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High-precision segmentation of ancient mural images is the foundation

of their digital virtual restoration. However, the complexity of the color

appearance of ancient murals makes it difficult to achieve high-precision

segmentation when using traditional algorithms directly. To address the

current challenges in ancient mural image segmentation, an optimized

method based on a superpixel algorithm is proposed in this study. First, the

simple linear iterative clustering (SLIC) algorithm is applied to the input mural

images to obtain superpixels. Then, the density-based spatial clustering of

applications with noise (DBSCAN) algorithm is used to cluster the superpixels

to obtain the initial clustered images. Subsequently, a series of optimized

strategies, including (1) merging the small noise superpixels, (2) segmenting

and merging the large noise superpixels, (3) merging initial clusters based on

color similarity and positional adjacency to obtain the merged regions, and

(4) segmenting and merging the color-mixing noisy superpixels in each of the

merged regions, are applied to the initial cluster images sequentially. Finally,

the optimized segmentation results are obtained. The proposed method is

tested and compared with existing methods based on simulated and real

mural images. The results show that the proposed method is effective and

outperforms the existing methods.
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Introduction

Ancient murals have been eroded over time by different
natural factors such as light, temperature, humidity, carbon
dioxide, and bacteria (Shi and Lu, 2005), resulting in the
degradation of their appearance, particularly their color.
The historical value of these ancient murals may get hidden
by the fading colors. Current restoration works can help
rediscover the hidden information. In the aspect of restoration
for ancient murals, the traditional imitation method is
easily influenced by personal experience, and the imitation
work is irreversible. Fortunately, computer-aided digital
restoration can help overcome the shortcomings of traditional
imitation restoration. Furthermore, digitally archived files
can be more easily displayed, reproduced, and permanently
stored.

The high-precision segmentation of ancient mural images is
the foundation of digital virtual restoration. With the support
of image processing technology and the collected database of
ancient murals (Liang et al., 2016; Jin-xing and Xiao-xia, 2017),
the faded color can be restored with high fidelity. However,
ancient mural images are very complex in terms of color because
of the different color degradation conditions existing in these
murals, such as fading, wearing, and shedding (Lu et al., 1998),
which make it difficult to achieve high-precision segmentation
using traditional segmentation algorithms. For example, current
segmentation methods cannot achieve color consistency and
positional connectivity when segmenting an ancient mural
image.

In the past decades, a few human–computer interaction-
based image segmentation methods have been proposed based
on traditional image segmentation algorithms. Some intelligent
human–computer interactive image segmentation systems have
been developed (Hua et al., 2002), including region growth-
based (Baogang et al., 1999) and edge detection-based (Pan and
Lu, 2003). Lu et al. (2002) attempted to automatically extract
the region to be repaired using a color histogram; however,
the method is only applicable to the extraction of local regions
with consistent colors. Li et al. (2000) proposed an image
segmentation method that combined edge detection and region
growth technologies.

With the rapid development of deep learning technology,
image segmentation based on semantic or instance information
of images has made great progress. Among the current deep
learning-based image segmentation methods, the representative
one is the full convolutional network (FCN) proposed by Long
et al. (2015), which uses up-sampling instead of a full connection
layer and can process images of different sizes. Ronneberger
et al. (2015) proposed the U-net framework, which is suitable
for running smaller batch dataset samples. Badrinarayanan et al.
(2017) proposed the SegNet neural network, which greatly
reduced the model parameters and improved the efficiency.

Zhao et al. (2017) proposed PspNet, which uses global feature
prior knowledge to analyze the different scenes and realize
semantic segmentation. Lin et al. (2017) proposed a Re-fineNet
framework using chain residual connection. Nevertheless, as it
is exceptionally difficult to build a large and robust database
to train the mentioned frameworks, they are unsuitable for the
segmentation of ancient mural images. Therefore, most current
methods are still based on traditional image segmentation
algorithms, such as threshold-based (Otsu, 1978; Kapur et al.,
1985; Yen et al., 1995), edge detection-based (Rosenfeld, 1981;
Er-Sen et al., 2009), and clustering-based (Dasgupta, 2008;
Yan et al., 2012).

