �64 48 5.8111 23 PCu (BA 7)
4 �24 0 �16 5.8033 14 NA (BA 34)
6 52 0 �16 7.3127 180 GTm (BA 21)
6 �24 �68 �16 7.2975 16 GF (BA 19)
6 20 �28 �12 5.9648 19 GH (BA 28/35)
6 �44 �8 �20 5.5354 95 GTm (BA 21)
6 �28 �64 4 4.1564 18 GOm (BA 19/37)
6 24 �76 20 �8.7074 28 GOm (BA 18)
6 �36 40 24 �6.0116 15 GFm (BA 46)
6 �36 �60 52 �5.5633 85 LPs (BA 7)
6 �52 �76 �28 �4.492 49 Cerebellum
8 40 �44 4 5.4865 41 GTm (BA 22)
8 �28 �72 60 �6.1066 58 LPs (BA 7)
8 28 �36 �32 �6.0643 23 Cerebellum
10 8 �12 4 6.5954 81 Thalamus
10 44 8 8 6.2065 45 GPrC (BA 6)
10 24 �28 0 5.5604 41 Pulvinar
10 16 �16 �16 5.3766 16 Midbrain
10 �12 �96 28 �8.1526 20 Cu (BA 19)
10 12 �84 28 �5.9613 57 Cu (BA 19)
12 24 4 �12 6.2036 37 Caudate
12 4 �8 �4 6.1644 72 Ventromedial thalamus
12 �40 20 �28 5.359 24 GTs (BA 38)
12 68 �40 12 �5.6058 31 GTs (BA 22)
12 �48 �8 8 �5.0095 30 GTs (BA 22)
14 0 �56 12 4.0285 20 GC (BA 23/30)
14 �12 �4 32 �5.572 12 GC (BA 24)
14 32 �4 52 �5.0262 16 GFm (BA 6)

Task demands LV
2 8 32 48 5.1218 16 GFd (BA 8)
4 �32 �64 �8 6.015 19 GL (BA 19)
4 �36 �52 �44 �5.993 18 Cerebellum
6 �28 �64 �44 7.2923 29 Cerebellum
6 68 �28 8 4.8578 30 GTs (BA 42)
6 52 �68 �20 4.1104 15 GF (BA 19/37)
6 28 56 28 �5.7642 13 GFs (BA 10)
6 �48 �68 32 �5.2 17 Ga (BA 39)
6 �60 �48 �16 �5.0959 12 GTi (BA 37)
6 �24 56 24 �4.8641 11 GFs (BA 10)
6 0 �48 32 �4.1364 19 PCu (BA 7)
8 �4 8 52 7.7086 90 GFd (BA 6)
8 �32 20 4 5.9997 15 Insula
8 12 �72 56 5.7997 37 LPs (BA 7)
8 �28 �64 36 5.5719 97 Ga (BA 39)
8 24 �8 60 5.3013 20 GFm (BA 6)
8 36 �52 52 4.6394 37 LPi (BA 40)
8 �60 �8 44 4.6054 17 GPrC (BA 6)
8 36 16 0 4.3895 17 GFm (BA 9)
8 8 �28 0 4.2658 14 Th
8 40 4 24 4.0916 13 GPrC (BA 4)
8 12 12 �8 4.0004 20 NC
8 16 56 40 �7.1003 26 GFs (BA 9)
8 �8 44 44 �5.8488 13 GFd (BA 8)
8 �4 56 4 �5.3611 103 GFd (BA 10)
8 �36 24 36 �5.0967 35 GFm (BA 9)
8 �24 44 36 �5.0848 11 GFs (BA 9)
8 4 �48 28 �4.7719 19 GC (BA 31)
8 4 44 56 �4.6957 14 GFs (BA 8)
8 0 28 0 �4.5363 15 NC
8 0 �24 44 �4.4405 12 GC (BA 31)
10 12 �52 �12 6.3035 40 Cerebellar vermis
10 44 �4 �36 6.0853 13 GTm (BA 21)
10 �20 32 �4 �9.6241 31 GC (BA 24)
10 0 �40 68 �6.6705 55 LPc (BA 4)
10 68 �16 8 �5.6468 13 GTs (BA 22)
10 8 40 0 �4.3109 12 GC (BA 32)
12 44 32 �24 9.2229 22 GFi (BA 47)
12 36 0 �24 6.0269 22 NA
12 24 4 4 5.1794 42 NL
12 52 �60 20 4.9644 18 LPi (BA 39)
12 �20 �76 52 �8.2086 28 PCu (BA 7)

