
RESEARCH ARTICLE

Hybrid encryption technique: Integrating the

neural network with distortion techniques

Raed Abu ZitarID
1☯, Muhammed J. Al-MuhammedID

2☯*

1 Sorbonne University Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, U.A.E.,

2 Faculty of Information Technology, American University of Madaba, Madaba, Jordan

☯ These authors contributed equally to this work.

* mhd.jassem@gmail.com

Abstract

This paper proposes a hybrid technique for data security. The computational model of the

technique is grounded on both the non-linearity of neural network manipulations and the

effective distortion operations. To accomplish this, a two-layer feedforward neural network

is trained for each plaintext block. The first layer encodes the symbols of the input block,

making the resulting ciphertext highly uncorrelated with the input block. The second layer

reverses the impact of the first layer by generating weights that are used to restore the origi-

nal plaintext block from the ciphered one. The distortion stage imposes further confusion on

the ciphertext by applying a set of distortion and substitution operations whose functionality

is fully controlled by random numbers generated by a key-based random number generator.

This hybridization between these two stages (neural network stage and distortion stage)

yields a very elusive technique that produces ciphertext with the maximum confusion. Fur-

thermore, the proposed technique goes a step further by embedding a recurrent neural net-

work that works in parallel with the first layer of the neural network to generate a digital

signature for each input block. This signature is used to maintain the integrity of the block.

The proposed method, therefore, not only ensures the confidentiality of the information but

also equally maintains its integrity. The effectiveness of the proposed technique is proven

through a set of rigorous randomness testing.

Introduction

Information security consists of three fundamental pillars: confidentiality, integrity, and avail-

ability [1]. Maintaining these three pillars is a must for full and true information protection. It

is a bit surprising that most of the work is dedicated to maintaining confidentiality only

(through encryption techniques) but ignoring the other security pillars. Reviewing the litera-

ture, one can find too many encryption techniques that use different computational models to

encrypt plaintexts. In [2], authors proposed a dynamic approach for encryption in which a

static knowledge of symbols and mapping tools are defined, but also in which the computa-

tions of the algorithm, and consequently the encryption, is dynamically controlled by adjusting

the behavior of the operations. In [3] authors proposed an encryption technique, which used a

random generation function whose computational behavior depends on both plaintext and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abu Zitar R, Al-Muhammed MJ (2022)

Hybrid encryption technique: Integrating the neural

network with distortion techniques. PLoS ONE

17(9): e0274947. https://doi.org/10.1371/journal.

pone.0274947

Editor: Chakchai So-In, Khon Kaen University,

THAILAND

Received: November 29, 2020

Accepted: September 7, 2022

Published: September 28, 2022

Copyright: © 2022 Abu Zitar, Al-Muhammed. This

is an open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-2693-2132
https://orcid.org/0000-0002-1845-4364
https://doi.org/10.1371/journal.pone.0274947
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274947&domain=pdf&date_stamp=2022-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274947&domain=pdf&date_stamp=2022-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274947&domain=pdf&date_stamp=2022-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274947&domain=pdf&date_stamp=2022-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274947&domain=pdf&date_stamp=2022-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274947&domain=pdf&date_stamp=2022-09-28
https://doi.org/10.1371/journal.pone.0274947
https://doi.org/10.1371/journal.pone.0274947
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

key. In [4], authors proposed a chaotic-based approach in which the chaotic number system

induces large confusion in the resulting ciphertext. In [5, 6], authors provided a deep analysis

of the performance of many DNA-based techniques. In [7], authors proposed DNA based

encryption technique. This technique depends on the complexity of DNA sequences to hide

the ciphertext symbols. In [8], authors proposed an image encryption technique that depends

on merging between DNA substitution and shuffling techniques for achieving high confusion.

Using several one-dimensional chaotic systems was also proposed in [9]. In this approach, the

output of these chaotic systems was combined to maximize the confusion. In [10] authors pro-

posed a dynamic encryption technique in which the confusion is maintained by dynamically

changing some of the algorithm parameters. In [11], authors proposed a highly nonlinear sub-

stitution technique augmented with effective key and plaintext based distortion methods. In

[12], authors proposed a neural network-based image encryption technique augmented with

chaotic noises for maximum resistance against attacks. The advanced encryption standard

AES [13–15], Blowfish [16], Serpent [17], MARS [18], and Data Encryption Standard DES [19,

20] along with its variations [21] all use the substitution and shifting operations along with the

key rounds to produce enough confusion that maintains the confidentiality of the information.

Other encryption techniques depend mostly on complicated mathematical operations for pro-

tecting the privacy of the information (e.g. RSA [22, 23], RC5 [24, 25], HiSea [26]).

Very important techniques were proposed in the image encryption arena. Color image

encryption based on one-time keys and robust chaotic maps was proposed in [27]. This

encryption technique used a linear piecewise chaotic map to generate the keys with a real ran-

dom generator. In [28], the authors proposed a similar method but augmented with a bit level

permutations. An encryption technique based on chaotic maps along with DNA coding was

also proposed in [29]. Perceptron model was incorporated for encryption in [30]. In [31],

computational model for simultaneous picture encryption methods using a proposed permu-

tation and parallel diffusion is presented. A dynamic coupling coefficient with a mapping lat-

tice is used for private images [32]. In [33], a semi-tensor product matrix is used to create

chaotic encryption with a secret key. A Boolean network with image encryption is used with a

semi-tensor matrix [34], comparative results were achieved. Fractal Sorting matrix (FSM)

with global chaotic pixel diffusion is used in [35]. The R, G, and B components of a pixel are

encoded based on chaos theory in [36]. Nonadjacent coupled lattices are used in image encryp-

tion in [37]. DNA sequence is used in encoding the jumbled image, also chaotic pseudoran-

dom sequences are generated in [38]. Hybrid chaotic mapping and dynamic random growth

techniques are used in [39]. All the previously mentioned techniques proved their ability to

resist many types of attacks.

Despite their importance, all these methods regardless of their computational models and

input type (text or image) address only one pillar of security: confidentiality. Although infor-

mation confidentiality is extremely important, researchers realize that maintaining informa-

tion integrity is equally important and should not be overlooked [40]. Many techniques,

therefore, have been proposed to effectively maintain information integrity. Examples of such

techniques include MD5 [41], SHA-x [42, 43], Whirlpool [44], and BLAKE2 [45]. These tech-

niques produce a unique security code (typically a 512-bit hashing value) for plaintext and this

security code is used as a reference for checking if information integrity has been tampered

with. Additionally, compared to the state-of-the-art techniques, the proposed technique pres-

ents a unique method that combines computational processing (FF neural learning by weights

adjustment) along with symbolic substitution. Using this combination, the proposed tech-

nique achieves high diffusion and confusion by the sequence of keys generation (weights of

the neural network) and the highly illusive table look up method (the symbolic approach). All

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 2 / 27

https://doi.org/10.1371/journal.pone.0274947

are accompanied by another RNN to generate hashing values to guarantee and verify integrity

of data.

This paper offers a hybrid encryption technique that addressed both information security

and integrity. The proposed technique combines the non-linear complicated transformation

of the neural network with the sophisticated distortion operations. The hybrid technique

makes use of a two-layer feedforward neural network. The first layer is an encryption layer,

which is trained on each input block of the plaintext. This training yields a set of weights (play

the role of the encryption key) that are used to encrypt the input block. The second layer gen-

erates a new set of weights for canceling the impact of the first layer and recovering the plain-

text block. Besides these two layers, the encryption technique includes also a recurrent neural

network (RNN) that is executed in parallel with the feedforward neural network layers to gen-

erate a security code. The generated security code is used for maintaining the integrity of the

input block. The distortion operations twist further the output of the encryption layer (the first

layer). The distortion operations use random noises and transformation actions such as sym-

bol substitution, swapping, and bit flipping to greatly maximize the confusion of the resulting

ciphertext.

To the best of our knowledge, we are not aware of any other encryption technique that

addresses both confidentiality and integrity in a single and coherent method. All of the tech-

niques that we know of either address confidentiality or integrity, but not both. This paper

addresses both and makes the following contributions.

1. An effective hybrid encryption technique that addresses the two key pillars of information

security: confidentiality and integrity.

2. The technique uses the connectionist approach (neural network) whose output is a pre-

ciphertext with no correlation to the input plaintext

3. The proposed technique combines the random-induced noise with the tricky manipulation

operators into a coherent distortion layer that imposes high confusion in the ciphertext.

4. The technique ensures the integrity of each individual block by generating a hash value for

it. The generation of the hash value incurs no additional processing time since it is pegy-

backed with the training time when encrypting the block.

Neural encryption/decryption models

The proposed encryption technique uses artificial neural network techniques [46–50]. In par-

ticular, we exploit the long-established two-layer supervised feedforward neural network

(please see Fig 1). This neural network (NN) is trained to function as a mirror, where the input

vector equals the target vector. Fig 2 shows the architectures of the feedforward NN and the

RNN.

The training stage includes finding a set of weights for the hidden layer and a set of weights

for the output layer such that the input vector equals the target vector. In our approach, we

trained the neural network for each of the 256 ASCII characters. We used Genetic algorithms

to minimize the mean squared error, which represents the difference between the input vector

and the target vector, until this error reaches the pre-specified threshold. (Unlike other train-

ing algorithms such traditional gradient descent based algorithms, Genetic algorithms can

converge faster to the desired global optimum and do not easily get caught in a local opti-

mum.) When the error is less than the pre-specified threshold, the algorithm converges to the

right two sets of weights for both layers and the neural network becomes a mirror. These

weights (for both layers) are stored along with the input vector (or the ASCII character). The

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 3 / 27

https://doi.org/10.1371/journal.pone.0274947

weights for all the 256 characters create the key file. The key file must be kept secret and com-

municated in a secure fashion. (Communicating the weights file (the key) is similar to commu-

nicating the encryption key in conventional ciphers. We, therefore, use the same methods

such as [51] for secure key communication.) Note, the communicated key file can be used by

all the communicating parties to encrypt plaintext using the weights of the hidden layer and

also used for decryption ciphertexts using the weights of the output layer. Fig 3 provides an

example of the training and testing processes for the feedforward neural network (mirroring).