Although traditional image segmentation algorithms are
used extensively in different areas, owing to the complexity
of the color appearance of mural images, they are not
directly applicable to ancient mural images without human
assistance. For example, simple or multiple thresholds cannot
deal with the color-mixing problems in ancient murals
for threshold-based methods (Otsu, 1978; Kapur et al.,
1985; Yen et al., 1995). Further, the edge detection-based
segmentation algorithm (Rosenfeld, 1981; Er-Sen et al., 2009)
can only obtain an incomplete local contour of the input
image. In addition, for clustering-based image segmentation
algorithms, k-means or fuzzy c-means clustering (FCM)
algorithms (Dasgupta, 2008; Yan et al., 2012) perform
global clustering on the input image that only meets the
coarse color consistency and cannot realize the positional
connectivity of their clustering results. The limitations of the
current methods for segmenting ancient mural images are
apparent.

To address the current challenges in ancient mural image
segmentation, an optimized method based on a superpixel
algorithm is proposed in this study. First, the SLIC algorithm
(Achanta et al., 2012) was applied to the input mural
images to obtain the superpixels. The DBSCAN algorithm
(Bäcklund et al., 2011; Kovesi, 2013) was then used to
cluster the superpixels to obtain the initial clustered images.
However, the noisy superpixels in the initial clustering result
hinder the color consistency and positional connectivity of
the initial clustering of the superpixel image. Therefore,
a series of optimized strategies were implemented to deal
with the noisy superpixels, including (1) merging the small
noise superpixels, (2) segmenting and merging the large
noise superpixels, (3) merging the initial clusters based
on color similarity and positional adjacency to obtain the
merged regions, and (4) segmenting and merging the color-
mixing noisy superpixels in each of the merged regions.
Finally, the optimized segmentation results were obtained. The
experiments showed that the proposed method was effective
and outperformed the existing methods in segmenting ancient
mural images.
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Materials and methods

Simple linear iterative clustering
algorithm

The SLIC algorithm is used extensively for image processing
(Achanta et al., 2012). For the SLIC algorithm, the input image
is first converted to the CIELAB color space, and for each pixel
in the image, a five-dimensional feature vector (l, a, b, x, y) is
constructed by combining the color features (l, a, b) and the
spatial features (x, y). During the clustering process, the number
of superpixels K must be set, and the initial cluster centers
Ck = [lk, ak, bk, xk, yk] (k = 1, 2, . . ., K) can be acquired according
to the step value S of the regular grid. Based on the feature
similarity between the initial cluster centers and all the pixels,
each image pixel is assigned to the most similar cluster center
within the area of 2S × 2S. After the first round of clustering,
the cluster centers are updated based on the first clustering
result, and the update is repeated until the cluster centers are
stable or the maximum update number is reached. The feature
similarity between the cluster centers and each pixel consists of
two parts, where the color and spatial similarities are calculated
using Equations 1 and 2, respectively.

distcolor =

√(
lk − li

)2
+ (ak − ai)

2
+
(
bk − bi

)2 (1)

distspace =

√
(xk − xi)

2
+
(
yk − yi

)2 (2)

where li, ai, and bi represent the L, a, and b values of the ith pixel
in the CIELAB color space, respectively, lk, ak, and bk represent
the L, a, and b values of the kth cluster center, respectively, xk

and yk represent the coordinates of the kth cluster center, and
xi and yi represent the coordinates of the ith pixel. With the
two different similarities between the cluster centers and each
of the image pixels, their formal feature similarity is defined in
Equation 3:

distsimilarity =

√(
distcolor

)2
+

(
distspace

S

)2
λ2 (3)

where S = sqrt((m × n)/K) represents the size of the initialized
superpixels, in which m and n are the width and height of
the input image, respectively, and K is the desired number of
superpixels, and λ is the weight constant of spatial proximity,
which directly influences the proportion of the spatial proximity
in the formal feature similarity. Usually, the larger the λ

value, the more regular the superpixels generated by the
SLIC algorithm; however, the lower the fit with the image
boundary. In contrast, the smaller the λ value, the more
irregular the superpixels but a high degree of fit with the
boundary of the image.