Table 1 Continued

Lag x (mm) y (mm) z (mm) BSR Cluster
size (voxels)

Region

12 �16 4 60 �7.5884 39 GFd (BA 6)
12 �48 8 36 �6.7087 24 GFi (BA 44)
12 56 8 36 �5.6659 16 GFi (BA 44)
12 �28 4 56 �5.5023 28 GFm (BA 6)
14 �44 �52 12 6.673 14 GTs (BA 22)
14 56 �64 36 6.1539 31 Ga (BA 39)
14 �56 �64 20 5.0206 18 LPi (BA 39)
14 28 �80 �20 4.4941 11 GF (BA 18)
14 �40 56 16 �6.5099 46 GFm (BA 10)
14 �40 28 20 �5.7566 15 GFi (BA 45)
14 8 �72 48 �5.5128 31 PCu (BA 7)
14 �52 4 24 �5.0636 29 GPrC (BA 6)

Note: Lag refers to the period, in seconds, after stimulus onset during which the peak occurred. x,

y, and z indicate voxel coordinates in MNI space. BSR represents each voxel’s PLS parameter

estimate divided by its standard error. Cluster size refers to the number of contiguous voxels

included in the cluster. Regions indicate the gyral locations and BA of the cluster peak. MNI

coordinates were converted into Talairach coordinates using the mni2tal script (http://

eeg.sourceforge.net/mridoc/mri_toolbox/mni2tal.html). Gyral locations and BA were then

determined by reference to Talairach and Tournoux (1988).
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This ratio is proportional to a z-score, but should be interpreted as a

confidence interval, where we designated a threshold of 3.3 corre-

sponding roughly to a 99.9% confidence interval.

Seed PLS
Seed PLS examines the correlations between a seed ROI and the rest of

the brain. Seed PLS identifies LV that capture task and group dependent

changes in functional connectivity between the seed ROI and the rest

of the brain (i.e., brain-seed correlations). It is conceptually similar to

the univariate version of psychophysiological interactions that can be

used to assess experimental-context dependent changes in functional

connectivity (Friston et al. 1997). The correlation of the fMRI signal for

the seed and for the rest of the brain is computed across participants

within each task, resulting in a matrix of within-task brain-seed

correlation maps. Singular value decomposition of the brain-seed

correlation matrix produces 3 new matrices: the singular image of

voxel saliences, singular values, and task saliences. The variation across

the task saliences indicates whether a given LV represents a similarity

or difference in the brain-seed correlation across tasks. This can also be

shown by calculation of correlation between the brain scores (dot-

product of the voxel salience and fMRI data) and seed fMRI signal for

each task. The voxel saliences give the corresponding spatiotemporal

activity pattern. Statistical assessment is similar to that used for task PLS.

Results

Behavioral Performance

Measures of reaction time, accuracy, and threshold are

summarized in Figure 1. We performed a 2 (modality) 3 2

(experimental tasks) repeated measures analysis of variance on

reaction time, accuracy, and threshold data from the day of

scanning. For percent correct data (see Fig. 1A), all effects were

statistically nonsignificant, indicating that task difficulty, as

indicated by response accuracy, was equated across all

Figure 3. (A) Singular image for the nonrotated task PLS task demands LV. Brain regions in blue are more active during control tasks, and brain regions in yellow are more active
during experimental tasks. White circle indicates the approximate location of the BA 47 seed voxel used in the seed PLS analysis. (B) Hemodynamic response function from the
seed voxel circled in (A) (MNI template coordinates: x 5 44, y 5 32, z 5 �24). The averaged response for experimental tasks is shown in blue, and averaged response for
control tasks are shown in red. Responses are expressed as percent change from stimulus onset (T 5 0) and are averaged across subjects (±SE).
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experimental tasks. For threshold data (see Fig. 1A), the main