Fig 1. The mirror two-layered NN used for encryption/decryption and signature.

https://doi.org/10.1371/journal.pone.0274947.g001

Fig 2. An architecture of recurrent and feedforward neural networks. (a) Recurrent Neural Network, (b)

Feedforward Neural Network.

https://doi.org/10.1371/journal.pone.0274947.g002

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 4 / 27

https://doi.org/10.1371/journal.pone.0274947.g001
https://doi.org/10.1371/journal.pone.0274947.g002
https://doi.org/10.1371/journal.pone.0274947

The NN performs the encryption blockwise. The hidden layer of the neural network

encrypts the symbols of the input block and produces a corresponding ciphertext. The encryp-

tion for each character is done using the weights of the hidden layer associated with this char-

acter. In particular, we combine these weights by multiplying each weight with the character

and sum these multiplications. The decryption of the characters of the ciphertext block is per-

formed using the sets of the output layer’s weights associated with the characters. Specifically,

we multiply each weight with the ciphered character and sum the multiplications. Because our

feedforward neural network functions as a mirror, the output layer can successfully recover

the original plaintext block, provided of course that the right weights are given. Note, there is

no need to train the neural network during the decryption: just use the weights of the output

layer in the key file.

Before leaving this section, we would like to comment on the training time. According to

our simulation, the training time is very negligible. Training our two-layer feedforward neural

network on the 256 ASCII characters required less than one second when done on Intel Core

i7 computer with Matlab [52]. The average training time for 100 different random initializa-

tions of weights was approximately 1.0313 seconds. This average is very reasonable given that

we can reuse the produced weights to encrypt any number of plaintexts. In addition, we expect

the average time to remarkably decrease if more powerful hardware and assembly language

(instead of Matlab) are used.

Fig 3. Training error versus epochs (an epoch is a whole batch of input vectors).

https://doi.org/10.1371/journal.pone.0274947.g003

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 5 / 27

https://doi.org/10.1371/journal.pone.0274947.g003
https://doi.org/10.1371/journal.pone.0274947

Recurrent neural network

The proposed encryption technique uses a recurrent neural network to create a signature (a

hashing value), which is used for maintaining the integrity of the plaintext block [50]. The

RNN exploits both the semantics of the input characters and their texture (order in the input)

to create a unique signature for the input block. The feedbacks to the RNN, as shown in Fig 2,

force the state of RNN to be a function of the current input and the previous inputs. This fea-

ture of our proposed RNN enables it to detect any changes to the input characters and react by

drastically changing the signature for this block. Therefore, two different blocks will receive

different signatures even if they differ in only one bit.

The RNN consists of 8 neurons each is associated with a different random weight obtained

from the random generator (discussed next). Each neuron uses its associated random weight

along with the input character to generate one real number for this input character. The neu-

ron updates its output (the real number) when it receives a new input character. The update is

done by applying a simple linear function whose output can be any value within the interval [–

1, +1]. When all the characters of the input block are processed, the output of 8 neurons are

combined to create the final signature for the input block. (Since RNN depends only on the

input characters and the initial random weights to change its output, no training is required

for the RNN).

For example, we applied RNN to the following text. Sport includes all forms of competitive
physical activity or games which, through casual or organized participation, aim to use, maintain
or improve physical ability and skills while providing enjoyment to participants, and in some
cases, entertainment for spectators. Hundreds of sports exist, from those between single contes-
tants, through to those with hundreds of simultaneous participants, either in teams or competing
as individuals. The RNN generated the hashing values ‘04A8BE’, ‘0705F3’, ‘0BBCED’, and

‘040004’.

We conclude this section by presenting a simple but informative comparison between RNN

hashing and two standard hashing algorithms: MD5 and SHA-x [41, 43] (see Table 1). The

numbers in Table 1 shows that RNN has better performance especially with respect to the colli-

sion detection (very important feature for any hashing technique).

Two–layer neural network cipher

Fig 4 describes the two-layer feedforward neural network cipher (NN). The cipher must be

trained before it can be used for encryption or decryption. As previously pointed out, the

cipher is trained for each of the 256 ASCII characters to function as a mirror for each charac-

ter. Once trained, the weights are stored and used as a key for encrypting or decrypting any

number of plaintexts. Of course, the training can be redone with new random weights to pro-

duce a totally different key if there are security concerns about the key (for example learned by

an unauthorized party).

Table 1. The recurrent NN performance.

Parameters RNN1 RNN2 MD5 SHA-1

Block size (characters) 1000 1000 512 512

Message Digest size (characters) 10 10 128 160

Word size (characters) 10 10 32 32

Collision found None None Yes Theoretical attack

Performance (Cycle per byte) 9.9 10.8 4.99 3.47

https://doi.org/10.1371/journal.pone.0274947.t001

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 6 / 27

https://doi.org/10.1371/journal.pone.0274947.t001
https://doi.org/10.1371/journal.pone.0274947

The cipher encrypts the n–symbol blocks of plaintext using the key (the weights of the hid-

den layer). In particular, the input character ci, is encoded using the associated weights with

this input character (ci) to produce the ciphered character bi. In parallel, the character ci is also

passed to the recurrent neural network (RNN) to produce a signature for the character ci. The

encryption process is repeated until all the block symbols ci are encoded and the signature for

the symbols ci’s are accumulated to produce the final signature for the entire block symbol.

The ciphered blocks b1b2. . .bn are combined into one pack. The entire ciphertext and the sig-

nature produced by recurrent neural network are sent over the network. The recipient can

straightforwardly decrypt the ciphertext and check the integrity provided that we have already

communicated the key file with this recipient. The decryption is easy once the key available.

The two sets of weights (hidden and output) are used to rebuild identical two–layered feedfor-

ward neural network. Since we use the same weights (used during the encryption), the recon-

structed NN is necessarily identical to the original one. Therefore, it can successfully recover

the corresponding plaintext block using the output layer. Furthermore, the weights associated

with the RNN’s output, are used to reconstruct identical RNN, which will be used to recompute

the signature of the restored block and compare the recomputed signature with the sent one.

Distortion process

The distortion process imposes additional confusion on the ciphertext produced by neural net-

work. Each input symbol of the ciphertext is distorted using effective distortion operations.

The distortion operations function synergistically to greatly boost the confusion by cutting the

relations between the blocks of the input plaintext and the resulting ciphertext. Fig 5 outlines

the flow of control between the distortion operations. As it could be seen, the input is first pro-

cessed by the dual-diffusion method. This method sniffs changes in the input block symbols

and propagates these changes to impact every bit in the block. The output of this operation is

next processed by the block substitution method, which uses a substitution table. The distor-

tion process further distorts the block by mixing its symbols with highly complicated codes

generated by expanding the encryption key through an effective expansion method. The ran-

dom generator provides unpredictable, though reproducible, random numbers to support the

functionality of the three distortion methods and maximize their effectiveness. The following

subsections discuss the technical details of these distortion operations.

Fig 4. The encryption process using NN.

https://doi.org/10.1371/journal.pone.0274947.g004

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 7 / 27

https://doi.org/10.1371/journal.pone.0274947.g004
https://doi.org/10.1371/journal.pone.0274947

Random generator

This section describes a random number generator, which is adopted from [8] and whose algo-

rithmic steps are reproduced in Fig 6. The random generator first expands the key to 64 bytes

(symbols). The intuition is that large seeds lengthen the period of the generator so that it can

produce long sequences without repeating the same sequence. The key extension method uses

Substitute and Manipulate operations whose technical details are beyond the scope of this

paper and can be found elsewhere [53]. The random number generation generates its output

by repeating steps (2) through (7). Before generating any random number, all the symbols of

the seed are substituted in step (2) using S–BOX (described next). This step is extremely

important since it (i) refreshes the seed symbols and weakens the relationship to the input seed

and (ii) ensures high changes to the new seed if any bit in the original seed changes. The opera-

tor FlipR (step 3) flips the right n bits of the seed’s symbol at the index m. The values of n and

m are calculated from respectively the seed symbols at indexes 0 and 1. That is, n = (INT) Seed

[0] and m = (INT) Seed [1]. The ShiftL operator left rotates the bits of the Seed by k bits. The

value of k is not prespecified and it is the integer value of the symbol Seed [2]. The main objec-

tives of the steps (3) and (4) are to deeply change the Seed from one hand and to increase the

effectiveness of the Substitute operation on other hand. Once the seed is prepared, the random

numbers are generated using steps (5) and (6), where the integer values of the seed’s symbols

are summed up by multiplying the integer value of the Seed symbol at index i with the power

of 256.

Fig 6. The algorithmic steps of the random generator.

https://doi.org/10.1371/journal.pone.0274947.g006

Fig 5. The control flow of the distortion layer.

https://doi.org/10.1371/journal.pone.0274947.g005

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 8 / 27

https://doi.org/10.1371/journal.pone.0274947.g006
https://doi.org/10.1371/journal.pone.0274947.g005
https://doi.org/10.1371/journal.pone.0274947

There are many security advantages to adopting this random generator. First, as described

in [8], the seed is entirely based on the encryption key. This means that the sequence of the

generated random numbers depends on the key. Second, the generator is very sensitive to the

encryption key. Minor changes to the key result in very different sequences of random num-

bers. Third, it produces extremely long sequences of random numbers without any repeated

patterns. This is a very important property to ensure that the patterns that naturally appear in

the input text (plaintext) are greatly removed. Fourth, the generator uses simple steps (see Fig

6). It is, therefore, highly efficient and does not require significant CPU power or memory.

These advantages make the random generator an ideal choice for this paper. Fifth, the resulting

random numbers have a very important feature: they are greatly independent due to the deep

manipulation of the seed using flip, shift, and substitution operators.