Density-based spatial clustering of
applications with noise algorithm

The DBSCAN algorithm (Bäcklund et al., 2011) is used to
cluster the superpixels generated by the SLIC algorithm. It can
connect density-reachable superpixels to a large cluster. The
sample dataset is set as D = (x1, x2, . . ., xn). The DBSCAN
algorithm divides the data points into core, boundary, and noise
points according to a set of neighborhood values (ε, Minpts),
where ε is the neighborhood radius and Minpts is the sample
density threshold.

The principle of DBSCAN is as follows: First, for the input
dataset D = (x1, x2, . . ., xn), the values of ε and Minpts are set
as described previously, and the number of data points in D is
initialized to obtain the label array. Then, the method selects a
data point xi (i = 1, 2, . . ., n) from D, where the data point xi

in D includes the features of the superpixels generated by the
SLIC. Third, according to the values of ε and Minpts, the selected
data point is judged as the core point. If the data point is a core
point, then all the data points that are connected to the core
points are identified and labeled together as a large cluster. If the
selected data point is not a core point, it is judged as a boundary
or noise point, and the corresponding process is applied to the
data point. Finally, when all the data points in D are processed,
the initial clustering result is obtained for the superpixels in the
image. Additional details regarding the DBSCAN algorithm can
be found in the literature (Bäcklund et al., 2011).

Proposed method

To address the limitations of the SLIC and DBSCAN
algorithms in segmenting ancient mural images, an optimized
method for the segmentation of ancient mural images based on
the superpixel algorithm is proposed in this study. The proposed
method aims to realize color and spatial consistency at the same
time when segmenting mural images, where color consistency
means that different subregions with the same color in a large
region should have the same label and spatial consistency means
that the degraded subregions should merge into the large region
to which they belong. The workflow of the proposed optimized
method is shown in Figure 1.

First, the input image was transformed to a superpixel
image based on the SLIC algorithm, followed by the DBSCAN
algorithm to obtain the initial clustering result. Then, for the
different types of noise superpixels in the initial clustering result,
a series of optimized strategies were sequentially applied to
the initial cluster images. These optimized strategies include:
(1) merging the small noise superpixels, (2) segmenting and
merging the large noise superpixels, (3) merging the initial
clusters based on color similarity and positional adjacency to
obtain the merged regions, and (4) segmenting and merging the
color-mixing noisy superpixels in each of the merged regions.
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FIGURE 1

Workflow of the proposed optimized method for ancient mural image segmenting.

Finally, the optimized segmentation results were obtained. The
specific implementation steps are as follows:

Step 1: The input image was segmented using the SLIC
algorithm to obtain the regular and compact superpixels.
Simultaneously, the label matrix L of the superpixel image
and the adjacent matrix Am, describing the adjacency relation
among the superpixels, were obtained.

Step 2: The superpixel image is clustered using the DBSCAN
algorithm to obtain the initial clustering results. Four types of
clusters exist in the initial clustering results: the small noise
superpixels that did not cluster with any other superpixels,
the large noise superpixels that did not cluster with any
other superpixels, the normal cluster with pure color, and the
abnormal cluster with color-mixing superpixels on the edge.

Step 3: The small noise superpixels are extracted and merged
into the adjacent cluster with the best color similarity.

Step 4: For large noise superpixels, if they are pure color,
they are merged into the adjacent cluster that has the best
similarity. If they have more than one color in them, they are
first segmented using the k-means algorithm and then merged
into the adjacent cluster with the best color similarity.

Step 5: After steps 3 and 4, the initial clusters are further
merged according to their color similarity and spatial adjacency.
Thus, relatively large subregions (called merged regions) are
obtained consisting of the processed initial clusters.

Step 6: After Step 5, the edges of each merged region
are traversed to determine whether there are mixed-color
superpixels. If so, they are processed according to the method
in Step 4, i.e., they are segmented and merged into the adjacent
cluster with the best color similarity.

