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Breast cancer is the most common cancer in women worldwide. Providing

accurate and efficient diagnosis, risk stratification and timely adjustment of

treatment strategies are essential steps in achieving precision medicine before,

during and after treatment. Radiomics provides image information that cannot

be recognized by the naked eye through deep mining of medical images.

Several studies have shown that radiomics, as a second reader of medical

images, can assist physicians not only in the detection and diagnosis of breast

lesions but also in the assessment of risk stratification and prediction of

treatment response. Recently, more and more studies have focused on the

application of ultrasound radiomics in breast management. We summarized

recent research advances in ultrasound radiomics for the diagnosis of benign

and malignant breast lesions, prediction of molecular subtype, assessment of

lymph node status, prediction of neoadjuvant chemotherapy response, and

prediction of survival. In addition, we discuss the current challenges and future

prospects of ultrasound radiomics.
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Introduction

Breast cancer (BC) has become the most commonly diagnosed malignancy among

women worldwide, with approximately 2.3 millions new cases diagnosed and 680,000

deaths in 2020, which indicates that effective clinical strategies are urgently needed to

manage BC patients (1). With the increasing advocacy of precision medicine, it is

important to perform accurate and efficient diagnosis, risk stratification, and timely

adjustment of treatment strategies before, during, and after treatment. Breast ultrasound

(US) is one of the most important imaging technology and is used in clinical practice,

which aims to monitor neoadjuvant chemotherapy (NAC) treatment and characterize
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breast lesions and axillary lymph nodes (2, 3). Various new US

imaging techniques and quantitative analysis methods have been

proposed, including US elastography and contrast-enhanced

ultrasound (CEUS), to improve the sensitivity of conventional

US and increase the accuracy of monitoring and prognostic

prediction (4). However, it is difficult for radiologists to perform

a comprehensive analysis of tumors with the information

obtained by looking at various ultrasound images (5, 6).

Radiologists face great challenges in achieving stable and

reliable interpretation and efficacy prediction of such multi-

modal US images.

New opportunities have emerged with the advent of

radiomics, a technique for extracting high-throughput

quantitative features from medical images In recent years,

radiomics based on X-ray, US, magnetic resonance imaging

(MRI) and positron emission tomography-computed

tomography (PET-CT) has proved to be useful for extracting a

large number of image features that cannot be observed with the

naked eye (7–10). In some tasks, it matches or exceeds human

perception (11, 12). Ultrasound has the characteristics of large

data size, multiple data types, and frequent examination, which

makes ultrasound radiomics uniquely advantageous in clinical

applications. Therefore, the application of ultrasound radiomics

in BC is being explored positively.

In this review, we aimed to briefly introduce ultrasound

radiomics and summarize its potential clinical applications in

the diagnosis of benign and malignant breast lesions, prediction

of molecular staging, assessment of lymph node status,

prediction of NAC response, and the prediction of survival.

Moreover, we discuss the current challenges of ultrasound

radiomics and how it can be more quickly applied to clinical

practice, and then to achieve precise personalized medical

management for BC patients based on US images and

clinicopathological information.
Workflows of radiomics

Radiomics is an effective combination of big data analysis

technology and medical images, which utilizes a large number

of data characterization algorithms based on artificial

intelligence to extract high-throughput quantitative image

features from massive medical images and build a data

information bank (13, 14). Then, radiomics performs deep

learning analysis and information mining from these

quantified image features and link them with clinical

macroscopic information and pathological and/or genetic

microscopic information, which holds potential in disease

detection, diagnosis, prognosis, and treatment (13). At

present, radiomics strategies mainly include two methods

(13, 15). One is the classic approach based on extracting pre-

designed (also referred to as hand-crafted or engineered)
Frontiers in Oncology 02
features using conventional machine learning (ML)

(Figure 1). The other is the recently developed approach

based on deep learning (DL), it can autonomously learn and

extract complex and abstract features related to disease from a

large number of medical images by constructing a multi-layer

neural network, without any prior design (Figure 1).

