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Abstract: Sjögren’s syndrome (SS) is a systemic chronic autoimmune disorder characterized by
lymphoplasmacytic infiltration of salivary glands (SGs) and lacrimal glands, causing glandular
damage. The disease shows a combination of dryness symptoms found in the oral cavity, pharynx,
larynx, and vagina, representing a systemic disease. Recent advances link chronic inflammation with
SG fibrosis, based on a molecular mechanism pointing to the epithelial to mesenchymal transition
(EMT). The continued activation of inflammatory-dependent fibrosis is highly detrimental and a
common final pathway of numerous disease states. The important question of whether and how
fibrosis contributes to SS pathogenesis is currently intensely debated. Here, we collect the recent
findings on EMT-dependent fibrosis in SS SGs and explore clinical evidence of multi-organ fibrosis in
SS to highlight potential avenues for therapeutic investigation.

Keywords: salivary glands; fibrosis; EMT; Sjögren’s syndrome; autoimmunity

1. Introduction

Fibrosis is the end result of various chronic autoimmune diseases. Much evidence has
been collected demonstrating an abnormal expression of various factors responsible for
the activation of fibrotic process in the joints of patients affected by rheumatoid arthritis
(RA) [1–4], in inflammatory bowel disease (IBD), and in conjunction with ulcerative colitis
and Crohn’s disease [5,6]. Additionally, renal fibrosis features have often been encountered
linked to systemic lupus erythematosus (SLE) nephritis [7,8]. The common denominator
in all these fibrotic manifestations in autoimmune diseases appears to be the activation of
an epithelial to mesenchymal transition (EMT) process following chronic inflammatory
stimulation. The activation of EMT is essential for accurate embryogenesis and tissue
repair, and also plays a significant role in the development of fibrosis in mature organs
as an outcome of severe chronic disease. This hypothesis was amply demonstrated by
experimental animal models, in which the inhibition of EMT is effective in attenuating the
progression of tissue fibrosis [9,10]. The concept that chronic injury often triggers EMT
cascade, leading to severe organ fibrosis, was recently linked to the atrophy and fibrosis
of salivary glands (SGs) [11–13], which occurs in the chronic inflammatory autoimmune
disease Sjögren’s syndrome (SS) [14].

Based on the scientific evidence that many autoimmune diseases are characterized by
secondary fibrotic manifestations in different organs, this review aims to collect scientific
evidence of multi-organ fibrotic phenomena in SS due to an excessive production of inflam-
matory factors. Data reported in the literature seem to support the idea that SS, in addition
to being characterized by SG fibrosis, can be associated with fibrosis found in other organs,
thus, confirming that SS is a chronic, multisystem autoimmune condition.
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2. Sjögren’s Syndrome Features

Sjögren’s syndrome (SS) is a systemic chronic autoimmune disorder characterized by
the lymphocytic infiltration of the SGs and lacrimal glands that causes glandular damage,
leading to xerostomia (dry mouth) and xerophthalmia (dry eyes). Furthermore, SS is also
known as “sicca syndrome” or “sicca complex”, because the disease shows a combination
of dryness symptoms found in the oral cavity, pharynx, larynx, and vagina. Thus, SS is a
systemic disease, involving virtually any organ system. Impaired function is associated
with reduced quality of life and symptoms, such as pain, fatigue, and depression, in a
comparable way with other diseases, such as SLE or RA [15].

Infectious agents, especially viruses, and genetic and epigenetic factors are supposed
to be involved in SS aetiology. The current SS pathogenic model is increasingly known as
“autoimmune epithelitis”. This model considers salivary gland epithelial cells as crucial
players because they, on the one hand, represent the targets of autoimmune attach and,
on the other hand, release various pro-inflammatory factors, exacerbating the immune
response [16,17]. Various experimental evidence has demonstrated that overexpression of
certain cytokines, such as IFN-gamma and tumor necrosis factor-alpha may contribute to
the SG dysfunction observed in SS by disrupting the tight junction structure of epithelial
cells [18]. Alterations in the cellular junction integrity lead to significant changes in salivary
gland epithelial cells polarity and organization that may affect secretory functionality [19].
This scenario fits well with the inflammatory-related EMT activation program observed
in SS, characterized by a loss of epithelial markers, such as E-cadherin and tight junction
proteins [20–22]. All these phenomena, potentially implicated in the reduction of the
normal quality and quantity of saliva in SS, resulted in accelerated development of SG
inflammation [18,19].