Finally, the optimized segmentation results are obtained. In
the proposed optimized method, the definition and classification
of noise superpixels are based on the threshold number Th. If
the total number of pixels in a superpixel is less than numTh,
it is classified as a small noise superpixel. If it is greater than
the preset threshold numTh, it is classified as a large noise
superpixel. The workflow to deal with small noise (Step 3) and

FIGURE 2

Workflow to deal with the small and large noise superpixels of
the initial clustering result.

large noise (Step 4) superpixels is plotted in Figure 2. The
workflow details are as follows:

(1) Merging small noise superpixels. First, the empirical
parameter numTh is set to process small noise superpixels.
The condition to judge whether the target superpixels are
small is to judge whether sum(spi) ≤ numTh, where sum(spi)
represents the total number of pixels in the superpixel spi. If
it is, all the adjacent superpixel neighbors = {nsp1, nsp2, . . .,
nspt} to spi are selected based on the adjacent matrix Am
(acquired in the SLIC stage), where nsp1, nsp2, . . ., nspt are
the superpixels satisfying the adjacency conditions to spi, the
subscript represents the index of each adjacent superpixel in the
neighbors, and t represents the number of superpixels adjacent
to spi.

Then, the color similarity is calculated between each of
the adjacent superpixels in the neighbors and spi according to
Equation 4, and the corresponding similarity dist = {dist1, dist2,
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. . ., distt} is obtained, where the best superpixels matched to the
small noise superpixels can be found using Equation 5. Thus,
the small noise superpixels are merged into the corresponding
cluster where the matched superpixels are.

distcolor

(
spi, spj

)
=

√(
ll̇ − lj̇

)
+

(
al̇ − aj̇

)
+ (bl̇ − bj̇) (4)

ind∗ = arg minind(dist) (5)

where lk, ak, and bk (k = i, j) are the mean color values of all the
pixels in superpixel spk, ind represents the index of the elements
in dist, and ind∗ denotes the index value ind corresponding
to the smallest dist value. Finally, the target superpixels are
assigned to the cluster in which the matched superpixels are, and
the merging of small noise superpixels is completed.

(2) Segmenting and merging the large noise superpixels. As
shown in Figure 2, if the color standard deviation of the large
noise superpixel spi is less than the set threshold stdTh, the
similarity merging process is performed on spi. First, according
to Equation 4 and the adjacent matrix Am, the superpixel set
neighbors adjacent to the large superpixel spi are obtained. Then,
according to formula (6), the superpixel subset subneighbors
satisfying similarity merging are obtained. The superpixels in
the subneighbors are not only adjacent to the spi in the spatial
position but also consistent with the spi in color. Finally, the
array index ind∗ corresponding to the minimum value in dist is
obtained according to Equation 5, and spi is divided into clusters
to which sp belongs according to the obtained ind∗ to complete
the similarity merging of the large noise superpixels.

{
subneighbors = {x|x ∈ neighbors ∩ distcolor

(
x, spi

)
< simTh} dist = {d|d = distcolor

(
x, spi

)
, x ∈ subneighbors}

(6)
However, if the color standard deviation of the large noise

superpixels is greater than the preset threshold stdTh, it indicates
that it is a color-mixing noise superpixel, and the superpixels
need to be segmented before merging into adjacent clusters. The
workflow of the color-mixing superpixel segmentation is shown
in Figure 3. The details of the segmentation of the color-mixing
superpixels are as follows:

1. The region of the interest image and label matrix
including the color-mixing superpixels spi are extracted.
A rectangular frame centered on the color-mixing
superpixel coordinates is set, and the image ROIim
containing the target superpixels is cropped to obtain
the cropped image subim. Simultaneously, a rectangular
frame is used to extract the label matrix of ROIim to
obtain the local label matrix subL that corresponds to the
cropped image subim, which contains the labels of the
superpixel spi.

2. The k-means algorithm is used to segment the cropped
image subim. The input image subim is divided into
a black background region k1, color-mixing superpixel
dichotomous region k2, and k3 by setting the segmentation
parameter K to 3, where k1, k2, and k3 are the labels of
each segmentation subregion, which belong to {1, 2, 3} and
satisfy k1 6= k2 6= k3.