The radiomics process based on engineered features can be

divided into five steps: 1) Medical image acquisition, which can

be various types of medical images, such as X-ray, computed

tomography (CT), MRI, PET-CT, US, or even images of H&E-

stained biopsy sections. 2) Region of interest (ROI)

segmentation, which is to extract only the information related

to the lesion. The current segmentation of ROI mainly includes

manual segmentation, semi-automatic segmentation and

automatic segmentation. Different segmentation algorithms

have their applicable scope and conditions. There is no

universal segmentation algorithm with high recognition yet. 3)

Feature extraction: Radiomics features are extracted from ROI,

including signal intensity, shape, size, and first-order, second-

order and higher-order texture features. 4) Feature selection:

Although radiomics extracts many features, some features are

spurious and redundant for a specific task. Therefore, it is

necessary to select features with good repeatability, high

stability and independence according to feature selection

methods, which is conducive to the construction of robust

models. At present, the main methods include least absolute

shrinkage and selection operator (LASSO), recursive feature

elimination, principal component analysis, and max-relevance

and min-redundancy, etc. 5) Model building and validation:

This mainly refers to model building and testing independent

samples, which can be done by a variety of methods, from

statistics to advanced machine learning strategies. The common

methods include linear regression, logistic regression, support

vector machine, random forest, Cox regression, artificial neural

network and so on.

In recent years, with the exponential increase of GPU

computing power and the development of medical big data,

DL has become one of the most popular analysis methods in

radiomics (16). DL-based radiomics (DLR) is an end-to-end

model that does not require human involvement. The feature

extraction and analysis parts of DLR are coupled. While hand-

crafted feature-based radiomics requires pre-determination

along with expert knowledge, DLR does not require the

preparation of pre-defined features, which reduces the

subjectivity and uncertainty of hand-crafted feature design

and selection.
Radiomics in the ultrasound

Compared with other imaging techniques, US has the

advantages of simple, no radiation and real-time, and is one of
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the most important methods for monitoring breast lesions. In

recent years, with the continuous development of ultrasound

instruments, various new ultrasound techniques such as color

doppler imaging, contrast-enhanced ultrasound (CEUS) and US

elastography have also been used as complementary techniques

for breast examination. Radiologists’ demand for efficient and

objective assessment of US images in routine clinical work is

increasing, and AI-assisted ultrasound image analysis has

attracted attention.

The traditional radiomics based on feature engineering

requires manual segmentation of target regions and manual

definition of features on images. However, it is difficult to

perform manual segmentation of US images due to low

resolution and vague boundary definition. Additionally, the

repeatability of US examinations is easily affected by different

operators, patients and instruments. Therefore, the application

of machine learning based on feature engineering in US image

analysis has certain limitations. However, the DLR approach

supports a simple end-to-end training or learning process that

can create a fully automated workflow. Moreover, deep

learning networks can learn specific features from the data

itself. Therefore, DLR can better enable the analytical

processing of US images and improve the dependence of US

images on various operators, patients and machines. DLR is

expected to achieve robust and scalable ultrasound radiomics

models to assist in disease detection, diagnosis, prognosis,

and treatment.
Frontiers in Oncology 03
Ultrasound radiomics in
the breast diagnosis
Although ultrasonography is the one of most common

imaging technique used to detect and distinguish benign and

malignant breast lesions, it is difficult to accurately and stably

identify some lesions with the naked eye. Recently, many

studies have explored the potential of ultrasound radiomics

to aid in the detection and differentiation of lesions (9, 17–

20) (Table 1).

Earlier, Fujioka et al. (24) began to use the DLR model based

on US images to identify benign and malignant breast lesions.

This study confirmed that the DLR model had equal or better

diagnostic performance compared to radiologists on a test

dataset with 120 breast lesions (AUC = 0.913 vs 0.728-0.845,

p = 0.01-0.14). Subsequently, several studies have shown that

ultrasound radiomics based on 2D-US images has good

performance in identifying benign from malignant breast

lesion, with AUCs ranging from 0.817-0.943 (9, 17–19).