Symbol substitution method

The substitution scheme is a very essential step to remove the traces of the original input block

from the resulting block. It, therefore, weakens the correlation between the plaintext and its

respective ciphertext. To perform its functionality, the substitution method adopts the same

substitution space used by AES (Advanced Encryption Standard) technique. The substitution

space, S-BOX, is a 16 × 16 table that includes all the possible permutations of the byte (See Fig

7). The entries of S-BOX are organized exactly as suggested by AES because such an organiza-

tion makes the correlation between the input of the substitution method and its output sub-

stantially insignificant.

Fig 7. The S-BOX.

https://doi.org/10.1371/journal.pone.0274947.g007

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 9 / 27

https://doi.org/10.1371/journal.pone.0274947.g007
https://doi.org/10.1371/journal.pone.0274947

Given the substitution space S-BOX, substituting any symbol ai is straightforward. The sub-

stitution method maps the input symbol ai to the S-BOX by splitting the bits of ai into two

halves: the left half bits and the right half bits index respectively the rows and the columns of

the substitution table. (Note in Fig 7, the left half and the right half bits are 4 bits each.) The

value in the indexed entry is the mapping outcome, which is the substitution for ai. For exam-

ple, to substitute the input symbol “y” (“01111001”) using the substitution table in Fig 7, the

left four bits “0111” (7 in Hex) index the rows of the substitution table and the right four bits

“1001” (9 in Hex) index its columns. The value “b6” is the substitution for the input symbol

“y”.

We can reverse the impact of the symbol substitution method and recover the original

block easily. The algorithmic steps for recovering the original block are identical to that of the

symbol substitution method except that we use the inverse of the S-BOX (instead of S-BOX).

Fig 8 shows the S-Box Inverse for S-Box in Fig 7. For instance, recall that we substituted the

symbol “y” with the symbol “b6”. To restore the original symbol “y” from “b6”, we substitute

“b6” using the S-Box Inverse. The Hex “b” (of “b6”) indexes the rows and the Hex “6” indexes

the columns, resulting in the value “79”, which the Hex value of the original symbol “y”.

Dual diffusion method

The dual diffusion method is the major source of confusion in the proposed encryption tech-

nique. It takes a block of symbols b1b2. . .bn and processes them so that every bit in the input

affects every bit in the output. The processing of the dual diffusion method detects any bit-

Fig 8. The S-BOX inverse.

https://doi.org/10.1371/journal.pone.0274947.g008

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 10 / 27

https://doi.org/10.1371/journal.pone.0274947.g008
https://doi.org/10.1371/journal.pone.0274947

change in the input, magnifies this change, and spreads its impact to each symbol in the output

block. Out dual diffusion method achieves this by dual scanning of the block’s symbols along

with a random nosing (see Fig 9). The dual symbol scanning is performed by dual-pass substi-

tution operation: Forward pass and Backward pass.

The forward pass reads the symbols of its input left-to-right and processes each symbol

through symbol substitution and XOR operations. The first symbol b1 is substituted using the

operation SUB(b1), which splits b1 bits into two halves where the left half indexes the row of

the S-Box and the right half indexes the columns (exactly as described in previous Subsec-

tions). For the remaining symbols bi(i> 1), the forward pass uses the outcome of substituting

the previous symbol bi−1 to impact the substitution of the current symbol bi. Therefore, substi-

tuting the symbols bi(i> 1) is performed by XORing the input symbol bi with the outcome of

substituting the previous symbol bi−1 (i.e. with ci−1), and substituting the outcome of the XOR

operation, say ti. The result of the substitution is the symbol ci, which is the substitute for the

input symbol bi. Note that the forward pass spreads the impact of the symbols from left to

right. If an input symbol bi changes, the substitution for all the subsequent input symbols bj(j
> i) will be impacted as well.

The backward pass reads the symbols of its input (the output of the forward pass) from

right-to-left. It functions like the forward pass except that it processes the input backward. As

such, the backward pass substitutes the symbol cn (the rightmost symbol in the input) in the

usual way to yield the output symbol dn. For the remaining symbols ci(i< n), the backward

pass performs an XOR operation between the input symbol ci and the outcome di+1 of the

lastly performed substitution to yield the output symbol ti. The symbol ti is substituted and the

outcome di is the substitute for ci. It is clear that the backward pass deepens the mutual impact

of symbols by spreading this impact from right to left. The change to the symbol ci will propa-

gate back to affect all predecessor symbols cj(j< i).

Fig 9. The dual diffusion method: The processing instructions and flow of control.

https://doi.org/10.1371/journal.pone.0274947.g009

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 11 / 27

https://doi.org/10.1371/journal.pone.0274947.g009
https://doi.org/10.1371/journal.pone.0274947

Random Noise operation adds further confusion to the output block of the two-pass sub-

stitution. The functionality of the random noise operation is fully controlled by a probabilis-

tic model. That is, nosing an input symbol depends on some computed probability. To

determine which input symbol must be randomly noised, the random noising operation

maintains a list NOISE of 2L entries, where L is the number of bits that represent that used

symbols. For instance, if we only deal with the symbols from 0 to 255, L = 8. This list is filled

with P occurrences of the token “Add Noise”, where P< = 2L. The reset of the entries are

filled with the token “NULL” (no random noising). The entries of the list NOISE are ran-

domly scattered using a list of 2L random numbers. (The random generator provides this list

of random values.) The ratio P/2L is the intensity of random noising. As P increases so does

the number of symbols that will be noised. of course, small P causes fewer input symbols be

noised.

The random noising operation uses the list NOISE and manipulates the symbol as follows.

Suppose the input block is d1d2. . .dn. The first input symbol d1 will not be processed (is not

noise). The remaining input symbols di(i> 1) receive random noising based on their prede-

cessors di−1 and on the state of the NOISE (the order of the elements). As shown in Fig 9, the

predecessor symbol di−1 indexes the list of tokens NOISE. If the outcome of the indexing is the

token “NULL”, the input symbol di is passed on to the output channel without processing. If

the outcome of the indexing is the token “Add Noise”, the symbol di receives random noising

as follows. The random noise operation will obtain a random number from the random gener-

ator and XORes the random number with the symbol di to yield the noised symbol si. Note

that whether an input symbol di will be noised or not cannot be determined ahead of time; the

noising is fully controlled by the state of the list NOISE (Random ordering) and the lookback

symbol and the intensity of the random noising.

Before concluding this section, we reemphasize that the proposed diffusion method is

very sensitive to the change in the input regardless of the change’s position in the block and

its magnitude (one bit or more). The two-pass substitution ensures spreading the change to

all of the bits that follow the changed bit (forward pass) and that precede the changed bit

(backward pass). The random noising changes the structure of the output by introducing

noise to some of its symbols, thereby eliminating the traces that may help in predicting the

original input block.

Dual diffusion inverse method. This method cancels the impact of the dual diffusion

method and restores the original block. It is, therefore, used during the decryption to recover

the plaintext. The logic of the diffusion inverse method is outlined in Fig 10. It executes

roughly the same steps as the dual diffusion. The principal difference is that the inverse diffu-

sion processes the input backward and with a slight modification to the substitution action.

Therefore, to restore the original block d1d2. . .dn from the diffused block s1s2. . .sn, the inverse

diffusion executes first the Random Noise action to remove the embedded random noises. The

backward pass processes its input block d1d2. . .dn using substitution and XOR operations. It

recovers the symbol cn by substituting the input symbol dn using the substitution inverse oper-

ation SUB−1(cn). (The substitution inverse operation SUB−1(cn) uses the S-Box Inverse not

SBox). The remaining symbols ci(i = n − 1, n − 2. . .1) are restored as shown Fig 10. Any sym-

bol ci is recovered by substituting the input symbol di using the operation SUB−1(di) and then

XORing the outcome of the substitution with the input symbol di+1. Finally, the forward pass

processes the output of the backward pass (c1c2. . .cn) and recover the original block b1b2. . .bn.

The symbol b1 is restored by substituting c1 using the substitution inverse operation SUB−1(c1).

The remaining symbols bi’s are recovered by substituting the input symbol ci using the opera-

tion SUB−1(ci) and then XORing the outcome of the substitution with the input symbol ci+1.

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 12 / 27

https://doi.org/10.1371/journal.pone.0274947

Block substitution method

The block substitution method replaces the symbols of its input block with new ones. This

replacement aims at greatly reducing the intrinsic correlation between the symbols of the

input block. The block substitution method uses the symbol substitution method (described

before) along with supporting tables to accomplish its task. The first table DIR-TAB is 4 × 4

whose entries are directive flags that instruct the substitution method to move along a specific

direction within the substitution table (S-BOX). The directive flags are four descriptors: U

(move Up), D (move Down), L (move Left), and R (move Right). Since the table DIR-TAB has

16 entries but there is only four descriptors, these four descriptors are replicated in the four

rows.

The second table MOV-TAB is also 4 × 4 with its cells (16 cells) include the integers

[0. . .15]. Each cell has distinct integer. The integers xi 2 [0. . .15] represent the amounts of the

possible moves within the substitution table. The entries of the tables DIR-TAB and MOV-

TAB are randomly reordered to maximize the confusion of the substitution method. The reor-

dering is performed by two different sequences of random numbers obtained from the ran-

dom generator. Reordering the entries of DIR-TAB (or MOV-TAB) is done straightforwardly

by swapping the entry at index (i) with the entry at index (ri), and ri is a random integer.

The third table F-TAB is a 4 × 4, which contains 14 different bitwise-distortion actions.

Table 2 lists these actions along with a brief description of their functionality. Without losing

the generality, it is assumed that each symbol is 8 bits. (This assumption is only for simplifying

the presentation and imposes no restriction on the generality of the method.) These 14 actions

are organized in F-TAB. Because F-TAB consists of 16 entries and there are 14 bitwise-

Fig 10. The dual diffusion inverse method: The processing instructions and the flow of control.

https://doi.org/10.1371/journal.pone.0274947.g010

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 13 / 27

https://doi.org/10.1371/journal.pone.0274947.g010
https://doi.org/10.1371/journal.pone.0274947

distortion actions, the remaining two entries are filled with a dummy action that performs no

processing (null action). The entries of F-TAB are randomly scattered using 16 random num-

bers provided by the random generator.