3. The label matrix subL is updated according to the image
segmentation result of the subim. First, the dataset of
neighbor superpixels of the large noise superpixel spi

is established based on the superpixels adjacent to the
matrix Am, and then, the subregions k (k = k1, k2, k3)
of the subimage are extracted. If k is equal to k1, it
indicates that the extracted subregion corresponds to a
black background, and there is no need to update the label
matrix subL. If the value of k is equal to k2 or k3, the
most similar adjacent superpixels sp to subregion k will be
determined based on Equations 5 and 6, and subregion k
will be merged into sp by updating its label matrix, where
the label matrix subL is updated automatically. After the
label matrix subL is updated, the corresponding area in the
label matrix L is replaced by the subL, and the segmenting
and merging of the large noise superpixels is completed.

(3) Merging the initial clusters based on color similarity and
positional adjacency to obtain merged regions. The DBSCAN
algorithm for superpixel clustering divides K superpixels
D = {sp1, sp2, . . ., spK } into n clusters, namely, D1, D2, . . ., Dn

(n < K), and satisfies the following conditions:{
|Di| = 1 (i = 1, 2, · · · , n)

Di ∩ Dj = ∅(i 6= j) ∩
∑n

1 |Di| = K
(7)

where Di represents the ith cluster and |Di| represents the
number of superpixels in the cluster. The merging of clusters
in this stage includes two conditions: (1) merging the clusters
that initially contain a certain number of superpixels and (2)
merging the adjacent clusters based on the chain propagation
theory. The first condition aims to merge the small clusters to the
adjacent clusters to obtain relatively large clusters, after which
the clusters are merged into a large merged region based on the
chain propagation theory. The method for the first condition is
as follows:

1. Set the number of superpixels in the clusters to numTh_s
as the threshold and use it to filter out all clusters that meet
the conditions C = {Di | 1 < | Di| ≤ numTh_s}.

2. Choose a cluster Di in C and traverse each superpixel spi
in cluster Di, using the principal of Equations 5 and 6
to determine the most similar superpixels sp that do not
belong to Di.

3. If sp exists, determine the corresponding cluster Dj where
superpixels sp are located, then merge the cluster Di into
cluster Dj, and set Di to null.
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FIGURE 3

Workflow of color-mixing superpixels segmenting.

4. Steps 2–3 are repeated until all the clusters are processed.
The implementation of the pseudocode for the first merge
condition in MATLAB language is listed in Table 1.

Following the first condition, the algorithm for merging
the adjacent clusters based on the chain propagation theory is
applied to the clusters. The algorithm regards each cluster as
a node, randomly selects an unprocessed cluster, Di, and takes
this cluster as the starting cluster. Then, the algorithm connects
all the unprocessed clusters with the same density and color
as cluster Di on a certain path and integrates them into larger
clusters, which is termed as the merged region. The key steps of
the algorithm are as follows:

1. Input the cluster dataset C1 = {D1, D2, . . ., Dm}, where
m < n.

2. Remove one of the unprocessed clusters Di (i = 1, 2, . . ., m).
3. Input all the superpixels in cluster Di into array S and input

the label mark of cluster Di in ind.
4. Remove one superpixel spi from S and determine the

superpixels that set the neighbors adjacent to spi.

5. Use the similarity rules defined in Equations 5 and 6 to
determine the super pixel sp that does not belong to Dind
but is most similar to spi.

6. If sp does not exist and there are superpixels in array S that
have not been traversed, proceed to step 4. If sp does not
exist and the superpixels in array S have been traversed,
proceed to step 2. If sp exists, then find the cluster Dj where
sp is located, copy the superpixels in cluster Dj into array
S, merge the superpixels in Dind into cluster Dj, then set
Dind empty and assign the index j of cluster Dj to ind, and
return to step 4.

7. Repeat steps 2–6 until all clusters are processed, and finally,
complete the merging of clusters to obtain the merged
regions. The implementation of the pseudocode of the
second merge condition in MATLAB language is listed in
Table 2.

(4) Segmenting and merging the color-mixing noisy
superpixels in each merged region. As illustrated in Figure 1,
four types of clusters exist in the initial clustering results, where
an abnormal cluster with color-mixing superpixels on the edge
is one type. However, these edge color-mixing superpixels still
exist in the merged region as no step is required to process
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TABLE 1 Implementation of pseudocode in MATLAB language on
merging the clusters that contain a certain number of superpixels.