Additionally, studies have shown that the classification

performance of the AI model may be affected by adjusting the

ROI as different inputs of the model. Dong et al. (25) proposed

that the performance of the DLR model with coarse ROI is

slightly better than the DLR model with fine ROI. Therefore, we

can conclude that peripheral tissue is also an important factor in

the classification of breast lesions.
FIGURE 1

Radiomics workflows based on hand-crafted features or deep learning. CEUS, contrast-enhanced ultrasound; ROI, region of interest; MIC,
mutual information and maximal information coefficient; SVM, support vector machine; KNN, k nearest neighbor; NAC, neoadjuvant
chemotherapy.
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Since breast ultrasonography has a high rate of false positives

(FP), how to reduce the rate of FP with artificial intelligence (AI)

has attracted extensive attention by researchers. Chen et al. (21)

established an AI model with 288,767 US examinations in a

retrospective study and demonstrated that with the assistance of

AI, radiologists reduced the FP rate by 37.3% and unnecessary

biopsies by 27.8% without sacrificing sensitivity. And several

other studies have also confirmed this finding (33, 34). Recent

studies have challenged the use of ultrasound radiomics for

specific breast lesions that are difficult to diagnose in clinical

practice, particularly for BI-RADS 4A lesions. Niu et al. (35)

analyzed 206 patients with a US score of BI-RADS 4A and

concluded that AI can reveal more subtle differences associated

with benign-malignant differentiation in BI-RADS 4A lesions

compared to the naked eye. Thus, with the morphological and

textural information provided by AI, physicians can make more

accurate judgments about such atypical lesions. In addition, a

study by Zhang et al. (27) confirmed a positive predictive value

was 9.3% when using the AI model to analyze BI-RADS 4A

lesions. Although this result was not significant, it was superior

to radiologists.

Studies have shown that radiomic features extracted from

multimodal US images can improve the ability of lesion

diagnosis. A recent study by Zhan et al. (30) showed that
Frontiers in Oncology 04
dual-mode image features from 2D and shear wave

elastography (SWE) achieved accurate differentiation for

malignant and benign breast tumors with an AUC of 0.961,

which employed a framework for feature learning and

classification with the deep polynomial network. Several

studies have further confirmed the superior performance of

ultrasound radiomics based on bimodal US images in

classifying over quantitative elastography parameters (22, 29,

31, 32, 36, 37). As known, the blood supply characteristics of

breast masses are important features to determine the

malignancy of the lesion. Moustafa et al. (23) extracted

radiomics features from 2D-US and color doppler images,

respectively, to establish DLR models to help determine the

possibility of malignant. CEUS can provide more detailed blood

supply characteristics, which can be used to establish an AI

model for the differential diagnosis of breast cancer (28). The

interpretability and clinical applicability of the DLR model have

always been two major challenges in the field of AI. Notably, an

interpretable and clinically applicable DLR system was recently

proposed and validated by Qian et al. (26). The study used

10,815 and 912 multi-modal (B mode, color doppler and

elastography) multi-view (transverse and longitudinal) breast

US images for training and prospective testing, respectively, and

had an AUC of 0.955 finally. Such a clinically applicable AI
TABLE 1 Summary of ultrasound radiomics studies in breast diagnosis.

Study Task Data size Imaging data Radiomics results

Fleury et al. (17) 2020 benign vs malignant 207 lesions 2D-US AUC: 0.817

Li et al. (18) 2021 benign vs malignant 256 lesions 2D-US AUC: 0.943

Romeo et al. (9) 2021 benign vs malignant 201 lesions 2D-US AUC: 0.820

Shen et al. (21) 2021 benign vs malignant 143203 2D-US + Color Doppler AUC: 0.962

Fujioka et al. (22) 2020 benign vs malignant 377 lesions SWE-US AUC: 0.898

Ciritsis et al. (20) 2019 Task A: BI-RADS 2 vs
BI-RADS 3-5;
Task B: BI-RADS 2-3
vs BI-RADS 4-5

582 lesions 2D-US + radiological report ACC: 0.930 for task A;
ACC: 0.953 for task B

Mango et al. (19) 2020 benign vs malignant 900 lesions 2D-US AUC: 0.870

Moustafa et al. (23) 2020 benign vs malignant 159 lesions 2D-US + Color Doppler AUC: 0.958

Fujioka et al. (24) 2019 benign vs malignant 360 lesions 2D-US AUC: 0.913

Dong et al. (25) 2021 benign vs malignant 367 lesions 2D-US AUC: 0.899 with coarse ROIs
AUC: 0.869 with fine ROIs

Qian et al. (26) 2021 benign vs malignant 873 lesions 2D-US + Color Doppler + elastography AUC: 0.922 (2D-US + Color
Doppler)
AUC: 0.955 (2D-US + Color
Doppler + elastography)

Zhang et al. (27) 2021 benign vs malignant 1311 lesions 2D-US AUC: 0.846
PPV:9.3% for BI-RADS 4A