The block substitution uses the input symbols along with random noises to perform highly

illusive replacement to the symbols of the inputs. Suppose we have the input block x1x2. . .xn

with each symbol xi is represented by 8 bits. (Although, we assume that each symbol is 8 bits,

the substitution method is general and is independent of the number of bits that represents a

symbol.) The bits of each symbol xi are divided to two halves, where the left half l and right

half k create an initial reference (l, k) within the substitution space. The reference (l, k) is ran-

domly distorted by shooting it to a new random position within the substitution space. To ran-

domly shoot the reference (l, k) within the substitution space, a random number ri is requested

from the random generator. The left four bits of ri are used to retrieve a direction flag M from

the move direction flags table (DIR-TAB). Retrieving M is done by using the left two bits to

index one of the rows (of DIR-TAB) and the right two bits to index one of its columns. The

right four bits of the random number ri are used to retrieve a move amount V from the table

MOV-TAB. Retrieving V from MOV-TAB is performed exactly as we did for retrieving a

direction flag from DIR-TAB. Therefore, the block substitution method shoots the initial refer-

ence (l, k) a number of positions equals the amount of the move V along the direction specified

by the direction flag M. The symbol yi at the new reference (u, t) is retrieved as a replacement

for the original input symbol xi.

The output of the substitution method y1y2. . .yn is further distorted by applying the bit-

wise-distortion actions. Suppose that w1w2. . .wn is a sequence of random numbers. The mid-

dle-half bits of the random number wi is used to access one of the bitwise-distortion actions of

F-TAB. For instance, if the random number wi is “01110010”, the middle-half bits “1100”

accesses one of the bitwise-distortion actions. The input symbol yi is distorted using the

retrieved the distortion action (if it is not dummy). The outcome of processing the symbol yi is

the new symbol zi.

Before concluding this section, we emphasize the substitution method is highly non-linear.

This nonlinearity can be largely attributed to the random jumping within the S-BOX (i.e. add-

ing random effects to the substitution). In particular, the substitution relies not only on the

symbol to be substituted, but also on the random effects produced by the random number gen-

erator. Additionally, the bitwise-distortion actions guarantee a maximum level of confusion

because their impact is random.

Key round

The key round is the closing stage in which the symbols of the ciphertext (the output of the dis-

tortion layer) is additionally secured by embedding these symbols with codes generated using

Table 2. The F-TAB: 14 bitwise-distortion actions.

Flipping actions Functionality

Fu (u = 1. . .8) mutates the uth bit of the input symbol (e.g. F5 mutates the fifth bit of the input symbol).

FL/2 mutates the left half bits of the input symbol.

FR/2 mutates the right half bits of the input symbol.

FL/4 mutates the left quarter bits of the input symbol.

FS/4 mutates the second quarter bits of the input symbol.

FT/4 mutates the third quarter bits of the input symbol.

FR/4 mutates the rightmost quarter bits of the input symbol.

https://doi.org/10.1371/journal.pone.0274947.t002

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 14 / 27

https://doi.org/10.1371/journal.pone.0274947.t002
https://doi.org/10.1371/journal.pone.0274947

the secret key. The encryption key must, therefore, be expanded to match the length of the out-

put (the ciphertext). One of the effective and efficient secret key expansion techniques is pro-

posed in [53]. This expansion technique has three important properties that make it ideal for

our approach. First, it is very sensitive to the key changes; it can detect minor changes to the

key and react by producing very different key sequences. Second, it can expand the key to any

arbitrary length without ever showing patterns in the generated sequence. Third, the generated

key sequences are very random.

For the sake of self-containment, we provide a succinct description of the key expansion

technique and refer the interested readers to [53] for more technical details. Fig 11 outlines the

control flow of the key expansion technique. The technique is founded on two primary pro-

cessing stages: the tuple mapping stage (or expansion stage) and the confusion stage.

The tuple mapping stage extends the secret key. It uses three operations for the key exten-

sion. The Key Diffusion operation is extremely important. It detects any changes that occur to

the secret key and spread these changes affect every symbol in the output (i.e. if one bit

changed in the key, the resulting output will be drastically impacted). The Tuple Generation

operation creates all possible n-place tuples from the diffused key symbols (processed by the

diffusion operation), where symbol-duplicate is allowed and the order of the symbols in the

tuple matters. For instance, if the key is “ABC”, the 2-place tuples include “AA”, “AB”, “BA”,

and so on. The size of the tuples n depends on the number of layers in the indexing technique

(Multiple-Lookback-Based Indexing). After generating all the possible tuples, the initial key

sequence is built by mapping all the tuples using the Multilayered-Lookback-Based Indexing

operation. This indexing technique maps each n-place tuple Ti < ai
1
; ai

2
; :::; ai

n > into a single

symbol bi. The outcome of tuple mapping is the initial key sequence λ1, λ2. . .λk.

The Confusion stage (the second stage) imposes further distortion on the initial sequence.

This added distortion is accomplished by mixing the initial key sequence with random num-

bers. To generate these random numbers, L symbols are extracted from the leftmost of the ini-

tial key sequence (λ1, λ2. . .λk) and used as a new key (L equals the size of the original key). This

derived key is then fed as a seed to the random generator, which creates a stream of k random

Fig 11. The key expansion process reproduced from [53].

https://doi.org/10.1371/journal.pone.0274947.g011

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 15 / 27

https://doi.org/10.1371/journal.pone.0274947.g011
https://doi.org/10.1371/journal.pone.0274947

numbers ψ1ψ2. . .ψk. The final key sequence is then generated by XORing each initial key sym-

bol λi with the corresponding random number ψi to yield the symbol γi.

Once the key stream γ1γ2. . .γk is fully generated, we mix the symbols of the key stream with

the ciphertext symbols using an XOR operation. That is, the final ciphertext symbols is calcu-

lated by γi�ci, where ci is a symbol of the ciphertext. Note, due to the fact that the key expan-

sion process generates highly random numbers, the key stream γ1γ2. . .γk ensures maximum

protection to the ciphertext against hacking techniques.

Distortion inverse layer

The distortion inverse layer decrypts the ciphertext. Successful decryption requires the use of

the same secrete key. Therefore, to recover the plaintext from the ciphertext, the secret key is

used as a seed for the random generator to produce stream of random numbers that are identi-

cal to the stream used during the distortion. Once this stream is prepared, we can configure

the tables DIR-TAB, MOV-TAB, and F-TAB to the same state that is used during the distor-

tion. That is, the entries of these three tables are randomly reordered using the same random

numbers that were used to reorder them during the distortion.

When these three tables are fully initialized, the decryption process starts by performing the

Key Round. The Key Round uses the secret key to produce a stream of key symbols. This

stream of symbols is necessarily identical to the stream that was produced during the encryp-

tion (they are produced using the same secret key). The generated stream is used to remove

the impact of the key from the ciphertext by performing an XOR operation between the key

stream symbols and the respective ciphertext symbols.

Once the key impact is removed from the ciphertext, the block substitution method pro-

cesses the symbols of the resulting ciphertext as follows. Let yi be a ciphertext symbol and ri be

a random number. The middle half bits of ri creates an index to access F-TAB table and

retrieve a bitwise-distortion action. Note, the random number ri is identical to the one, which

was used to access the F-TAB when encrypting the symbol yi, and therefore the retrieved bit-

wise-distortion action is necessarily the same as the one used to encrypt yi. The retrieved bit-

wise-distortion action processes the input symbol yi and restores the distorted bits of yi

yielding the new symbol zi. The symbol zi is substituted using S-BOX as follows. The left half

bits of the random number ri creates an index to access DIR-TAB table and retrieve a direction

flag M (could be any of the direction flags: U, D, L, R). The right half bits of ri creates an index

to access MOV-TAB table and retrieve an amount of move V. The symbol zi is then looked up

from S-BOX and the index (i, j) at which zi was located is used to retrieve the original symbol.

To retrieve the original input symbol, the retrieved direction flag and the amount of move (M,

V) are used. However, instead of using the direction flag itself, we use its inverse. Therefore, if

the retrieved direction flag is U (Up), the reverse direction flag D (Down) is used. Using the

proper direction flag and the amount of move, the substitution method moves down the cur-

rent index (i, j) a number of positions equal to the amount of move to reach the new index (l,
k). The original symbol is recovered by concatenating the bits of l followed by bits of k (i.e. lk)

and then find the corresponding decimal.

The final step is to redo the impact of the dual-diffusion method. The inverse distortion

layer applies the inverse dual-diffusion method to redo the impact of the dual-diffusion and

therefore restore the plaintext block.

Experimentation and performance analysis

The performance of the encryption technique is evaluated based on the guidelines established

by the National Institute for Standards and Technology (NIST). According to these guidelines,

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 16 / 27

https://doi.org/10.1371/journal.pone.0274947

the effectiveness of the encryption technique is measured using a set of randomness tests. The

encryption technique is effective if its output (ciphertext) passes fundamental randomness

tests. (Testing the random generator for randomness is beyond the scope of this paper and was

done elsewhere [8]).