Algorithm 1: Merging of clusters containing a specific number of superpixels

Input: cluster set C = {D1 , D2 , . . ., Dn}, adjacent matrix Am, threshold of
number of superpixels numTh.

Output: new cluster set C1 = {D1 , D2 , . . ., Dm}.

1. for i = 1:length(C)

2. Di = C{i};

3. if 1 < | Di| < = = numTh then

4. for j = 1:| Di|

5. spi = Di(j);

6. Find neighbors of spi according to Am;

7. Compute dist between spi and neighbor in neighbors;

8. Find out the superpixels sp most similar to spi according
to the minimum value of dist and find Dj to which sp belongs;

9. if sp ! = ∅ then

10. Dj = Di
⋃ Dj ;

11. Di = ∅ ;

12. end if

13. end for

14. end if

15. end for

16. Remove empty set in the set C and reconstruct set C to get C1 ;

them in the above works. Therefore, it is necessary to address
this issue for the high-precision segmentation output of ancient
mural images. The method to process the edge color-mixing
superpixels in the merged regions is the same as in Figure 3;
the method is not repeated here.

Experiment and results

Experiment settings

To verify the effectiveness of the proposed optimized
method, the hardware environment of the experiment was
configured using a desktop computer with an Intel (R) core
(TM) i7-9700 processor and a Windows 10 operating system,
and the programming environment was MATLAB R2019a. The
data for the test algorithm were a simulated Dunhuang mural
image of 1,173 × 829 pixels and two real Dunhuang mural
images of 554× 694 and 806× 1120 pixels. The methods in the
literature (Dasgupta, 2008; Yan et al., 2012; Kovesi, 2013) were
compared to verify the superiority of the proposed method.

Evaluation metrics

The image segmentation quality evaluation metrics are
divided into supervised and unsupervised methods. In view

TABLE 2 Implementation of pseudocode in MATLAB language on
merging the clusters based on chain propagation theory.

Algorithm 2: Merging of clusters based on chain propagation theory

Input: cluster set C1 = {D1 , D2 , . . ., Dm}, adjacent matrix Am.

Output: new cluster set C2 = {D1 , D2 , . . ., Dq}.

1. for i = 1:length(C1)

2. ind = i;

3. S = C{i};
Mark Dind as processed;

4. while i > 0

5. flag = 0;

6. for j = 1:length(S)

7. spi = S(j);

8. Find neighbors of spi according to Am;

9. Compute dist between spi and neighbor in neighbors;

10. Find out the superpixels sp most similar to spi according to the
minimum value of dist and find Dj to which sp belongs.

11. if sp ! = ∅ then

12. flag = 1;

13. S = Dj ;

14. Dj = Dind
⋃ Dj ;

15. Dind = ∅ ;

16. ind = j;
Mark Dind as processed;

17. break;

18. end if

19. end for

20. if flag = = 0 then

21. break;

22. end if

23. end while

24. end for

25. Remove empty set in the set C1 and reconstruct set C1 to get C2 ;

of the complex colors in the Dunhuang mural images, it is
difficult to develop a reasonable database of fine-segmented
mural images. Therefore, this study used unsupervised
evaluation metrics (Hui et al., 2008) to quantitatively analyze
the segmentation performance of the tested methods. The
unsupervised segmentation evaluation metric F was based
on the color variance to measure the performance of the
segmentation algorithm. It calculates the color square error
of each segmentation region and uses the square root of the
total number of segmentation regions as a weight to punish
over-segmentation. The F error is calculated as follows:

F =
√

N
∑N

j = 1
e2

x(Rj)
√

Sj

e2
x(Rj) =

∑
p∈Rj

(Cx
(
p
)
−

∑
p∈Rj

Cx(p)
Sj

)
2 (8)

where Cx(p) represents the feature values of the pixel p in terms
of color x, Sj represents the number of pixels in region j, Rj
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FIGURE 4

Test images and segmenting results of the different segmenting methods. (A) Test image. (B) Kovesi. (C) Dasgupta. (D) Yan. (E) Proposed.