3. Fibrosis and EMT Program Activation

Fibrosis is defined by the accumulation of extracellular matrix (ECM) components,
particularly type I collagen and fibronectin by myofibroblasts, at the site of injury [23]. There
is a great deal of evidence indicating that myofibroblasts involved in fibrosis are derived
from resident epithelial cells that have been transformed through the activation of the EMT
program to synthesize ECM factors. The accumulation of fibrotic components can cause
malfunction and failure of the organs affected [24–26]. Nevertheless, EMT emerges as a
decisive factor in activating a pathological fibrotic cascade in chronic inflammatory diseases.
Therefore, EMT-dependent fibrosis identifies a condition marked by an uncontrolled and
unresolved inflammatory reaction [27]. Furthermore, EMT-dependent fibrosis was found in
chronic inflammatory diseases of multiple organs, such as the kidney, liver, lung, intestine,
and in SGs [5–14]. Typically, EMT events occur as part of a repair-associated process in order
to rebuild tissues following trauma and inflammatory damage. These events are reparative
if the injury is moderate and acute. However, in chronic inflammation, abnormal formation
of myofibroblasts provokes a progressive fibrosis that often leads to organ parenchymal
destruction and loss of function. On the other hand, inflammation is a potent inducer of
EMT and, therefore, inflammation and EMT support each other [9,27].

4. Clinical Fibrotic Manifestation in SS

The following paragraphs report the data present in the literature relating to organ
fibrosis correlated with SS. The phenomenon has been extensively studied in SGs, where the
molecular mechanisms that could trigger fibrosis are now known and have been correlated
with EMT. In recent years, cases of secondary fibrosis have also been observed, which could
be correlated with the state of chronic inflammation that characterizes SS.

4.1. EMT-Dependent Salivary Gland Fibrosis

A clear link between chronic inflammation and fibrosis has been demonstrated in SGs,
recently associated with SG atrophy [28,29]. In SS, fibrosis seems to be involved in the
decreased secretory function of SGs, which leads to hyposalivation and xerostomia [12].
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It is now widely accepted that the development of a fibrotic program in SS is due to the
production of fibrogenic mediators by inflammatory and epithelial cells; among these
mediators, a prevailing role is played by TGF-β1 [30]. Sisto et al. demonstrated that TGF-β1
promotes salivary gland epithelial cells transition towards mesenchymal cells through
the activation of the EMT-dependent fibrosis [31–33]. Experiments performed on human
salivary gland epithelial cells in vitro demonstrated that TGF-β1 was able to shift salivary
gland epithelial cells from the classic cobblestone morphology to a more fibroblast-like
morphology characterized by a weakening of cell–cell adhesion. This was supported by
the observation that SS SG biopsies show an elevated expression of TGF-β1 [34].

The aberrant upregulation of TGF-β1 in the SS SGs causes EMT via the activa-
tion of canonical and non-canonical pathways. As recently demonstrated, the TGF-
β1/SMAD/Snail signaling pathway was involved, as confirmed by the detection of a
wide distribution of TGF-β1, pSMAD2/3, and SMAD4 proteins in the SS SG tissues.
Furthermore, in SS SGs, a strong positivity for EMT-cascade factors and mesenchymal
markers was also evidenced, such as SNAIL, vimentin, and collagen type I. Additionally,
SS SGs were characterized by a decreased expression of typical epithelial markers, such as
E-cadherin [11,35] (Figure 1).
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Figure 1. Schematic representation of TGF-β-mediated EMT signalling in SS. In a situation of
chronic inflammation, TGF-β activates the canonical SMAD2/3 and the non-canonical ERK-mediated
pathways, triggering the EMT process in salivary gland epithelial cells. The activation of transcription
factors (such as SNAIL), promotes the prolonged induction of EMT, repressing epithelial marker
genes and activating genes linked to the mesenchymal phenotype. Pro-inflammatory cytokines, such
as IL-17, IL-22, and IL-6, induce EMT-dependent severe fibrosis in SGs.

A breakthrough in research has recently been made showing that the loss of epithelial
markers and the acquisition of mesenchymal markers was strictly correlated with the grade
of SG inflammation. Currently, attempts to explain the development of fibrotic phenomena
in SS SGs, induced by the initiation of an EMT program, have focused their attention on
the role of several pro-inflammatory cytokines. The results are very encouraging; Sisto
et al. demonstrated that IL-17 and IL-22 participate in TGF-β1/EMT-dependent SG fibrosis.
Both the cytokines are upregulated in SS and linked to low levels of saliva production; in
addition, both IL-17 and IL-22 are abundantly secreted in SS SGs and correlated with the
inflammatory degree of the glands [36].