effects of modality (F1,11 = 36.40, P < 0.001) and task (F1,11 =
41.59, P < 0.001) were significant. The main effect of modality

indicates that auditory thresholds were generally lower than

visual thresholds. The main effect of task indicates that

comparison thresholds were generally higher than temporal

sequencing thresholds. The interaction between modality and

task also was significant (F1,11 = 9.27, P < 0.05), indicating that

the difference between comparison and temporal sequencing

thresholds was bigger for visual than for auditory tasks. For

reaction time data (see Fig. 1A), the main effects of modality

(F1,11 = 49.78, P < 0.001) and task (F1,11 = 12.13, P < 0.01) were

significant. The main effect of modality indicates that auditory

tasks were performed with longer reaction times than visual tasks.

Finally, the main effect of task indicates that comparison tasks

were associated with longer reaction times than sequencing

tasks. The interaction term was nonsignificant.

fMRI Results

Nonrotated PLS

The nonrotated task PLS was conducted with 3 contrasts: 2 for

main effects and 1 interaction term. Statistical assessment

identified both main effects as significant (modality LV singular

value = 30.56, P < 0.001; task demands LV singular value =
28.14, P < 0.01), but the interaction term was nonsignificant

(interaction LV singular value = 23.12, P = 0.162).

The LV that showed the strongest effect was the contrast

between auditory and visual tasks (modality LV, Fig. 2A, see

Table 1 for a list of local maxima). Dominant negative saliences

(related to increased activation during visual tasks) were

located in left middle frontal gyrus (BA 46), right medial frontal

gyrus (BA 8), bilateral superior temporal gyrus (BA 22), left

superior parietal lobe (BA 7), right cuneus (BA 19), and bilateral

cerebellum. Dominant positive weights (related to increased

Figure 4. Singular image (top) and correlation between brain scores and the BA 47 seed voxel for the interaction LV from seed PLS. The singular image identifies peak voxels
showing a different pattern of correlations with the BA 47 voxel across tasks. The correlation bar graph captures the task-dependent changes in the correlation with the seed
voxel of the areas identified in the singular image. The error bars indicate the 95% confidence interval derived from bootstrap estimation.
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activation during auditory tasks) were located in right caudate,

bilateral middle temporal cortex (BA 21b and 22r), right

precentral gyrus (BA 6), and right thalamus.

Of note is the finding that saliences in the modality LV

related to increased activation during the visual tasks include

BA 22. This area typically is thought of as unimodal auditory

cortex. It is not surprising that auditory sensory areas are

activated during the visual tasks because the experiment was

performed during fMRI scanning, which produces an acoustical

artifact. However, one would still not expect BA 22 to be more

active during the visual than auditory tasks. An examination of

Table 2
Local maxima from the seed PLS

Lag x (mm) y (mm) z (mm) BSR Cluster size
(voxels)