Chen et al. (28) 2021 benign vs malignant 221 lesions CEUS ACC: 0.863

Jiang et al. (29) 2021 benign vs malignant 401 lesions 2D-US + SWE AUC: 0.920

Zhang et al. (30) 2019 benign vs malignant 227 lesions 2D-US + SWE AUC: 0.961

Misra et al. (31) 2022 benign vs malignant 85 lesions 2D-US + SE ACC: 0.900

Zhang et al. (32)2020 benign vs malignant 291 lesions 2D-US + SWE ACC: 1.000
US: ultrasound, SWE: shear wave elastography, SE: strain elastography, AUC: area under the curve, ACC: accuracy, PPV: positive predictive value
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system may be incorporated into future breast cancer US

screening, as well as workflows that support ancillary or

secondary readings.
Ultrasound radiomics in the
evaluation of molecular subtype

BC is a highly heterogeneous tumor, and the molecular

expression status is one of the key factors indicating the

prognosis and guiding the choice of treatment options. At

present, molecular subtypes of BC are mainly determined by

genetic or immunohistochemistry analysis. However, there are

false negatives for biopsy results of individual tissues. The

ultrasound radiomics is based on the assumption that

microstructural discrepancies in different molecular subtypes

of breast cancer result in different gray-scale patterns, margins,

or any other features on US images that can be identified by AI

models. Currently, researchers are attempting to use ultrasound

imaging histology to non-invasively and comprehensively

analyze the molecular status of the entire tumor tissue to

provide personalized management for BC patients (Table 2).

Studies have shown that ultrasound radiomics is expected to

be a new imaging label for identifying molecular subtypes (HER2

+, triple-negative, Luminal A and Luminal B) of BC patients

because of its good performance (38, 39). In addition, Jiang et al.

(38) confirmed that the DLR model could distinguish the

luminal type and non-luminal type satisfactorily with AUCs of

0.87 and 0.83 in two independent test cohort. However, Wu et al.

(40) extracted quantitative radiomics features of tumors in raw

US images and showed a general performance in predicting

molecular biomarker expression. The radiomics models showed

predictive performance with AUC greater than 0.7 in the test

cohort, and the AUCs are 0.84, 0.78, 0.74, 0.86, 0.78, and 0.74 for

ER, PR, HER2, Ki67, p16, and p53, respectively. The treatment
Frontiers in Oncology 05
of triple-negative BC has been a challenge due to the absence of

effective drugs for specific molecular targets. Whereas the

expression of ki67 is a prognostic indicator and p53 is

considered a tumor suppressor. Cui et a.l (41) and Li et al.

(42) found that ultrasound radiomics models enabled

preoperative classification of ki67 and p53 status. Furthermore,

it is noteworthy that recent studies have shown that ultrasound

radiomics features are not only a potential imaging biomarker

for disease-free survival risk stratification, but also can predict

the risk of postoperative recurrence in patients with triple-

negative BC (43, 44). At present, the ultrasound radiomics in

predicting molecular subtype and survival recurrence of BC

needs further research.
Ultrasound radiomics in the
assessment of lymph node status

Accurate identification of axillary lymph node (ALN) status

is important in determining tumor stage, developing appropriate

axillary treatment plans, and predicting prognosis for BC

patients with or without NAC treatment (2, 3). Sentinel lymph

node (SLN) biopsy and axillary lymph node dissection (ALND)

are two main methods for determining ALN status. It is worth

mentioning that there are varying degrees of complications with

both sentinel lymph node dissection and ALND (45, 46). Thus,

the development of noninvasive biomarkers to identify ALN

status is of great significance for the accurate management of BC

patients. At present, researchers are challenging the radiomics

approach based on primary breast tumors on US images in

predicting the status of ALN and SLN (Table 3).

The majority of the earliest studies using ultrasound

radiomics to predict lymph node status were based on 2D

grayscale US images. Several studies have confirmed that DLR

combined with clinicopathological features has a satisfactory
TABLE 2 Summary of ultrasound radiomics studies in classifying breast cancer subtypes.