But before we present the evaluation results for the proposed encryption technique, we

report our simulation results for the dual diffusion method. As discussed before, the dual diffu-

sion method is the major source of confusion. We, therefore, ran simulations to assess it effec-

tiveness. We measure the effectiveness by the response of the method to the changes of the

input (or the avalanche effect). For this purpose, we started with a sequence of 1024 bits (128

bytes). We created 20 sets of sequences, each set contains 256 sequences. These sequences

were created by flipping r bits in different/randomly selected positions of the original input

(r = 1..16, 32, 64, 128, 256). For instance, the first set contains 256 sequences, where each

sequence was created by flipping one bit of the original input, the second set is created by flip-

ping 2 bits of the original sequence, and so on. We then processed the original input and each

of the created sequences using the dual diffusion method and counted the number of bits dif-

ference between the result of processing the original input and the result of processing each

created sequence. Table 3 shows the performance in terms of minimum and average number

of bit difference between the result of processing the original input sequence and the created

sequences. Generally, regardless of how many bits were changed (flipped), this change to the

input causes on average more than half of the bits to change. This indicates that the dual diffu-

sion method has a high avalanche effect.

Randomness tests

We define the hypotheses the we want to test.

H0 (Null): the ciphertext does not deviate from randomness.
H1 (Alternative): the ciphertext does deviate from randomness (i.e. the output is not random).
The decision whether to accept H0 or reject it (and therefore accept H1) depends on a value,

called (p-value), which is computed by the randomness test. The p-value is compared to a pre-

specified significance level (α)(α can be any value within the interval (0, 1]. Common choices

include: 0.001, 0.01, and 0.05). The hypothesis H0 is accepted only if p-value� α. In this case

we conclude that the tested ciphertext is random. If p-value < α we reject H0 (accept H1) and

conclude that the tested ciphertext is not random.

The most effective randomness tests for encryption techniques are those created by the

National Institute for Standards and Technology—NIST [54, 55]. We chose the following

Table 3. Avalanche effect of dual diffusion method.

Flipped bits Min Average Flipped bits Min Average

1 489 524 11 501 577

2 499 548 12 492 539

3 501 536 13 519 544

4 530 561 14 525 552

5 513 547 15 517 541

6 498 528 16 492 539

7 510 543 32 522 561

8 518 548 64 532 567

9 522 561 128 524 563

10 524 558 256 523 564

https://doi.org/10.1371/journal.pone.0274947.t003

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 17 / 27

https://doi.org/10.1371/journal.pone.0274947.t003
https://doi.org/10.1371/journal.pone.0274947

randomness tests due to their high sensitivity in detecting deviations from randomness. All the

definitions are taken from [55].

• Runs test: matches the runs of ones and zeros of various lengths with the ones expected for a

random sequence.

• Frequency test (Monobit): examines if the number of ones and zeros that appear in the

tested ciphertext are approximately the same as expected for a truly random sequence.

• Discrete fourier transform test (Spectral): detects repetitive patterns that are near each

other in the analyzed ciphertext that would present a divergence from the assumption of

randomness.

• Serial test: checks if the number of occurrences of the 2m m–bit overlapping patterns is

approximately the same as would be expected for a random sequence. Random sequences

have uniformity in a sense that each m–bit pattern has an equal chance of appearing as every

other m–bit pattern.

• Cumulative sums test: determines if the cumulative sum of the partial sequences occur-

ring in the tested sequence is too large or too small relative to the expected behavior of that

cumulative sum for random sequences. The cumulative sums may be considered as ran-

dom walks. If the sequence is random, the excursions of the random walk should be near

zero.

• Linear complexity test: determines whether or not the sequence is complex enough to be

considered random.

• Binary matrix rank test: checks for linear dependence among fixed length substrings of the

original sequence.

• Approximate entropy test: compares the frequency of overlapping blocks of two consecu-

tive/adjacent lengths (m and m + 1) against the expected result for a random sequence

We further evaluated the encryption technique using ENT randomness test battery [56].

This battery includes the following important randomness tests.

• Entropy: determines information density of the contents of the file, expressed as a number

of bits per character.

• Chi-square Test: determines whether a stream of bytes is random.

• Arithmetic Mean: computes the average of bytes. If average is close to the middle value of

the range of the used values, the sequence is potentially random.

• Monte Carlo Value for Pi: if the tested sequence random, the Monte Carlo value would be

close to the true value of Pi.

• Serial Correlation Coefficient: measures the extent to which each byte in the file depends

upon the previous byte.

Security analysis

We define the data sets that we used to test our technique, and then present the results of the

randomness tests. We prepared the data sets as recommended elsewhere [54, 55]. To unify the

testing data, we use–without the loss of generality–the Unicode symbols within the range from

0 to 255. This restriction allows us to represent each symbol in the ciphertext (the output of the

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 18 / 27

https://doi.org/10.1371/journal.pone.0274947

encryption technique) using 8 bits. To thoroughly analyze the randomness properties of the

encryption technique, we performed the testing using the following data sets.

1. Key avalanche data set. This data set measures how the proposed encryption method

responds to changes of the encryption key. Effective encryption technique must produce

random ciphertext regardless of the keys’s change (whether the change is major or minor).

2. Plaintext avalanche data set. This data set measures how the proposed encryption method

responds to changes of the plaintext. It is well known that effective encryption techniques

must produce random ciphertext independent of the magnitude of the change (major or

minor).

3. Plaintext/Ciphertext correlation data set. This data set measures the correlation between

plaintext/ciphertext pairs. The presence of the correlation indicates inherited patterns from

the plaintext to its corresponding ciphertext; a very critical security problem. Thus, effective

encryption techniques must greatly remove the correlation between the plaintext and its

respective ciphertext.

Firstly, to measure how sensitive the proposed encryption method to the changes of the

encryption key, we created and analyzed 300 sequences of size 65,536 bits each. We fixed the

plaintext input to the technique by using a 512-bit (64 bytes) plaintext of all zeros. We used

300 keys each of size 128 bits. These keys are derived from the weights generated by the neural

network layer. Each of the 300 sequences was built by concatenating 128 derived blocks cre-

ated as follows. Each derived block is constructed by XORing the ciphertext created using the

fixed plaintext and the 128-bit key with the ciphertext created using the fixed plaintext and the

altered 128-bit key with the ith bit is modified, for 1� i� 128.

Secondly, to measure the sensitivity of the proposed technique to changes of the plaintext,

we created and analyzed 300 sequences of size 65,536 bits each. We derived 300 plaintexts of

size 512 bits (64 bytes) from the output of the neural network. We also fixed the key to 128 bit

of all zeros to neutralize its impact on the output of the technique and hence study the pure

effect of the plaintext change. Each sequence was created by concatenating 128 derived blocks

constructed as follows. Each derived block is created by XORing the ciphertext created using

the 128-bit key and the 512-bit plaintext with the ciphertext created using the 128-bit key and

the altered 512-bit plaintext with the ith bit changed, for 1� i� 512.

Thirdly, to analyze the correlation of plaintext with its respective ciphertext, we constructed

300 sequences of size 358,400 bits per a sequence. Each sequence is created as follows. Given a

128-bit key and 700 random plaintext blocks (the size of each block is 512 bits), a binary

sequence was constructed by concatenating 300 derived blocks. A derived block is created by

XORing the plaintext block and its corresponding ciphertext block. Using the 300 (previously

selected) plaintext blocks, the process is repeated 299 times; one time for every additional

128-bit key.

Tables 4–6 show the results of the randomness tests. The tables present the randomness

tests, the number of sequences that passed the corresponding randomness test (Success), the

number of sequences that failed the corresponding randomness test (Failure), and the Success

rate. We fixed the significance level to the value 0.05 for all the randomness tests. When we fix

the significance level to 0.05, we actually imply that, under ideal experimenting settings, no

more than 5 out of 100 binary sequences may fail the corresponding test. However as stated in

[54], in all likelihood, any given data set will deviate from this ideal case. Therefore, for a more

realistic interpretation, we use a 95% confidence interval (CI) for the proportion of the binary

sequences that may fail a randomness test at significant level of 0.05. (The maximum number

of binary sequences that are expected to fail at the level of significance α is computed using the

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 19 / 27

https://doi.org/10.1371/journal.pone.0274947

following formula [55]: Sðaþ 3

ffiffiffiffiffiffiffiffi
að1� a

S

q

Þ, where S is the total number of sequences and α is the

level of significance).

Referring to the tables, the success rate indicates that the proposed technique is effective.

The rate of success for all the randomness tests is remarkably high. The number of sequences

(ciphertexts) that failed any test is less than the maximum expected number of sequences that

could fail under the fixed significance level (0.05). The number of sequences that failed the

Spectral test deviates from this nice pattern. In fact, the number of sequences that failed the

Spectral test is greater than the maximum expected in only Table 4. (Note in Table 4, the num-

ber of failed sequences is 41 while the maximum expected under the significant level of 0.05 is

26.32).

Table 6. Plaintext/Ciphertext correlation test.

Randomness Test Success Failure Success rate CI

Runs test 295 5 98.33% 26.32

Monobit test 298 2 99.33% 26.32

Spectral test 281 19 93.67% 26.32

Serial test 295 5 98.33% 26.32

Cumulative sums test 288 12 96.00% 26.32

Linear complexity test 285 15 95.00% 26.32

Binary matrix rank test 287 13 95.67% 26.32

Approximate entropy test 292 8 97.30% 26.32

https://doi.org/10.1371/journal.pone.0274947.t006

Table 4. Key avalanche test.

Randomness Test Success Failure Success rate CI

Runs test 292 8 97.33% 26.32

Monobit test 294 6 98.00% 26.32

Spectral test 259 41 86.33% 26.32

Serial test 276 24 92.00% 26.32

Cumulative sums test 281 19 93.70% 26.32

Linear complexity test 289 11 96.30% 26.32

Binary matrix rank test 291 9 97.00% 26.32

Approximate entropy test 288 12 96.00% 26.32

https://doi.org/10.1371/journal.pone.0274947.t004

Table 5. Plaintext avalanche test.