Region

Interaction LV
2 �8 �52 40 �6.5135 15 PCu (BA 7)
2 52 �8 32 �6.3323 29 GFi (BA 44)
2 �56 �56 44 �5.9159 17 LPi (BA 7/40)
2 �36 �60 �44 �5.3358 13 Cerebellar nucleus
2 36 �84 �32 5.4411 28 Cerebellum
2 �16 0 �12 6.5424 12 Ventral thalamus
4 �20 �56 56 �7.3346 23 PCu (BA 7)
4 24 �100 �4 �6.7995 14 GOm (BA 18)
4 12 �52 32 �6.0404 23 PCu (BA 19/31)
4 20 �88 �16 �5.5288 19 GL (BA 18)
4 �4 �48 36 �5.0515 11 PCu (BA 19/31)
4 �16 �60 32 �4.144 11 PCu (BA 19/31)
4 8 20 �12 5.9337 28 Caudate
4 �36 12 8 8.3526 29 GFi (BA 47)
4 �60 �48 0 14.219 71 GTm (BA 21)
6 �36 �100 16 �10.6274 49 GOm (BA 18)
6 40 �60 �12 �7.9156 25 GL (BA 19)
6 20 �100 0 �7.8276 23 GL (BA 18)
6 �52 �52 �28 �6.5618 42 GF (BA 37)
6 �32 28 �24 �5.482 11 GFi (BA 47)
6 4 24 64 �5.3652 11 GFd (BA 6)
6 �16 �80 28 5.5241 18 Cu (BA 19)
6 �44 �64 52 5.7818 24 LPs (BA 7)
6 �12 0 52 5.8066 30 GC (BA 24)
6 12 �84 48 6.0087 16 PCu (BA 7)
6 �36 �36 44 6.0831 11 LPi (BA 40)
6 �32 �8 8 6.5866 14 Insula
6 �36 28 36 6.7772 12 GFm (BA 9)
6 36 �32 56 6.8035 35 LPi (BA 40)
6 40 20 �4 8.3683 15 GFi (BA 47)
6 48 12 �28 9.6304 12 GFi (BA 47)
8 �40 �88 16 �8.8489 82 GL (BA 19)
8 16 64 4 �8.7088 53 GFs (BA 10)
8 �24 20 32 �6.8068 19 GFm (BA 9)
8 �44 �60 �24 �5.6193 34 GF (BA 37)
8 48 8 16 �5.524 28 GFi (BA 44)
8 4 48 36 �5.5045 12 GFd (BA 10)
8 �20 44 �8 �5.3603 13 GC (BA 32)
8 28 �84 �12 �5.2614 31 GL (BA 18)
8 �8 �32 �32 5.2443 25 Midbrain
8 �36 20 �12 5.3792 23 GFi (BA 47)
8 �20 �24 �8 5.5947 12 Pulvinar
8 8 �96 �20 5.6234 25 GL (BA 18)
8 8 �28 �36 5.772 20 Midbrain
8 40 �4 4 6.0159 14 GTs (BA 22)
8 32 32 44 6.1309 13 GFm (BA 8)
8 4 �64 �4 6.2584 13 GL (BA 19)
8 40 �68 32 6.6734 23 LPi (BA 40)
8 �36 �12 �8 7.2935 48 Putamen
10 �24 �72 40 �10.5928 27 LPi (BA 40)
10 �44 �12 40 �8.7358 29 GPrC (BA 6)
10 60 12 24 �7.0075 20 GFi (BA 44)
10 28 52 8 6.7585 16 GFs (BA 10)

Task demands LV
2 44 �16 56 �7.7802 14 GPrC (BA 4/6)
2 40 �84 16 �7.0887 20 GOm (BA 18)
2 12 �32 �52 �5.1056 11 Pons
2 44 �28 24 5.407 21 LPi (BA 40)
2 0 60 �4 10.4845 154 GFs (BA 10)
4 32 �60 0 �8.3275 17 GL (BA 19)
4 16 �8 �32 �6.2251 14 GH (BA 28)
4 �4 28 28 �6.1385 11 GC (BA 32)
4 �60 �32 �12 4.7803 11 GTm (BA 21)
4 12 �48 48 5.3033 18 GC (BA 31)
4 �28 �12 4 5.4148 20 Putamen
4 �8 52 44 5.7221 19 GFd (BA 8)
4 �40 �36 0 6.4827 38 GTT (BA 42)
4 60 �20 �4 6.8219 44 GTT/GTs (BA 41)
4 12 �44 20 6.9448 16 GC (BA 23)
4 0 32 64 6.9457 18 GFs (BA 6/8)
6 �56 20 �24 �7.2603 32 GTs (BA 38)
6 28 �52 0 �5.8115 14 GL (BA 19)
6 �36 �80 �12 4.8746 11 GOm (BA 19/37)
6 �56 �20 40 5.1837 15 GPrC (BA 4/6)
6 �20 �16 �12 5.667 13 Midbrain
6 �56 �32 �8 5.9854 26 GTm (BA 21/22)

Table 2 Continued

Lag x (mm) y (mm) z (mm) BSR Cluster size
(voxels)