J. Clin. Med. 2022, 11, 3551 4 of 9

Interestingly, in an experimental model represented by healthy salivary gland ep-
ithelial cells in culture, both IL-17 and IL-22 induce morphological changes compatible
with those observed in EMT. In particular, using IL-17 as stimulus, in healthy salivary
gland epithelial cells, the activation of the canonical TGF-β1/Smad2/3 and non-canonical
TGF-β1/Erk1/2 pathway was demonstrated [36]. When testing if other pro-inflammatory
cytokines exert their effect on the activation of EMT-dependent fibrosis pathways in SS,
interesting results were obtained with IL-6, detected at very high levels in SS SGs. The IL-6
treatment induces a reduced E-cadherin gene transcription and protein synthesis in healthy
salivary gland epithelial cells, accompanied by increased levels of vimentin and collagen
type I [37] (Figure 1).

4.2. Cardiac Fibrosis

Cardiac fibrosis is the accumulation of scar tissue in the heart, and is defined as the
imbalance between production and degradation of ECM protein production. Cardiac
fibrosis is strongly associated with many cardiac pathophysiologic conditions, and re-
cently, several interesting studies have detected an increased incidence of cardiovascular
disease (CVD) morbidity and mortality in patients affected by rheumatic autoimmune
diseases, such as SLE and RA [38,39]. In recent years, substantial evidence has emerged
demonstrating a link of SS with an increased risk of cardiovascular manifestations, such
as stroke and myocardial infarction [40]. Furthermore, intriguing observations have been
reported that chronic inflammation in SS patients can trigger a coronary event and, thus,
an increased risk of CVD [40], but this needs further investigation [40,41]. Indeed, it was
also reported that myocardial injury is typically clinically silent in patients with RA, and
this could explain the lack of data on cardiac events in patients with SS, since clinical and
pathophysiological characteristics are often shared between RA and SS. In recent papers,
it was a high prevalence of myocardial fibrosis in the patients with SS who underwent to
cardiac magnetic resonance imaging (cMRI) was observed, which can be used to obtain a
quantitative functional evaluation of the myocardium [42,43]. In these studies, emerging
data highlight that lymphocytic infiltration into the myocardium is conceivable as a patho-
logical characteristic of myocardial fibrosis in SS patients. The results clearly highlight
that the higher the extent of lymphocytic infiltration into salivary glands, the greater the
possibility of development of myocardial fibrosis [42]. In fact, myocardial fibrosis is present
in patients with SS without cardiac symptoms, and alterations in cMRI data were often
linked with SG focus score (FS) ≥ 3 [42,44]. This study suggests a significant association
between myocardial fibrosis and the degree of lymphocytic infiltration into the SGs as an
important prognosis factor for SS [43]. Yokoe et al., in an interesting study, have obtained
several important results from the observation of a representative number of SS patients
by the use of non-contrast cMRI, without cardiovascular clinical symptoms [43]. These
findings suggest and confirm that cardiac dysfunction and cardiac fibrosis are strongly
evident in SS patients. Furthermore, the importance of this study was to demonstrate that
myocardial fibrosis could be considered as an extra-glandular event of SS [43], and that
cMRI could be a useful tool for detecting asymptomatic myocardial fibrosis in patients with
SS with a higher SG FS [42].