Randomness Test Success Failure Success rate CI

Runs test 296 4 98.67% 26.32

Monobit test 293 7 97.67% 26.32

Spectral test 274 26 91.33% 26.32

Serial test 289 11 96.33% 26.32

Cumulative sums test 287 13 95.70% 26.32

Linear complexity test 292 8 97.33% 26.32

Binary matrix rank test 292 8 97.33% 26.32

Approximate entropy test 283 17 94.30% 26.32

https://doi.org/10.1371/journal.pone.0274947.t005

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 20 / 27

https://doi.org/10.1371/journal.pone.0274947.t006
https://doi.org/10.1371/journal.pone.0274947.t004
https://doi.org/10.1371/journal.pone.0274947.t005
https://doi.org/10.1371/journal.pone.0274947

Table 7 shows the results of ENT randomness tests. The columns Tp, Tk, and Tc show

respectively the Plaintext avalanche, Key avalanche, and Plaintext/Ciphertext correlation.

Based on the ENT test interpretation [56], the test numbers show that the output of the

encryption technique (ciphertext) does not deviate from randomness. For instance, the arith-

metic mean is pretty close to 0.5 and chi-square is within the ranges that indicate randomness.

Additionally, the entropy for the bit strings is close to 1 (1 is the perfect value).

We attribute this remarkably high performance to the synergistic collaboration between the

neural network layer and the distortion layer. The neural network provides good keys that are

effectively exploited by the distortion layer. The distortion layer is the major source of confu-

sion: it stimulates a great amount of randomness in the ciphertext. The high success rate indi-

cates really high performance of the distortion layer and the hybrid encryption technique.

We conclude this section by pointing out why the proposed technique is worth considering.

The technique has indeed many important features that distinguish it from other proposed

techniques such as AES and DES. First, while other techniques focus on only confidentiality,

the proposed technique addresses, in one coherent system, the two fundamental aspects of

information security: confidentiality and integrity. As described in the manuscript, the encryp-

tion technique encrypts the data (ensures confidentiality) and also produces hash code to

ensure integrity. The computation of the hash code is done in a piggyback manner in a sense it

is performed in parallel with the encryption. (Therefore, the computation of the hash code does

not incur additional processing time). Second, the proposed technique has effective distortion

operations that produce deep confusion. The distortion operations are designed to be compu-

tationally simple: mostly operate at the bit level and can be done easily on the hardware.

Besides, the number random generator works synergistically with the distortion operations to

produce higher confusion necessary for immunizing the technique against hacking tools.

Third, while other encryption techniques (most notably AES and DES) rely on simple methods

to expand the key and add its impact through an XOR operation, our technique relies on a

more robust mechanism to expand the key and hide its trace (hiding the trace is ensured by the

operations that expand the key). As discussed in the “Key round” section, the proposed tech-

nique expands the key to any arbitrary length to match the ciphertext length. This means that

our method adds the impact of a different sequence of the expanded key to each block. This is

at odds with the AES, for instance, where the key is expanded to match the block size times the

number of rounds. This means that all the blocks receive the same impact of the key. Fourth,

the number of required rounds to achieve acceptable randomness is a function of the key

length in most of the encryption techniques (e.g. AES and DES encryption technique). This

means that longer keys require more rounds, which means more processing time. Our tech-

nique simply does not depend on the key length due to the way in which the key is expanded.

Attack resistance

One of the uncompromisable properties of encryption techniques is their ability to resist

attacks. Differential attacks are one the most effective threats to the encryption technique.

Table 7. Result of ENT test: Plaintext avalanche (Tp), Key avalanche (Tk), and Plaintext/Ciphertext correlation (Tc).

Randomness Test Tp Tk Tc

Entropy 0.9998311 0.9986109 0.9991818

Chi-square Test 56.79% 54.01% 0.57.12%

Arithmetic Mean 0.4951940 0.4896016 0.4990013

Monte Carlo Value for Pi 3.1321678 3.110752 3.1343081

Serial Correlation Coefficient 0.0081 −0.0023 0.0102

https://doi.org/10.1371/journal.pone.0274947.t007

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 21 / 27

https://doi.org/10.1371/journal.pone.0274947.t007
https://doi.org/10.1371/journal.pone.0274947

These attacks exploit the patterns that appear in the ciphertext due to the weak confusion. The

major source of confusion of the proposed techniques is the distortion process. The distortion

process has two effective confusion-boosting subprocesses. The substitution subprocess, which

provides a nonlinear transformation of the plaintext [15]. The dual diffusion subprocess

imposes deep bit mixing, which in turn ensures that any bit change in the input causes signifi-

cant bit change in the output (please see Table 3). These two subprocesses work synergistically

to remove any patterns that may help predict the encryption key.

Another significant threat is called classic attacks [34]. Four classic types of attacks could

challenge encryption techniques. These types are (1) ciphertext-only attacks, (2) known-plain-

text attacks, (3) chosen-plaintext attacks, and (4) chosen-ciphertext attacks. Based on [33], the

chosen-plaintext attack mode is known to be the most effective one. As such, and pointed out

in [33], if the encryption technique can resist chosen-plaintext attacks, it can resist all of the

other three attack modes. The proposed technique can resist chosen-plaintext attacks. First,

the distortion process directly uses plaintext information for diffusing any change to the plain-

text symbols and propagate this change to impact all other symbols. Second, the random num-

ber generator provides noises (random numbers) that are embedded in the output, causing

this output to vary based on the key. Third, the neural network ensures deep and nonlinear

transformation to the output. All these three make the relationship between the plaintext and

ciphertext highly complicated, which ensure resistance against chosen-plaintext attacks.

Technique efficiency

We compare the efficiency of the proposed technique with the efficiency of state-of-the-art

techniques. Table 8 shows the encryption techniques and the execution time (in milliseconds)

for different input sizes. The implementation was in JAVA and the execution hardware is Intel

core i5 processor with 4GB memory and windows 10 operating system. As the time numbers

show, the execution time of the AES technique tends to be better than the proposed technique

for small inputs. However, for inputs of 250KB and larger, the proposed technique appears to

have a shorter execution time. This lower execution time can be attributed to the efficiency of

the operations especially the distortion operations (they are very light-weighted operations).

Except for the AES, the other techniques required more time for encryption.

Discussion

The training algorithm transforms the initial random weights to the encryption/ decryption

keys while training the two-layer neural network. Because our training algorithm is very sensi-

tive to the initial assigned weights and these weights are random, there is no feasible way to

predict the final weights (which are the encryption/decryption keys).

Table 8. The proposed technique efficiency compared to other novel techniques (time in milliseconds).

Plaintext size Proposed technique AES DES [57] [58] [59] [60]

50KB 104 76 288 136 222 189 295

100KB 126 121 487 191 255 199 408

250KB 165 192 777 234 319 276 871

500KB 242 255 903 397 701 609 1321

1MB 347 381 1022 678 933 964 1789

3MB 719 896 1574 1022 1341 1863 2891

6MB 2031 2253 2705 2117 2765 4099 5101

https://doi.org/10.1371/journal.pone.0274947.t008

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 22 / 27

https://doi.org/10.1371/journal.pone.0274947.t008
https://doi.org/10.1371/journal.pone.0274947

The proposed encryption technique utilizes a recurrent neural network RNN to generate

hashing values. The RNN method is flexible and it is always possible to increase the number of

neurons for longer hash values. This is exceptionally important for avoiding any potential

hashing collision (producing the same hash value for different strings). Besides, the RNN
incurs no additional processing time because it requires no training.

The flexility of the two–layer feedforward neural network and the effective distortion layer

give our technique the advantage of being elusive. From one hand, we can use the NN any

time during the encryption to generate new encryption/decryption keys by providing initial

random weights (obtained from our random generator). These new keys allow the encryption

method to change the way in which it encrypts the plaintext block and therefore it is extremely

infeasible to learn the encryption keys using hacking tools. On the other hand, the distortion

layer imposes substantial masking by applying sound and effective operations (e.g. substitution

and noising) that deeply modify both the structure of the plaintext block and the individual

symbols in this block. As shown in [1, 3, 8], the substitution and nosing operations effectively

cancel the correlation between the plaintext and the ciphertext. The synergistic work between

the NN and distortion operations resulted in a highly random ciphertext that is greatly

immune against effective attacks such as Differential Cryptanalysis [61] and linear Cryptanaly-

sis [62, 63].

Augmenting the encryption technique with RNN (for hashing) makes our method unique

as it addresses both the data confidentiality and integrity (two extremely important pillars of

information security). In fact, all the security technique either addresses the confidentiality or

the integrity. Our technique considers both, making it innovative.

Conclusions and future work

This work has shown that the flexible/parallel intrinsic properties of neural networks can be

part of a comprehensive system used for data encryption/decryption and hashing. It has also

shown that the integration of AI-based paradigms (neural network) with the effective distor-

tion operation can create a security system that offers a maximum protection against the confi-

dentiality and integrity breaches. The performance analysis of the proposed system showed

that it is competitive with the existing and classical systems in that field.

It has been advisable always to use hybrid systems that can carry the merits of two different

techniques. As shown in the performance analysis section, the proposed system was tested

using standard techniques and it showed promising results. The combination of a computa-

tional approach with a symbolic approach in one system makes it much harder for hackers to

break the secrets of the encryption method. This does not need proof, it needs only common

sense. Given the maximum sensitivity of the neural network to the initial weights, how can

the decryption keys be predicted from the ciphertext? The only way is to test all possible ini-

tialization for the set of weights of the output layer. Each one of those weights may have an ini-

tialization between [-10, +10] and to the nearest 1−6 binary precision. Training time is not

significant since we can reuse the generated weights (or keys) any number of times. If, for secu-

rity reasons, the training must be repeated (using different initial weights), the additional time

can be compensated for using some sort of pipelining.

For future work, our research will focus more on efficient techniques for training the (feed-

forward Neural Network) NN such as levenberg-marquardt training algorithm [50], backpro-

pagation through time [64], genetic assisted rule-based training [65], polynomial networks

training [66], artificial immune system optimization [67], ant colony optimization [68], non-

linear complementarity optimization [69], and different neural network architecture [70].

More hybrid encryption/decryption will be used utilizing more layers of the NN to minimize

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 23 / 27

https://doi.org/10.1371/journal.pone.0274947

any correlations between the inputs and the outputs. More rigorous testing for our system is

needed using real life applications.