Region

6 12 44 0 6.3428 23 GFs (BA 10)
6 60 �20 40 7.2913 31 GPrC (BA 4/6)
6 16 �12 12 7.7929 24 Thalamus
6 �52 �56 �8 7.9015 15 GTm (BA 21/37)
8 24 48 40 �6.8157 13 GFs (BA 9)
8 �28 48 �24 �6.1058 27 GFi (BA 11)
8 �4 20 �16 �5.5713 11 Gsc (BA 25)
8 �4 �20 0 4.9195 11 Thalamus
8 �44 �44 20 5.4323 12 LPi (BA 39/40)
8 �16 �68 40 5.4813 12 PCu (BA 19)
8 �36 �32 52 5.8544 30 GPoC (BA 4)
8 �48 �60 �8 6.2422 11 GTm (BA 21)
8 36 0 28 6.2908 13 GFi (BA 44)
8 �4 �32 20 6.723 32 GC (BA 23)
8 44 �48 48 7.1422 21 LPi (BA 40)
8 60 �8 36 8.8344 39 GPrC (BA 4/6)
10 20 �92 �4 �8.2562 16 GL (BA 17/18)
10 32 �36 60 �7.5726 33 LPs (BA 7/40)
10 �24 24 36 �5.8762 18 GFm (BA 9)
10 �8 56 20 �5.7708 11 GFd (BA 9)
10 32 �4 0 6.2581 16 Pons
10 �16 �56 32 6.9027 25 PCu (BA 7)
12 16 �96 24 �9.0107 44 GO (BA 19)
12 44 40 20 �8.9759 14 GFm (BA 46/9)
12 8 44 �20 �6.5604 13 GFd (BA 11)
12 �44 �80 28 �6.3583 51 GO (BA 19)
12 �4 24 32 �5.9349 12 GC (BA 32)
12 �40 52 �8 �5.7705 37 GFm (BA 10)
12 �12 �68 8 �5.6775 24 Cu (BA 31)
12 60 �60 16 �5.4906 27 GTm (BA 39)
12 �52 28 0 �5.1837 12 GFi (BA 45)
12 4 �36 68 5.0485 12 LPc (BA 5/7)
12 �48 �52 �16 5.7468 21 GTm (BA 37)
12 52 �20 8 5.8708 27 GTT (BA 41/42)
12 20 �16 12 6.2956 66 Pulvinar
12 4 �40 20 6.9112 106 GC (BA 29/30)
12 �40 �20 16 7.2314 49 GTT (BA 41/42)
12 44 4 4 7.3045 11 GTs (BA 22)
12 �28 �4 24 8.3192 38 Caudate
12 20 �72 44 8.5448 26 PCu (BA 7)
14 16 �84 20 �8.3323 36 GO (BA 19)
14 �24 �8 60 �8.2393 23 GPrC (BA 4/6)
14 �12 �76 4 �7.5163 42 GL (BA 18)
14 16 �76 �4 �6.5799 18 GL (BA 18)
14 �44 0 60 �6.2714 17 GPrC (BA 4/6)
14 �40 �80 20 �5.9341 23 GTm (BA 19)
14 32 56 �12 �5.0919 21 GFm (BA 10)
14 �40 52 20 �4.6846 11 GFm (BA 46)
14 �36 36 44 �4.5176 12 GFm (BA 8/9)
14 �28 �60 �36 4.6213 17 Cerebellum
14 �12 �32 12 6.2364 23 Pulvinar
14 �52 �28 �12 8.1038 28 GTm (BA 21)

Note: Lag refers to the period, in seconds, after stimulus onset during which the peak occurred. x,

y, and z indicate voxel coordinates in MNI space. BSR represents each voxel’s seed PLS

parameter estimate divided by its standard error. Cluster size refers to the number of contiguous

voxels included in the cluster. Regions indicate the gyral locations and BA of the cluster peak.