Study Task Data
size

Imaging
data

Radiomics results

Jiang
et al. (38)
2021

assessment of four breast cancer molecular
subtypes: luminal A, luminal B, HER2+,
triple-negative

2120
lesions

2D-US ACC: form 0.8007 to 0.9702 for the test cohort A; and 0.8794 to 0.9883 for the test
cohort B for each sub-category

Guo
et al. (39)
2018

distinguish between HR+/HER2- and triple-
negative

215
lesions

2D-US AUC: 0.760

Wu et al.
(40) 2021

predicting the expression of ER, PR, HER2,
Ki67, P16, and P53

116
lesions

2D-US AUC: ER (0.940 and 0.840), PR (0.900 and 0.780), HER2 (0.940 and 0.740), Ki67
(0.950 and 0.860), P16 (0.960 and 0.780), and P53 (0.95 and 0.74) in training and test
cohort, respectively.

Cui et al.
(41) 2021

predicting the expression of Ki67 and P53 263
lesions

2D-US AUC: 0.780 for Ki67; 0.710 for P53

Li et al.
(42) 2021

predicting the expression of Ki67 and HER2 252
lesions

2D-US AUC: 0.680 for Ki67; 0.651 for HER2
US, ultrasound; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; ER, estrogen receptor; PR, progesterone receptor; AUC, area under the curve; ACC, accuracy.
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performance in predicting ALN metastasis, with an AUC

between 0.75 and 0.85 (47–50). Guo et al. (51) proposed a

DLR ultrasonography (DLRU) model for comprehensive

evaluation of SLN and non-sentinel lymph node (NSLN)

status. And DLRU achieved a sensitivity of 98.4% in

identifying SLN+ and 98.4%in identifying NLSN+. In addition,

Lee et al. (52) innovatively explored the performance of

peritumoral region combined with tumor region in predicting

lymph node metastasis (LNM) with method of ultrasound

radiomics. They found that DLR model with 3mm thick

peritumoral tissue tumor area had the best predictive

performance, achieving an accuracy of 81.05% (124/153).

Therefore, combining tumor and peri-tumor tissues

contributes to the prediction of LNM, which is consistent with

the results of previous study (53). SWE is an elastographic

technique that integrates B-mode US with a color-coded map

to allow better characterization of breast lesions. Jiang et al. (54)

developed and validated a nomogram containing radiomics

features of SWE for assessing the risk level of LNM in early

BC, then the result confirmed that ultrasound radiomics model

showed good predictive power for LNM risk staging in early-

stage BC patients, which can provide incremental information

for decision making. Moreover, recent studies have shown that

clinical characteristics combined with DLR model based on

multimodal US images (B mode and SWE) can provide a

noninvasive and practical tool for preoperative prediction of

ALN status, and achieve an AUC of 0.905 in the test cohort (55).

Compared with the DLR model based on grayscale US images

alone, the performance of the DLR model based on multimodal

US images for tumor load of ALN achieved a significant

improvement (56). As clinical practice proposes greater

demands on precision treatment, studies with larger data size

and more multimodal fusion are needed to confirm the validity

of the DLR model.
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Ultrasound radiomics in the
prediction of NAC response

NAC has become one of the most important treatment

methods for BC patients. Normally, if the efficacy of NAC is

unresponsive or unsatisfactory, further treatment should be

changed accordingly. Therefore, early discontinuation of

ineffective treatment or adjustment of treatment strategy is

essential to avoid unnecessary toxicities and optimize overall

benefits. However, owing to the heterogeneity and complexity of

the tumor, individual responses of BC patients to NAC exhibit

vast differences and tumors and axillary response to NAC are

not parallel (57–60). Histopathological examination of surgical

specimens is the gold standard for evaluating response and can

only be performed after NAC treatment. Accurate assessment

and prediction of response are of particular significance for the

precise management of breast cancer patients who underwent

NAC. Although MRI is currently the most important method for

assessing NAC response (61–63), it still cannot predict

pathologic complete response (PCR) with sufficient accuracy

(64). MRI is not suitable for frequent monitoring during NAC

treatment due to its high cost and time-consuming. Ultrasound

is the most suitable examination method to be used repeatedly in

the process of NAC. Several studies have shown that DLR based

on US images has good performance in predicting the efficacy of

NAC for BC patients (Table 4).