Supporting information

S1 Appendix. Supporting information files for randomness testing.

(PDF)

S1 Table. Neural network training specifications.

(PDF)

S1 Fig. Complete specification of the encryption processes using neural network without

the distortion process.

(PDF)

Author Contributions

Conceptualization: Raed Abu Zitar, Muhammed J. Al-Muhammed.

Data curation: Raed Abu Zitar, Muhammed J. Al-Muhammed.

Formal analysis: Raed Abu Zitar, Muhammed J. Al-Muhammed.

Methodology: Muhammed J. Al-Muhammed.

Software: Muhammed J. Al-Muhammed.

Validation: Muhammed J. Al-Muhammed.

Visualization: Muhammed J. Al-Muhammed.

Writing – original draft: Raed Abu Zitar, Muhammed J. Al-Muhammed.

Writing – review & editing: Raed Abu Zitar, Muhammed J. Al-Muhammed.

References
1. Stallings W. Cryptography and network security: principles and practice, 7th edition, Pearson, 2016.

2. Al-Muhammed M. J., Abuzitar R. Dynamic text tncryption, International Journal of Security and its Appli-

cations (IJSIA). 2017 Nov.; 11 (11), 13–30. https://doi.org/10.14257/ijsia.2017.11.11.02

3. Al-Muhammed M. J., Abuzitar R. K–lookback random-based text encryption technique. Journal of King

Saud University-Computer and Information Sciences. 2019; (31), 92–104. https://doi.org/10.1016/j.

jksuci.2017.10.002

4. Obaidat M., Brown J., Obeidat S. Rawashdeh M. A hybrid dynamic encryption scheme for multi–factor

verification: a novel paradigm for remote ruthentication. Sensors. 2020; 20(15). https://doi.org/10.3390/

s20154212 PMID: 32751189

5. Marwan S., Shawish A., Nagatya K. DNA-based cryptographic methods for data hiding in DNA media.

Biosystems. 2016; 150, 110–118. https://doi.org/10.1016/j.biosystems.2016.08.013 PMID: 27634362

6. Mondal M., Ray K. S. Review on DNA cryptography. arXiv:1904.05528. 2019. Available at: https://arxiv.

org/abs/1904.05528?context=cs.

7. UbaidurRahman N. H., Balamurugan C., Mariappanc R. A novel DNA computing based encryption and

decryption algorithm, Procedia Computer Science. 2015; 46, 463–475. https://doi.org/10.1016/j.procs.

2015.02.045

8. Al-Muhammed M. J., Abu Zitar R. Mesh–based encryption technique augmented with effective masking

and distortion operations. Proceedings of the computing conference 2019, London, United Kingdom

(Springer-Verlag, Berlin). 2019 July; 765, 386–397.

9. Lakshmi C., Thenmozhi K., Rayappan J. B. B., Amirtharajan R. Hopfield attractor-trusted neural net-

work: an attack-resistant image encryption. Neural Computing and Applications, 2020; 15(32), 11477–

11489. https://doi.org/10.1007/s00521-019-04637-4

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274947.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274947.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274947.s003
https://doi.org/10.14257/ijsia.2017.11.11.02
https://doi.org/10.1016/j.jksuci.2017.10.002
https://doi.org/10.1016/j.jksuci.2017.10.002
https://doi.org/10.3390/s20154212
https://doi.org/10.3390/s20154212
http://www.ncbi.nlm.nih.gov/pubmed/32751189
https://doi.org/10.1016/j.biosystems.2016.08.013
http://www.ncbi.nlm.nih.gov/pubmed/27634362
https://arxiv.org/abs/1904.05528?context=cs
https://arxiv.org/abs/1904.05528?context=cs
https://doi.org/10.1016/j.procs.2015.02.045
https://doi.org/10.1016/j.procs.2015.02.045
https://doi.org/10.1007/s00521-019-04637-4
https://doi.org/10.1371/journal.pone.0274947

10. Alghafis A., Firdousi F., Khan M., Batool S. I., Amin M. An efficient image encryption scheme based on

chaotic and deoxyribonucleic acid sequencing. Mathematics and Computers in Simulation, 2020; 177,

441–466. https://doi.org/10.1016/j.matcom.2020.05.016

11. Wan Y., Gu S., Du B. A new image encryption algorithm based on composite chaos and hyperchaos

combined with DNA coding. Entropy. 2020; 22(2). https://doi.org/10.3390/e22020171 PMID:

33285946

12. Knuden L. R. Dynamic encryption. Journal of Cyber Security and Mobility. 2015; 3, 357–370. https://

doi.org/10.13052/jcsm2245-1439.341

13. Bogdanov A, Mendel F., Regazzoni F., Rijmen A. ALE: AES–based lightweight authenticated encryp-

tion. In: Moriai S. (eds) Fast Software Encryption. Lecture Notes in Computer Science, 8424, Springer,

Berlin, Heidelberg. 2013.

14. Mathur N., Bansode R. AES based text encryption using 12 rounds with dynamic key selection. Proce-

dia Computer Science. 2016; 79, 1036–1043. https://doi.org/10.1016/j.procs.2016.03.131

15. Daemen J., Rijmen V. The design of RIJNDAEL: AES the advanced encryption standard. Springer,

Berlin, German. 2002.

16. Nie T., Zhang T. A study of DES and Blowsh encryption algorithm. Proceedings of IEEE Region 10th

Conference, Singapore. 2009, Jan.; 1–4.

17. Anderson R., Biham E., Knudsen L. Serpent: a proposal for the advanced encryption standard. http://

www.cl.cam.ac.uk/rja14/Papers/serpent.pdf, (Accessed February 2020).

18. Burwick C., Coppersmith D., Avignon E., Gennaro R., Halevi S., Jutla C., Zunic N. The MARS encryp-

tion algorithm. IBM. 1999 Aug.

19. Patil P., Narayankar P., Narayan D. G., Meena S. M. A comprehensive evaluation of cryptographic algo-

rithms: DES, 3DES, AES, RSAm and Blowsh, Procedia Computer Science. 2016; 78, 617–624. https://

doi.org/10.1016/j.procs.2016.02.108

20. NIST Special Publication 800-67 Recommendation for the Triple Data Encryption Algorithm (TDEA)

Block Cipher Revision 1, Gaithersburg, MD, USA. 2012 Jan.

21. Faheem M., Jamel S., Hassan A., Abubakar Z., Shafinaz N., Mat M. A survey on the cryptographic

encryption algorithms. International Journal of Advanced Computer Science and Applications. 2017; 8

(11). https://doi.org/10.14569/IJACSA.2017.081141

22. Yu H., Kim Y. New RSA encryption mechanism using one–time encryption keys and unpredictable bio–

signal for wireless communication devices. Electronics. 2020; 9(2). https://doi.org/10.3390/

electronics9020246

23. Zhou X., Tang X. Research and implementation of RSA algorithm for encryption and decryption. Pro-

ceedings of 2011 6th International Forum on Strategic Technology, Harbin, Heilongjiang. 2011; 1118–

1121.

24. Stallings W. The RC4 stream encryption algorithm. In Cryptography and network security. 2005.

25. El-Din H., Ahmed H., Kalash M. H., Osama-Farag-Allah S. Encryption quality analysis of the RC5 block

cipher algorithm for digital images. Optical Engineering. 2006; 45(10).

26. Jamel S., Deris M., Yanto I. T. R., Herawan T. The hybrid cubes encryption algorithm (HiSea). Commu-

nications in Computer and Information Science, Springer-Verlag Berlin Heidelberg. 2011; 154, 191–

200.

27. Hongjun L. and Wang X. Color image encryption based on one-time keys and robust chaotic maps.

Computers & Mathematics with Application. 2010; 10(9), 3320–3327.

28. Hongjun L. and Wang X. Color image encryption using spatial bit-level permutation and high-dimension

chaotic system. Optics Communications. 2011; 16-17(284), 3895–3903.

29. Hongjun L. and Wang X. and et al. Image encryption using DNA complementary rule and chaotic maps.

Applied Soft Computing. 2012; 12(5), 1457–1466. https://doi.org/10.1016/j.asoc.2012.01.016

30. Wang X.-Y. and Yang L. and Liu R. and Kadir A. A chaotic image encryption algorithm based on percep-

tron model. Nonlinear Dynamics. 2010; 3(62), 615–621. https://doi.org/10.1007/s11071-010-9749-8

31. Wang X. and Feng L. and Zhao H. Fast image encryption algorithm based on parallel computing sys-

tem. Information Sciences. 2019; (486), 340–358. https://doi.org/10.1016/j.ins.2019.02.049

32. Wang X. and Yang J. A privacy image encryption algorithm based on piecewise coupled map lattice

with multi dynamic coupling coefficient. Information Sciences. 2021; (569), 217–240. https://doi.org/10.

1016/j.ins.2021.04.013

33. Wang X. and Gao S. Image encryption algorithm based on the matrix semi-tensor product with a com-

pound secret key produced by a Boolean network. Information Sciences. 2020; (539), 195–214. https://

doi.org/10.1016/j.ins.2020.06.030

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 25 / 27

https://doi.org/10.1016/j.matcom.2020.05.016
https://doi.org/10.3390/e22020171
http://www.ncbi.nlm.nih.gov/pubmed/33285946
https://doi.org/10.13052/jcsm2245-1439.341
https://doi.org/10.13052/jcsm2245-1439.341
https://doi.org/10.1016/j.procs.2016.03.131
http://www.cl.cam.ac.uk/rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/rja14/Papers/serpent.pdf
https://doi.org/10.1016/j.procs.2016.02.108
https://doi.org/10.1016/j.procs.2016.02.108
https://doi.org/10.14569/IJACSA.2017.081141
https://doi.org/10.3390/electronics9020246
https://doi.org/10.3390/electronics9020246
https://doi.org/10.1016/j.asoc.2012.01.016
https://doi.org/10.1007/s11071-010-9749-8
https://doi.org/10.1016/j.ins.2019.02.049
https://doi.org/10.1016/j.ins.2021.04.013
https://doi.org/10.1016/j.ins.2021.04.013
https://doi.org/10.1016/j.ins.2020.06.030
https://doi.org/10.1016/j.ins.2020.06.030
https://doi.org/10.1371/journal.pone.0274947

34. Wang X. and Gao S. Image encryption algorithm for synchronously updating Boolean networks based

on matrix semi-tensor product theory. Information Sciences. 2020; (507), 16–36. https://doi.org/10.