MNI coordinates were converted into Talairach coordinates using the mni2tal script (http://

eeg.sourceforge.net/mridoc/mri_toolbox/mni2tal.html). Gyral locations and BA were then

determined by reference to Talairach and Tournoux (1988).
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the hemodynamic response function for this voxel (Fig. 2B)

reveals that mean activation at the significant lags is greater

during the visual tasks because this voxel is deactivating near

the end of the lag window for auditory tasks. Therefore, there is

greater change in activation for auditory conditions. The

opposite pattern also occurs for auditory tasks. Saliences

related to increased activation during the auditory tasks

include BA 19, which is a region typically thought of as

unimodal visual cortex. This area showed sustained activity

across the entire temporal window for the auditory condition,

but showed more modulation in visual conditions (data not

shown). Again, it is not surprising that visual sensory areas are

activated during the auditory tasks because participants are

asked to fixate on a fixation cross during auditory task

performance, and can see parts of the headcoil and the magnet

bore. Importantly, the change in activation in unimodal visual

areas is greater for visual tasks than auditory tasks.

The second significant LV was the contrast between

experimental and control tasks (task demands LV, Fig. 3A, see

Table 1 for a list of local maxima). Dominant negative weights

(related to increased activation during control tasks) were

located in left middle frontal gyrus (BA 9 and 10), left medial

frontal gyrus (BA 6 and 10), left ACC (BA 24), right precuneus

(BA 7), and paracentral lobule (BA 4). Dominant positive

weights (related to increased activation experimental tasks)

were located in left medial frontal gyrus (BA 6), right superior

temporal gyrus (BA 42), right inferior frontal gyrus (BA 47),

right lenticular nucleus, right superior parietal lobe (BA 7),

right inferior parietal lobe (BA 40), bilateral angular gyrus (BA

39), and right cerebellar vermis. The right inferior frontal gyrus

(BA 47) was used as the seed voxel for the seed PLS analysis

described below. The hemodynamic response function for this

voxel is displayed in Figure 3B, showing both early and late

separation between experimental and control tasks.

Seed PLS

The seed PLS was conducted only for experimental tasks. The

control tasks were not included to focus the analysis on the

potential dependence of functional connectivity on experimenter

manipulated variations in cognitive demands and modality. It

should be emphasized that inclusion of the control task in the

analysis did not change the pattern of results we report here.

Two significant patterns were identified by the seed PLS. The

first depicted a task demand by modality interaction (singular

value = 159.35, P < 0.002, interaction LV, Fig. 4, see Table 2 for

a list of local maxima). The correlation of the brain scores with

the seed voxel was negative for auditory comparison and

positive for auditory temporal sequencing, whereas the pattern

was reversed for the visual conditions (i.e., positive for visual

comparison and negative for visual temporal sequencing). The

singular image showed dominant positive weights in left

superior temporal gyrus (BA 22), left frontal operculum, and

more dorsally in superior bilateral parietal lobe (BA 40/7).

Dominant negative weights were observed in several areas of

occipital cortices, extending from ventral to middle and

dorsomedial locations, and right anterior prefrontal gyrus (BA

9). A better appreciation for the nature of this interaction can

be obtained by viewing the correlation between the seed voxel

and selected locations from the singular image. Figure 5A

shows the correlation profile for the left superior temporal

cortex region with the seed. For the auditory tasks, the

correlation profile shows a strong differentiation at lag 2, with

auditory comparison showing a negative correlation and

auditory temporal sequencing a positive correlation with the

seed voxel. The visual tasks differentiate at the same lag, with

visual comparison showing a positive correlation and visual

temporal sequencing a negative correlation, but the difference

was more sustained across subsequent lags. The correlation

profile for the anterior PFC voxel is shown in Figure 5B. Here

the 2 modalities show a different profile of differentiation, both

early in lag 1, and then reversing later in lag 6. The maximum

bootstrap ratio for this prefrontal voxel was at lag 6, suggesting

that the most robust differentiation occurred at that lag.

