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ABSTRACT 
The complete mitochondrial genome of Paragorgia papillata Li et al. 2021, a deep-sea gorgonian inhab
iting at 858 m in Caroline Ridge, was obtained in this study. The length of the mitochondrial genome 
is 19,018 bp with 14 protein coding genes, one transfer RNA (tRNA-Met) and two ribosomal RNA genes 
contained in this circular molecule. Phylogenetic analysis indicated that P. papillata and P. coralloides 
Bayer, 1993 were two closely related species, and a total of 26 mutational sites (four nonsynonymous 
mutations included) can be detected between their mitochondrial genomes. This exhibits a case that 
mitochondrial genomes can be applied to differentiate closely related species in gorgonians. The 
phylogenetic tree constructed with mitochondrial genomes showed that the families in Octocorallia are 
reciprocally monophyletic, provided that the family names were revised according to the systematic 
revision of Octocorallia guided by phylogenomics. However, the relationships of the families within 
each order were different between the previous phylogenomic work and ours. Integrating mitochon
drial genomes from a wider array of Octocorallia families is essential for a more accurate comparison 
of phylogenies derived from nuclear and mitochondrial sequences in future study.
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1. Introduction

The gorgonians have been considered as the foundation spe
cies of seamounts and continental margins in deep-sea eco
systems (Roberts et al. 2006). As one of the dominant 
megafaunal taxa in hard bottom environments like continen
tal shelves and seamounts, they serve as substrate for the 
benthic faunas and provide refuge for the epifaunal fish to 
escape from the predators, thus playing a fundamental eco
logical role in deep-sea benthic environments (Li et al. 2017). 
Paragorgia papillata Li et al. 2021 is one of the gorgonians 
inhabiting the tropical Western Pacific (Figure 1). Their identi
fication as a new species that differentiated from the closely 
related species P. coralloides has been formally established 
only recently (Li et al. 2021). Up to now, there are five spe
cies in Paragorgia discovered in the Western Pacific deep-sea 
ecosystem including P. splendens Thomson and Henderson, 
1906, P. sibogae Bayer, 1993, P. rubra Li et al. 2017, P. coral
loides Bayer, 1993 and P. papillata. However, only the mito
chondrial genome of P. coralloides has been public 
(Brockman and McFadden 2012). In this study, the complete 
mitochondrial genome of another species in Paragorgia 

(P. papillata) was sequenced and it is a good chance to 
inspect the potency of the usage of whole mitochondrial 
genomes to discriminate two closely related species in 

Figure 1. A picture of a colony of Paragorgia papillata after soaked in alcohol, 
with brittle stars intertwining on its surface. The specimen was photographed 
by Yang Li.
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gorgonians. This evaluation is relevant because the frag
mented barcodes in mitochondrial genomes are always 
notoriously incompetent in constructing a confident phylo
genetic relationship for Octocorallia at species or population 
level due to their slow evolutionary rates (McFadden et al. 
2011). The result of this study will lay foundations for future 
studies on the phylogeny and genetic resource conservation 
of Paragorgia, an ecologically pivotal genus of deep-sea 
corals.

2. Materials and methods

The sample of P. papillata was collected from 858 m depth at 
Caroline Ridge (140�1403200E, 10�0604700N) by the submersible 
remotely operated vehicle (ROV) Faxian during the cruise of 
the R/V Kexue to the tropical Western Pacific in 2019. The 
sample was deposited in specimen room in the laboratory of 
marine organism taxonomy and phylogeny of the Institute of 
Oceanology, Chinese Academy of Sciences (http://www.qdio. 
ac.cn/motp/; Yang Li, liyang@qdio.ac.cn) under accession no. 
M6106. DNA extraction, high-throughput sequencing, 
sequence assembly, and gene annotation were performed 
according to our previous procedures (Li et al. 2020). Briefly, 
a paired-end library with an insert size of 300 bp was pre
pared with total genomic DNA using the TruSeq DNA Sample 
Prep Kit (Illumina, USA). The above library was sequenced by 
an Illumina HiSeq Xten system (2� 150bp paired-end reads) 
(Illumina, USA) at Novogene Bioinformatics Technology Co., 
Ltd. (TianJin, China). Adapters and parts with a quality score 
below 15 were removed from raw reads by Trimmomatic 
0.36 (Bolger et al. 2014). The clean reads were assembled 
using MitoFlex 0.2.9 assembler (Li et al. 2021) with default 
parameters. The read coverage depth of the produced mito
chondrial genome was calculated with the Draw_ 
SequencingDepth.py script (Ni et al. 2023). The obtained 