FIGURE 5

Comparison of the segmenting results between the proposed method and the method proposed by Kovesi (2013). (A) Test image. (B) ROI of
test image. (C) Kovesi. (D) Proposed.
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FIGURE 6

Comparison of the segmenting results between the proposed method and the methods proposed by Dasgupta (2008) and Yan et al. (2012).
(A) Test image. (B) ROI of test image. (C) Proposed. (D) Dasgupta. (E) Yan.

represents the set of pixels in region j, and N represents the
number of regions of the entire segmented image. The smaller
the F value, the better the performance of the segmentation
algorithm, and vice versa.

Another evaluation metric E is entropy-based, which is
an evaluation metric developed by combining the information
theory and the minimum description length (MDL) principle.
It defines the regional entropy as a measure of the consistency
within the region and defines the layout entropy to punish the
situations when the entropy within the region is small. Given
a segmented image I, the entropy of region j is defined as in
Equation 9:

Hr
(
Rj
)
= −

∑
m∈Vj

Lj(m)

Sj
log

Lj(m)

Sj
(9)

where Vj represents the set of luminance values of all the pixels
in area j, Lj(m) represents the number of pixels with luminance
value m in area j, and the region entropy of the segmented image
I can be calculated as in Equation 10.

Hr (I) =
∑
j = 1

(
Sj

SI
)Hr

(
Rj
)

(10)

The layout entropy of the segmented image I is defined as:

Hl (I) = −
N∑

j = 1

Sj

SI
log

Sj

SI
(11)

The evaluation metric E can be obtained from Equations 10
and 11,

E = Hr (I)+Hl (I) (12)

The smaller the E value, the better the performance of the
segmentation algorithm, and vice versa.

Results and analysis

For the compared methods, the segmentation results of the
k-means algorithm (Dasgupta, 2008) and FCM algorithm (Yan
et al., 2012) are affected by the initial clustering centers and
the initial membership matrix, respectively. Therefore, to ensure
that the segmentation results remain stable when segmenting an
image, for the k-means algorithm, the optimal K value for each
image to be segmented is determined using the elbow method
combined with the primary color category of the image rather
than personal color preference (Huang et al., 2021). Then, the
image is segmented ten times according to the K value. The
clustering centers of each segmentation result are accumulated,
and the mean value of the ten segmentation clustering centers is
obtained and used as the initial clustering centers of the k-means

TABLE 3 The evaluation metric F of the tested images under different
segmentation methods.

Method

Kovesi Dasgupta Yan Proposed

Image_1 2.2137e+07 14.577e+07 16.241e+07 0.82274e+07

Image_2 3.6151e+07 3.6067e+07 5.0533e+07 1.2641e+07

Image_3 88.342e+07 114.59e+07 127.32e+07 26.250e+07

TABLE 4 The evaluation metric E of the tested images under different
segmentation methods.

Method

Kovesi Dasgupta Yan Proposed

Image_1 7.6955 7.9774 8.3741 7.6043

Image_2 8.6352 8.6821 9.1769 8.2291

Image_3 11.9010 11.3672 11.9276 10.9953
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algorithm to ensure that the segmentation results are consistent
in each run.

For the FCM algorithm, the classification number K of
the image to be segmented is the same as that of the
k-means algorithm. Similarly, the image is segmented ten
times, and the membership matrix of each segmentation
result is accumulated to obtain the average value of the
membership matrix of the ten repetitions, which is considered
as the initial membership matrix of the algorithm. The
three test images used in this study and the segmentation
results obtained using the different methods are shown in
Figure 4.

In Figure 4, from left to right, the first column shows the test
images and the second to fifth columns show the segmentation
results for each of the test images using the methods in the
literature (Dasgupta, 2008; Yan et al., 2012; Kovesi, 2013) and
the proposed method. The local segmentation results of the
proposed method were compared with those reported in the
literature (Kovesi, 2013). Using the first image as an example,
the segmentation results are shown in Figure 5.