Quiaoit et al. (65) attempted to explore the performance of

quantitative ultrasound radiomics in monitoring the response to

NAC on a dataset of 59 patients, and the results were generally

consistent with those of other previous studies (66, 67, 71). The

usefulness of quantitative ultrasound radiomics for NAC

response assessment remained relatively limited. Recently, the

emergence of DLR has greatly enhanced the image analysis

capabilities of radiomics, which relies on deep neural network
frontiersin.org
TABLE 3 Summary of ultrasound radiomics studies in predicting axillary lymph node status.

Study Task Data size Imaging data Radiomics results

Lee et al. (47) 2021 Predicting ALN metastasis 496 patients 2D-US AUC: 0.810

Qiu et al. (48) 2020 Predicting ALN metastasis 196 patients 2D-US AUC: 0.759

Zhou et al. (49) 2021 Predicting ALN metastasis 192 patients 2D-US AUC: 0.650

Yu et al. (50) 2019 Predicting ALN metastasis 426 patients 2D-US AUC: 0.810

Guo et al. (51) 2020 Predicting SLN metastasis and NSLN metastasis 937 patients 2D-US AUC: 0.848 for SLN metastasis;
AUC: 0.812 for NSLN metastasis

Lee et al. (52) 2021 Predicting ALN metastasis 153 patients 2D-US AUC: 0.805

Sun et al. (53) 2020 Predicting ALN metastasis 479 patients 2D-US AUC: 0.950

Jiang et al. (54)2021 Predicting ALN burden 433 patients 2D-US+SWE C-index: 0.817 for N0 and N+(≥ 1)
C-index: 0.810 for N+(1-2) and N+(≥ 3)

Zheng et al. (55) 2020 Predicting ALN metastasis 584 patients 2D-US+SWE AUC: 0.905

Gao et al. (56) 2021 Predicting ALN burden 343 patients 2D-US AUC: 0.733 for N+(<3) and N+(≥ 3)
US, ultrasound; SWE, shear wave elastography; ALN, axillary lymph node; SLN, sentinel lymph node; NSLN, non-sentinel lymph node; AUC, area under the curve
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and data-driven learning to achieve automatic feature extraction

and is promising in US images analysis. Jiang et al. (68) proposed

an integrated ultrasound radiomics model based on a

multicenter dataset of 592 individuals that combined deep

learning and machine learning to predict PCR to NAC for BC

patients. The deep learning radiomics nomogram model

achieved an AUC of 0.94 in the validation cohort, with a

significant improvement in predictive accuracy compared to

two radiologists (p < 0.01). In addition to assessing the tumor

status of patients at the end of NAC, predicting response early in

NAC appears critical for early treatment change and avoiding

unnecessary treatment. Byra et al. (69) and Gu et al. (70)

proposed the Siamese convolutional neural network for

predicting response at an early stage of NAC and achieved

accurate and personalized prediction. Gu et al. also developed

a deep learning radiomics pipeline using cascading models

constructed at different courses of NAC treatment. Although,

various studies have confirmed that the ultrasound radiomics

can provide physicians with a valid and feasible tool to predict

the response to NAC and determine further personalized

treatment protocols. However, no large clinical trial has yet

shown that ultrasound radiomics predictions can fully

determine whether a patient should be discontinued from

NAC. Clinicians must consider treatment strategies in

combination with various resources and patients’ demands.
Ultrasound radiomics and
personalized management of BC

The personalized treatment plan for BC patients includes the

timing and specific implementation of surgery, the timing and

protocol of radiotherapy and chemotherapy, and other

treatment strategies, all of which require comprehensive

consideration of molecular subtypes, lymph node status, the

efficacy of neoadjuvant therapy and other factors. However, BC

is a heterogeneous disease with a high degree of diversity in
Frontiers in Oncology 07
biochemistry, histopathology and morphology, all of which

affect treatment and clinical outcomes. In addition, most gold

standards need to be obtained after surgery. Therefore,

preoperative noninvasive assessment and prediction is the

most important clinical issue in the realization of personalized

management of BC patients, which has not been addressed by

imaging methods at present. Ultrasound radiomics aims to

extract a large number of high-throughput features to obtain

more useful information about tissue lesions and treatment

response information for personalized medicine. The solution

by ultrasound radiomics is highly expected.
Future challenges

Ultrasound radiomics transforms medical images into high-

dimensional quantitative data, which help physicians

understand the characteristics of tumor phenotypes (including

the macroscopic phenotype of the tumor, and the cellular and

molecular characteristics of the tumor tissue), and achieved

impressive results in both diagnosis and prediction (13, 72). In

addition, ultrasound radiomics, as a complement to biopsy

an a l y s i s , c a n s imu l t a n e ou s l y a s s e s s t h e t umo r

microenvironment, characterize tumor spatial heterogeneity,

and assess disease progression longitudinally with the

advantage of non-invasive. However, it is still a long way to

transfer ultrasound radiomics from scientific research to clinical

practice, given some of the current limitations and challenges.