The second LV showed a task main effect (singular value =
152.44, P < 0.016, task demands LV, Fig. 6, see Table 2 for

a list of local maxima), with positive correlations for temporal

sequencing tasks and negative for comparison tasks. The

confidence interval was larger for visual temporal sequencing

relative to other tasks, suggesting it was somewhat less stably

represented, but the 95% interval did not cross zero. The

dominant positive saliences, indicating a more positive corre-

lation in temporal sequencing tasks, were observed in

ventromedial PFC (BA 8 and 10) in early lags, and later lags

showed strong weights for middle temporal gyrus (BA 21, 22,

Figure 5. Correlation profiles for selected voxels identified in the interaction LV as
shown in Figure 4. Correlations are plotted across the time window from stimulus
onset (T 5 0). (A) The correlation for left superior temporal cortex (BA 21, MNI
template coordinates: x 5 �60, y 5 �48, z 5 0) and panel B shows medial PFC
(BA 10, MNI template coordinates: x 5 16, y 5 64, z 5 4).
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and 37) and thalamus. Negative saliences, indicating relatively

more negative correlations for the comparison tasks, were

concentrated on dorsolateral and anterior prefrontal gyrus (BA 9),

and occipitoparietal cortices (BA 7 and 19). Representative

correlation profiles for maxima from the singular image are

presented in Figure 7. The profile for the ventromedial pre-

frontal region (Fig. 7A) shows a strong differentiation between

comparison and temporal sequencing at lags 1 and 2, albeit

somewhat less for visual comparison as might be anticipated

from the lower overall correlation for this condition. The

profile for the occipitoparietal region (Fig. 7B) shows a more

sustained differentiation beginning at lag 1 and extending

across the remaining temporal window.

Discussion

We examined the effect of input modality and task demands on

neural network organization for simple working memory tasks.

Task PLS identified activation patterns that independently map

onto modality and task demands. Analysis of functional

connectivity (seed PLS) suggested these activity patterns

interact.

We used task PLS to identify spatial patterns of brain activity

that represent the association between brain images and

experimental design. The first significant task PLS LV suggests

that functional network organization varies with modality not

only in temporal and occipital cortex, but also in prefrontal and

parietal cortex. The finding that there are modality-specific

areas outside conventional sensory cortices is consistent with

previous literature. For example, Bushara et al. (1999)

measured brain activity with PET while participants performed

auditory and visual spatial localization tasks. They found

modality-specific areas in the superior parietal lobule, middle

temporal and lateral PFC. Crottaz-Herbette et al. (2004) used

fMRI to explore modality-based differences in a verbal and

written numbers in a working memory task. They found

Figure 6. Singular image (top) and correlation between brain scores and the BA 47 seed voxel for the task demands LV from seed PLS. The singular image identifies peak voxels
showing a different pattern of correlations with the BA 47 voxel across tasks. The correlation bar graph captures the task-dependent changes in the correlation with the seed
voxel of the areas identified in the singular image. The error bars indicate the 95% confidence interval derived from bootstrap estimation.

Cerebral Cortex May 2009, V 19 N 5 1051



modality-based differences in the left posterior parietal cortex

and left dorsolateral PFC. In nonhuman primates, Romanski and

Goldman-Rakic (2002) found neurons in the ventral PFC that

showed selective responses to auditory or to visual stimuli.

Finally, both the auditory and visual system are organized into

2 domain-dependent processing streams (Cavada and Goldman-

Rakic 1993; Distler et al. 1993; Rauschecker et al. 1997; Belin

and Zatorre 2000; Romanski et al. 2000; Alain et al. 2001).

Modality of input seems to interact with these processing

streams in that activations following auditory input have

different anatomical locations outside the sensory cortices as

compared to activations following visual input.

The second significant task PLS LV suggests that network

organization varies with experimental versus control tasks in

ventrolateral and medial PFC, temporal pole, and parietal

cortex. Of note is the finding is that there is relatively more

frontal involvement (including left ACC, left medial PFC, and

left dorsolateral PFC) during the control tasks than during the

experimental tasks. The spatial pattern of activation during the

control tasks is consistent with the default mode literature,

which suggests ventral ACC and medial PFC are involved in

a network that is active during conditions with no particular

external focus, and reduced during the performance of

externally cued tasks (Raichle et al. 2001). Although our

control tasks involve minimal cognitive demand, they do not

represent a true resting state because they involve externally

cued events. However, Greicius et al. (2003) showed that the

default mode network only is minimally disrupted by sensory

processing tasks with limited cognitive demand. They looked at

the functional connectivity of ventral ACC and posterior

cingulate during a visual processing task and during rest. They

found that that functional connectivity patterns were very

similar in both conditions: virtually identical for ventral ACC,

and very similar but more inclusive for posterior cingulate in

the visual processing task. The added regions included left

dorsolateral PFC, which also shows up as a node in the network

identified in the current experiment for the control tasks.