It can be observed from the detailed comparison of the
segmentation results indicated by the arrow in Figure 5 that
the proposed method not only has a better clustering result for
the superpixels, but also can process mixed-color superpixels
compared with the method in the literature (Kovesi, 2013).
The contrast area is well segmented by the proposed optimized
method, and the color-mixing superpixels are segmented and
merged into the adjacent cluster. The processed result of the
mixed-color superpixels is indicated by the red arrows in
Figures 5C,D. Therefore, the proposed method can eliminate
the shortcomings existing in the literature (Kovesi, 2013),
that is, it only performs a single clustering task and cannot
process the mixed-color superpixels. In addition, the proposed
method is compared with the methods in the literature
(Dasgupta, 2008; Yan et al., 2012), and the results are shown in
Figure 6.

From left to right, Figure 6A shows the test image and
Figure 6B shows the subimage marked by the red rectangle
in Figure 6A. Figures 6C–E shows the segmentation results of
the compared area, as shown in Figure 6B, using the method
proposed in the literature (Dasgupta, 2008; Yan et al., 2012).
It can be observed from Figure 6 that the segmented results
obtained using the methods proposed by Dasgupta (2008)
and Yan et al. (2012) are apparently inferior to the proposed
method. For the methods in the literature, the segmentation
of the input image at the pixel level inevitably leads to several
isolated segmented areas in the segmented image. Thus, the
positional connectivity cannot be achieved for high-precision
segmentation purposes. Therefore, these methods are not
suitable for the fine segmentation of ancient mural images for
digital restoration applications.

Fortunately, the proposed optimized segmentation method
can effectively overcome the shortcomings of the existing

methods in the literature (Dasgupta, 2008; Yan et al., 2012),
where the mural images that have faded or worn problems
are well segmented to meet the positional connectivity
required in segmenting ancient mural images. The proposed
method can achieve not only color consistency but also
positional connectivity for a specific color and can avoid over-
segmentation problems existing in the current methods. The
objective evaluation metrics of the segmented results for the
three tested images using the different methods are summarized
inTables 3, 4, where the best results are marked in bold. It can be
observed that each row of data in Table 3 shows the evaluation
metric data F for the same test image segmented by different
segmentation methods. In the case of the same exponential
level, for each test image, the value of the evaluation metric
corresponding to the proposed method is obviously better than
other methods, and it is the smallest. In Table 4, each row of
data shows the evaluation metric E for the same test image
segmented by different segmentation methods. Compared with
other methods for each test image, the difference in metric
data corresponding to all methods is very small, but the
data corresponding to the method in this paper are still the
smallest.

From the results of the evaluation metrics on mural
image segmentation in Tables 3, 4, it can be observed
that for three test images with different color complexities,
the proposed optimized method always has the smallest
values for the two metrics compared with the methods
proposed by Dasgupta, 2008; Yan et al., 2012; Kovesi, 2013.
Especially for the evaluation metric F, the proposed method
is significantly superior to the other three methods in terms
of segmenting faded or colored worn ancient mural images.
Furthermore, by reviewing the visual effect of the segmented
results from Figures 4-6, it can be concluded that the
proposed method could have addressed the challenges in
segmenting the ancient mural images to a certain extent.
However, more practical applications should be conducted
to ensure the effectiveness and superiority of the proposed
method.

Conclusion

Computer-aided digital restoration of the color of
ancient murals is an important scientific technology, and
the high-precision segmentation of ancient mural images
is the foundation of digital virtual restoration. However,
the complexity of the appearance of ancient murals poses
a challenge for high-precision segmentation when using
traditional segmentation algorithms. Therefore, an optimized
image segmentation method was proposed to improve the
segmentation accuracy of ancient mural images. Four key
optimized strategies were developed following the SLIC and
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DBSCAN algorithms. They are as follows: (1) merging the small
noise superpixels, (2) segmenting and merging the large noise
superpixels, (3) merging the initial clusters based on their color
similarity and positional adjacency to obtain the merged regions,
and (4) segmenting and merging the color-mixingspecific color.
It could further noisy superpixels in each of the merged
regions. The proposed method could achieve not only color
consistency but also positional connectivity for a specific
color. It could further avoid over-segmentation problems
existing in the current methods. By applying the proposed
strategies sequentially to the initial clustered images, the fine-
segmented mural images were obtained. The experiments
verified the effectiveness and superiority of the proposed
method. Additional tests will be conducted in future to further
investigate and optimize the proposed method.
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