First, ultrasound with handheld technology lacks reproducibility

compared to other techniques such as mammography or MRI.

Compared with radiomics based on ML, DLR can overcome this

drawback to a certain extent. However, most of the previous

studies were small sample single-center retrospective studies,

which leads to the robustness of ultrasound radiomics models is

not stable enough. Future internationalized multi-center data

with larger sample sizes are needed to validate and improve the

robustness of the models. In addition, due to the differences in
TABLE 4 Summary of ultrasound radiomics studies in predicting response of NAC.

Study Task Data size Imaging data Radiomics results

Quiaoit et al. (65) 2020 Predicting the response to NAC before surgery 59 patients 2D-US AUC: 0.870

DiCenzo et al. (66) 2020 Predicting the response to NAC before treatment 82 patients 2D-US ACC: 0.870

Sannachi et al. (67) 2019 Predicting the response to NAC 100 patients 2D-US ACC: 0.780 at 1 week after the start of treatment
ACC: 0.900 at 4 weeks after the start of treatment
ACC: 0.920 at 8 week after the start of treatment

Jiang et al. (68) 2021 Predicting the response to NAC before surgery 592 patients 2D-US AUC: 0.940

Byra et al. (69) 2021 Predicting the response to NAC 38 patients 2D-US AUC: 0.844 (Pre NAC)
AUC: 0.827 (after first course of NAC)
AUC: 0.828 (after second course of NAC)

Gu et al. (70) 2021 Predicting the response to NAC 168 patients 2D-US AUC: 0.812 (after second course of NAC)
AUC: 0.937 (after fourth course of NAC)
NAC: neoadjuvant chemotherapy; US, ultrasound; AUC, area under the curve; ACC, accuracy.
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imaging acquisition and the diversity of reconstruction

algorithms, an exhaustive data management and coordination

process is needed to obtain multi-center data. Second, there is a

lack of effective methods to fuse multi-modal US data (such as B

mode, color doppler, CEUS, and elastography) to perform a

multi-scale and all-around assessment of tumor biological

behavior (73). Finally, DLR is a “black box” technology, that

lacks transparency and biological interpretability for algorithms

(74). Therefore, how correlating DLR image features with

biological information, and quantifying the key molecular

information in the development of BC using tumor images,

which are major challenges for future research. We believe this is

important because radiomics plays a supporting role in the

foreseeable future by providing physicians with more

interpretative and understandable information.

Additionally, multi-omics studies have become a hot topic

for characterizing the molecular biology of tumors, including

genomics, transcriptomics, proteomics, and metabolomics (72,

75). Thus, multi-omics studies are accelerating BC research and

making precision medicine possible. In the future, ultrasound

radiomics should be combined with clinical data and

microscopic genetic data to develop multi-omics studies,

which may accelerate BC research in precision diagnosis,

decision making and prediction. Although most DLR is still in

the technology development stage, the development of genomics

and deep learning technologies may facilitate the extraction of

deep features and explore new possibilities in BC radiomics or

radio-genomics.
Conclusion

In conclusion, radiomics has emerged rapidly as one of the

most interesting research topics in breast ultrasonography, with

promising results for the clinical management of BC. This article

has outlined the application of ultrasound radiomics in the

clinical practice for the management of BC patients, including

the diagnosis of benign and malignant lesions, prediction of

molecular staging, assessment of lymph node status, prediction

of NAC response and prediction of survival. Ultrasound

radiomics is a promising tool for personalized precision

medicine by virtue of its noninvasive nature. We also identify

the limitations of radiomics that currently hinder its translation
Frontiers in Oncology 08
into clinical practice and strategies to overcome these

limitations. In the future, the establishment of multi-omics

studies including radiomics will hopefully connect the

information extracted from breast US images to the tumor

microenvironment, and provide precise and personalized

treatment decisions for BC patients.
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