mitochondrial genome was aligned with that of the closely 
related species P. coralloides to detect their difference. The 
phylogenetic tree was constructed using the PhyloSuite1.1.15 
pipeline (Zhang et al. 2019) based on the concatenated 14 
protein coding genes of P. papillata and other 35 octocorals 
(Brockman and McFadden 2012; Figueroa and Baco 2014; 
Gastineau et al. 2023). The final alignment was 15,024 bp 
long. The maximum-likelihood phylogeny was deduced using 
IQ-TREE 1.6.8 (Nguyen et al. 2014). with taxa in the order of 
Malacalcyonacea set as outgroup. The TVMþ F þ R4 model 
was selected based on the Bayesian Information Criterion rec
ommended by the built-in ModelFinder module in IQ-tree 
(Chernomor et al. 2016).

3. Results and discussion

A total of 2.6 Gb data was yielded by Illumina sequencer. 
After assembled, the complete mitochondrial genome of P. 
papillata was obtained. This mitochondrial genome was at 
the length of 19,018 bp with an average sequencing depth of 
269 � (Figure S1). Among the 19,018 bp, the nucleotides A, 
C, G and T were 5,713 bp (30.04%), 3,472 bp (18.26%), 
3,811 bp (20.04%) and 6,022 bp (31.67%), respectively. The GC 
content was 38.29%, slightly higher than that of the closely 
related species P. coralloides (38.28%). These GC content val
ues were normal, because the GC contents of mitochondrial 
genomes in Octocorallia can range approximately from 34% 
(Acrossota amboinensis NC_061991[14]) to 45% (Tenerodus fal
lax OL616286 (Muthye et al. 2022)). There were 14 protein 
coding genes, 1 transfer RNA gene (tRNA-Met) and 2 riboso
mal RNA genes in the mitochondrial genome of P. papillata 
with tRNA-Met, COX3, ATP6, ATP8, COX2, NAD4L, NAD3, 
NAD6 encoded on the light strand, and the remaining were 
encoded on the heavy strand (Figure 2). Both the start 
codons and stop codons in the 14 protein coding genes 

Figure 2. A circular genomic map of the mitochondrial genome of Paragorgia papillata, with 14 protein coding genes, one ORF, 1 tRNA, and 2 rRNAs.

1244 L. JUNYUAN ET AL.

http://www.qdio.ac.cn/motp/
http://www.qdio.ac.cn/motp/
mailto:liyang@qdio.ac.cn
https://doi.org/10.1080/23802359.2024.2405531


were canonical (ATG as start codons and TAG or TAA as stop 
codons). The gene arrangements of P. papillata and P. coral
loides were identical. This gene order was also the same with 
those in genus Pleurocorallium, which has been named as 
‘konojoi’ type gene order (Figueroa and Baco 2014).

The alignment (19,018 bp in length) between the mito
chondrial genomes of P. papillata and P. coralloides showed 
26 mutational sites which included 24 point mutations and 2 
indels. Among the 24 point mutations, two mutational sites 
led to two amino acid changes in the gene of MutS (the 
commonly used barcode in octocorals), one nonsynony
mously mutational site was located in the nad5 gene, one 

nonsynonymous point mutation was in the nad6 gene and 
the remaining 20 point mutations were situated within the 
noncoding regions. The phylogenetic tree indicated that 
P. papillata clustered with P. coralloides and the branch 
lengths for these two gorgonians were short (Figure 3). The 
result here implied the potentially effective utility of the 
whole mitochondrial genomes to differentiate two closely 
related taxa at the interspecific level of the gorgonians, how
ever, there could be an impediment for its application in the 
studies of population genetics or phylogeography at the 
intraspecific level, considering the limited informatively muta
tional sites between the two species observed in this study. 