1016/j.ins.2019.08.041

35. Xian Y. and Wang X. Fractal sorting matrix and its application on chaotic image encryption. Information

Sciences. 2020; (547), 1154–1169. https://doi.org/10.1016/j.ins.2020.09.055

36. Wang X. and Teng L. and Qin X. A novel colour image encryption algorithm based on chaos. Signal Pro-

cessing. 2012; 4(92), 1101–1108. https://doi.org/10.1016/j.sigpro.2011.10.023

37. Zhang Y. and Wang X.-Y. A new image encryption algorithm based on non-adjacent coupled map lat-

tices. Applied Soft Computing. 2015; (26), 10–20. https://doi.org/10.1016/j.asoc.2014.09.039

38. Wang X.-Y. and Zhang Y.-Q. and Bao X.-M. A novel chaotic image encryption scheme using DNA

sequence operations. Optics and Lasers in Engineering. 2015; (73), 53–61. https://doi.org/10.1016/j.

optlaseng.2015.03.022

39. Wang X. and Liu L. and Zhang Y. A novel chaotic block image encryption algorithm based on dynamic

random growth technique. Optics and Lasers in Engineering. 2015; (66), 10–18. https://doi.org/10.

1016/j.optlaseng.2014.08.005

40. Hayouni H., Hamdi M., Kim T. H. A novel efficient approach for protecting integrity of data aggregation

in wireless sensor networks. Proceedings of 2015 International Wireless Communications and Mobile

Computing Conference. 2015; 1193-1198.

41. Bhandari A., Bhuiyan M., Prasad P. W. C. Enhancement of MD5 algorithm for secured web develop-

ment. Journal of Software. 2017; 12 (4), 240–252. https://doi.org/10.17706/jsw.12.4.240-252

42. Rao P. V., Rao S. G., Reddy P. C., Sakthidharan G. R., Kumar Y. M. Improve the integrity of data using

hashing algorithms. International Journal of Innovative Technology and Exploring Engineering (IJITEE).

2019; 8(7).

43. Chang S., Perlner R., Burr W. E., Turan M. S., Kelsey J. M., Paul S., et al. Third–round report of the

SHA–3 cryptographic hash algorithm competition. NISTIR 7896, National Institute for Standards and

Technology. 2012 Nov.

44. Wu K., Li Y., Chen L., Wangm Z. Research of integrity and authentication in OPC UA communication

using whirlpool hash function. Application Science. 2015; 5, 446–458.

45. Aumasson J. P., Neves S., Wilcox–ÓHearn Z., Winnerlein C. BLAKE2: simpler, smaller, fast as MD5.

In: Jacobson M., Locasto M., Mohassel P., Safavi-Naini R. (eds) Applied Cryptography and Network

Security. ACNS 2013. Lecture Notes in Computer Science, 7954. Springer, Berlin,

Heidelberg.2013.

46. Volná E., Kotyrba M., Kocian V., Janosek M. Cryptography based on neural network. 26th European

conference on modelling and simulation, ECMS 2012, Koblenz, Germany. 2012; 386–391.

47. Shi J., Chen S., Lu Y., et al. An approach to cryptography based on continuous–variable quantum neu-

ral network. Scientific Reports. 2020; 10 (2107). https://doi.org/10.1038/s41598-020-58928-1 PMID:

32034194

48. Komal T., Ashutosh R., Roshan R., Nalawade S. M. Encryption and decryption using artificial neural

network., International Advanced Research Journal in Science, Engineering and Technology. 2015

April; 2 (4).

49. Rathee N., Sachdeva R., Dalel V., Jaie Y. A novel approach for cryptography using artificial neural net-

works. International Journal of Innovative Research in Computer and Communication Engineering.

2016 Aug.; 4 (4).

50. Abu Zitar R., Al–Jabali A. K. Towards neural network model for insulin/glucose in diabetics. Informatica:

An international Journal. 2005; 29.

51. Li N. Research on diffie-hellman key exchange protocol. 2010 2nd International Conference on Com-

puter Engineering and Technology, Chengdu, China. 2010 April; 4, 634–637.

52. https://www.eui.eu/ServicesAndAdminComputing-Service/Software/GuideMatLab.

53. Al-Muhammed M. J. A novel key expansion technique augmented with an effective diffusion method.

Journal of Computer Fraud & Security. 2018 March; (3), 12–20. https://doi.org/10.1016/S1361-3723

(18)30025-3

54. Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., et al. A statistical test suite for random

and pseudorandom number generators for cryptographic applications. 2011.

55. Soto J., Randomness testing of the advanced encryption standard candidate algorithms. NIST IR 6390.

1999 Sept.

56. Walker J. ENT: A Pseudorandom Number Sequence Test Program. Fourmilab: Switzerland, 2008.

https://www.fourmilab.ch/random/.

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 26 / 27

https://doi.org/10.1016/j.ins.2019.08.041
https://doi.org/10.1016/j.ins.2019.08.041
https://doi.org/10.1016/j.ins.2020.09.055
https://doi.org/10.1016/j.sigpro.2011.10.023
https://doi.org/10.1016/j.asoc.2014.09.039
https://doi.org/10.1016/j.optlaseng.2015.03.022
https://doi.org/10.1016/j.optlaseng.2015.03.022
https://doi.org/10.1016/j.optlaseng.2014.08.005
https://doi.org/10.1016/j.optlaseng.2014.08.005
https://doi.org/10.17706/jsw.12.4.240-252
https://doi.org/10.1038/s41598-020-58928-1
http://www.ncbi.nlm.nih.gov/pubmed/32034194
https://www.eui.eu/ServicesAndAdminComputing-Service/Software/GuideMatLab
https://doi.org/10.1016/S1361-3723(18)30025-3
https://doi.org/10.1016/S1361-3723(18)30025-3
https://www.fourmilab.ch/random/
https://doi.org/10.1371/journal.pone.0274947

57. Al-Muhammed M., Abu Zitar R. Intelligent convolutional mesh-based encryption technique augmented

with fuzzy masking operations. International Journal of Innovative Computing, Information and Control

2020; 16(1), 257–282.

58. Zhang Y, Tang Y. A Plaintext-Related Image Encryption Algorithm based on Chaos. Multimedia Tools

and Applications, 2018; 77:66476669.

59. Ratha P., Swain D., Paikaray B., Sahoo S. An optimized encryption technique using an arbitrary matrix

with probabilistic encryption. Procedia Computer Science 2015; 57, 1235–1241. https://doi.org/10.

1016/j.procs.2015.07.422

60. Thoms G., Muresanand R., Al-Dweik A. Chaotic encryption algorithm with key controlled neural net-

works for intelligent transportation systems. IEEE Access 2019; 7, 158697–158709. https://doi.org/10.

1109/ACCESS.2019.2950007

61. Biham E., Shamir A. Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology. 1991;

4,3–72. https://doi.org/10.1007/BF00630563

62. Biham E., Shamir A. Differential cryptanalysis of the data encryption standard. Springer-Verlag. 1993.

63. Matsui M. Linear cryptanalysis method for DES cipher. In: Helleseth T. (eds) Advances in Cryptology —

EUROCRYPT’93. EUROCRYPT, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg.

1993; 765, 386–397.

64. Nuseirat A. F., Abu Zitar R. Trajectory path planning using hybrid reinforcement and back propagation

through time training. International Journal of Cybernetics and Systems. 2003; 34 (8).

65. Abu Zitar R., Hassoun M. H. Neurocontrollers trained with rule extracted by a genetic assisted reinforce-

ment learning system. IEEE Trans. Neural Networks. 1995; 6(4), 859–879. https://doi.org/10.1109/72.

392249

66. Al-Tahrawi M. M., Abu Zitar R. Polynomial networks versus other techniques in text categorization.

International Journal of Pattern Recognition and Artificial Intelligence. 2008; 22 (2), 295–322. https://

doi.org/10.1142/S0218001408006247

67. Abu Zitar R., Hamdan A. Spam detection using genetic based artificial immune system: a review and a

model. Artificial Intelligence Review. 2011.

68. Abu Zitar R. Optimum gripper using ant colony intelligence. Industrial Robot Journal. 2004; 23 (1).

69. Abu Zitar R., Nuseirat A. M. A theoretical approach of an intelligent robot gripper to grasp polygon

shaped object. International Journal of Intelligent and Robotic Systems. 2001; 31 (2001), 397–422.

https://doi.org/10.1023/A:1012094400369

70. Nuseirat A. M., Abu Zitar R. A neural network approach to optimum grip in the presence of small slips.

International Journal of Robotic Systems. 2001; 18(6),305–315. https://doi.org/10.1002/rob.1025

PLOS ONE Hybrid encryption technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0274947 September 28, 2022 27 / 27

https://doi.org/10.1016/j.procs.2015.07.422
https://doi.org/10.1016/j.procs.2015.07.422
https://doi.org/10.1109/ACCESS.2019.2950007
https://doi.org/10.1109/ACCESS.2019.2950007
https://doi.org/10.1007/BF00630563
https://doi.org/10.1109/72.392249
https://doi.org/10.1109/72.392249
https://doi.org/10.1142/S0218001408006247
https://doi.org/10.1142/S0218001408006247
https://doi.org/10.1023/A:1012094400369
https://doi.org/10.1002/rob.1025
https://doi.org/10.1371/journal.pone.0274947