The task PLS showed no reliable large-scale activity patterns

to suggest an interaction between modality and task demands.

However, to do the tasks, both networks must be engaged. A

previous study of functional connectivity (Nyberg et al. 2000)

suggests that it is possible that the convergence of networks

could be revealed by their interactions. Additionally, in a pre-

viously published analysis of the data used in the current study,

we performed behavioral PLS to examine the neural patterns

that capture the optimal association between brain images and

reaction time (Protzner and McIntosh, 2007). We found

a significant interaction between stimulus modality and task

demands in terms of brain--behavior correlations. We used seed

PLS to see if there exists an interaction between modality and

task demands in terms of functional connectivity. Here, we

were interested in whether correlations between the PFC and

the rest of the brain changed across tasks. Within the PFC, we

chose our ROI statistically. We used the voxel that most stably

differentiated experimental from control tasks, as identified in

the task demands LV from the task PLS. This voxel was located

in right ventral PFC, in BA 47. As mentioned in the introduction,

ventral PFC tends to be recruited for maintenance operations

(Courtney et al. 1998; D’Esposito et al. 1998; Wager and Smith

2003). Additionally, a review paper by Petrides (2005) and

a meta-analysis by Wager and Smith (2003) suggest that BA 47

is more active when participants make active decisions about

information maintained in working memory. These are

common processing demands for both the temporal sequenc-

ing and comparison tasks.

The seed PLS revealed 2 significant LVs regarding BA 47

functional connectivity: a task main effect, and an interaction

between stimulus modality and task demands. The other 2

potential patterns of functional connectivity—one showing

modality main effect and the other a common task-independent

pattern—were not statistically reliable. The task main effect

identified modality-independent task differences in functional

connectivity. Regions that showed a positive correlation

with BA 47 during temporal sequencing were ventromedial

PFC, superior temporal cortices, thalamus and basal ganglia.

Regions that showed positive correlations during comparison

involved more dorsal and lateral PFC regions, dorsal occipital,

and parietal cortices. Such differences in functional con-

nectivity patterns could reflect the higher demands in terms

of attention and the need to manipulate stimuli in the

comparison task. The greater attentional demands could

be inferred from the behavioral data wherein reaction times

were longer for comparison task independent of stimulus

modality.

Figure 7. Correlation profiles for selected voxels identified in from the task demands
LV as shown in Figure 6. Correlations are plotted across the time window from
stimulus onset (T 5 0). (A) The correlation for ventromedial PFC (BA 10, MNI
template coordinates: x 5 0, y 5 60, z 5 �4); and (B) occipitoparietal cortex (BA
19, MNI template coordinates: x 5 16, y 5 �94, z 5 24).
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The second pattern of BA 47 functional connectivity showed

an interaction between task and stimulus modality, and was

active simultaneously with the task main effect. Some pre-

frontal regions were engaged in this pattern, but more

dominant contributions came from temporal and occipital

cortices, distinct from primary sensory areas (e.g., lateral

occipital, posterior and anterior superior temporal cortices).

For example, as shown in Figure 7B, the nature of this

interaction was such that the occipitoparietal cortex showed

a similar absolute magnitude of functional connectivity with

the BA 47 voxel in all tasks, but the sign of the functional

connection varied with stimulus modality and task. Impor-

tantly, temporal and occipital regions showed nonzero func-

tional connectivity in all conditions, rather than showing a zero

connectivity in one modality and nonzero in the other. The

interaction represents the modulation of functional connectiv-

ity (identified in the task main effect) that is dependent on

performing the task in a particular stimulus modality.

Considered together, the 2 patterns of functional connec-

tivity derived from the seed PLS suggest that the same cognitive

processes are performed by different functional networks

when the modality of input changes. Therefore, our ventrolat-

eral PFC seed showed contextually dependent changes in

functional connectivity in relation to the modality of input

despite similar cognitive demands. This observation supports

the idea that cognitive processes are a supported by reentrant

interactions at local and distal levels.
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