Figure 3. The phylogenetic tree of Paragorgia papillata and other 29 gorgonians based on 14 protein coding genes of the whole mitochondrial genome. The 
sequences used in the tree are listed as follows: NC_018790, JX508792 (Brockman and McFadden 2012); NC_026193, KM015351, KM015354 (Figueroa and Baco 
2014); AB595189 (Uda et al. 2011); MT254531, MT254532 (Angelo et al. 2021); NC_062002, NC_062039, NC_061283, NC_061988, NC_061991, NC_061992, NC_ 
061994, NC_062014, NC_062015, NC_062020, NC_062023, NC_062038, OL616243, OL616250, OL616266, OL616279 (Muthye et al. 2022); LT174652 (Angelo et al. 
2016); HQ694727 (Park et al. 2012); NC_046465 (Choi et al. 2020); EF622534 (Brugler and France 2008); NC_044078, NC_044086, NC_044077 (Hogan et al. 2019); 
JX023274 (Shen et al. 2021); MH719202 (Easton and Hicks 2019); NC_082114 (Gastineau et al. 2023); NC_046480, NC_082284, KF785800 (unpublished) and 
LC810941 (in this study). Numbers near the nodes indicate SH-aLRT and ultrafast bootstrap support values from 20,000 replicates. The (super)families each species 
belongs to are shown besides each species name. The species names and the corresponding (super)family names are adopted according to the WoRMS database 
(https://www.marinespecies.org/).
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Certainly, more genetic information from other intraspecific 
and interspecific samples will present more conclusive evi
dence in future study.

The revision of Octocoralline systematics has been per
formed in 2022 based on the phylogenomic tree built from 
ultraconserved and exon loci (McFadden et al. 2022). The 
major revisions in that work involved the reorganization of 
three previously accepted orders in Octocorallia (Alcyonacea, 
Pennatulacea and Helioporacea) into two new orders 
(Scleralcyonacea and Malacalcyonacea). Moreover, a propor
tion of families in Octocorallia have been revised so that the 
poly- or paraphyletic families deduced from phylogenomic 
analysis become reciprocally monophyletic clades. In this 
work, the phylogeny inferred from mitochondrial genomes 
was consistent with the revision work in terms of the order 
level adjustment (the affiliations of the families in these two 
works were consistent) and family names revision (the fami
lies after revision in the present tree were all monophyletic 
(Figure 3)). Nevertheless, the topological relationships of the 
families within each order in this study were not agreeable 
with the phylogenomic tree. For example, the family 
Coralliidae that P. papillata belonged to was sister to the 
clade composed of Parasphaerascleridae, Ideogorgiidae and 
Sarcodictyonidae based on the phylogenomic analysis (see 
Figure 1 in that study) (McFadden et al. 2022). In the present 
study, however, Coralliidae clustered with the clade compris
ing Pennatuloidea, Chrysogorgiidae, Isidoidae, Keratoisidinae 
and Primnoidae, whereas Parasphaerascleridae, Ideogorgiidae 
and Sarcodictyonidae, that clustered with Coralliidae in 
(McFadden et al. 2022), diverged early in Scleralcyonacea in 
this study (Figure 3). If based on the single mtMutS, 
Coralliidae seemed to be placed in a polytomy with other 
families of Scleralcyonacea (clades including all families in 
Scleralcyonacea except Cornulariidae) (see Figure 2 in 
(McFadden et al. 2022)). The difference may be brought 
about by the intrinsic drawbacks of mitochondrial genes that 
deduce deeper nodes with poor resolution for Octocorallia 
(McFadden et al. 2010; McFadden et al. 2006), but we should 
note that the families with mitochondrial genomes available 
in Octocorallia were not as comprehensive as those in the 
phylogenomic tree, thus a more reasonable comparison 
awaits more available mitochondrial genomes in future 
study.
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