4.3. Liver Fibrosis

The autoimmune destruction of exocrine glands that occurs in SS often extends to
non-exocrine organs. Liver involvement was one of the main extra-glandular events
reported in patients with SS [45,46]. In this context, the main causes of liver disease in
primary SS are chronic viral hepatitis infections and autoimmune hepatitis [47]. With
regards to viral infections, chronic hepatitis C virus infection is often involved in hepatic
impairment in SS patients deriving from the Mediterranean area, while chronic hepatitis
B virus infection seems to be the main cause of liver involvement in Asian SS patients.
Autoimmune hepatitis is the second leading cause of liver damage in SS patients [47]. Liver
fibrotic processes depend on the activation of an initial injury of hepatocytes by autoreactive
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immunological phenomena; these events lead to the proliferation of myofibroblasts and the
activation of stellate cells [48]. These manifestations may, in turn, accelerate the deposition
of collagen or glycoproteins in the liver, leading to liver fibrosis that interferes with the liver
function and contributes to gradual organ failure [49]. The immunological parallel between
SS and autoimmune-related hepatitis increases the progression and the development of
liver fibrosis in SS. Thus, the assessment of the presence of liver fibrosis and its severity
might have a value as prognostic factor in patients with SS. In a recent study, the transient
elastography (TE) technique was used, which represents a new non-invasive method for
the assessment of hepatic fibrosis in SS patients with normal liver function and structures,
and without manifestations of evident liver diseases [46]. Using this approach, a high
percentage of SS patients examined present a substantial liver fibrosis, suggesting that the
frequency of potential liver fibrosis may have been underestimated in SS patients without
clinical symptoms. Furthermore, this study proposed that TE could be used to evaluate
the degree of hepatic fibrosis at an earlier stage of SS disease with a notable precision
grade [46].

4.4. Lung Fibrosis

Pulmonary involvement in SS is an understudied condition with important clinical
implications. The common pulmonary manifestations of SS are interstitial lung disease
(ILD), airway abnormalities, and lymphoproliferative disorders [50]. Among them, ILD
represents a frequent extra-glandular manifestation of SS, with the majority of the studies
indicating a prevalence of about 20%, and resulting in significant morbidity and mortal-
ity [50,51]. This condition is associated with an injured respiratory function that leads to
a poor quality of life and, indeed, is considered a significant cause of fatal outcomes in
SS [52]. Therefore, the identification of poor prognostic predictive factors is required in
order to provide appropriate management in patients with SS-associated ILD. When ILD
includes scar tissue and the injury and damage of the walls of the air sacs of the lung, as
well as in the tissue and space around these air sacs, this condition is known as pulmonary
fibrosis. Pulmonary fibrosis is part of this wide group of more than 200 ILD. Efforts have
been made to characterize the relationship between SS and ILD, with an emphasis upon
idiopathic pulmonary fibrosis (IPF). Roca et al. highlighted that ILD is observed in a
significant percentage of SS patients, and that this condition is associated with severe lung
injury that develops versus fibrosis pulmonary [53]. Recently, an interesting study was
addressed to systematically evaluate the incidence and characterize ILD fibrosis phenotype
in a well-defined SS-ILD cohort [54]. These data have revealed that pulmonary disease is
commonly linked with SS, resulting in a wide variety of clinical manifestations [54]. Firstly,
symptomatic lung involvement triggers scar tissue and injury, provoking an evolution
toward a progressive fibrosing phenotype in the lung identified in 13% of SS patients
and so confirming previous investigations [55,56]. The second important implication is
the need for effective SS screening in patients presenting apparently idiopathic ILD [54].
Subsequently, recent studies from different countries have, however, all observed that
the prognosis of pulmonary involvement is not favorable in patients with SS [57]. Thus,
early ILD and IPF detection is very important in SS disease evolution [58]. However, it
remains controversial whether all SS patients should undergo a systematic search for lung
involvement [59] with the view to redefine disease recognition strategies.

4.5. Kidney Fibrosis

Renal involvement is an extra-glandular condition well recognized in SS patients.
The most common histopathological condition is an interstitial lymphocytic infiltrate
with tubular atrophy and, consequently, renal fibrosis that leads to a slow progressive
deterioration in kidney function [60].

Kidney disease typically manifests 2–3 years after the beginning of the involvement of
the exocrine glands, and slowly leads to decreased renal function. Kidney disease occurs in
5% of patients with SS, with a broad range of clinical conditions [60]. The most frequent



J. Clin. Med. 2022, 11, 3551 6 of 9

event of nephropathy in SS is tubule interstitial nephritis (TIN), characterized by lympho-
plasmacytic infiltration of the kidney showing similarity to the lymphoid infiltration that
occurs in the SGs. Patients with SS associated with TIN have significant renal fibrosis, and,
as a consequence, show organ impairment and lymphocytic infiltration leading to acute or
chronic forms of TIN [61–63]. New emergent observations suggest that infiltration in the
renal tubules is mostly caused by CD4+ T lymphocytes, features of the pathophysiological
process in SGs [61,64]. Unfortunately, TIN remains a condition often undiagnosed due to its
inauspicious clinical course [60,62]. Recently, a wide Taiwanese cohort study indicated that
patients with SS are more likely to develop chronic kidney disease as a consequence of TIN,
and found that a progressive decline in kidney function occurred in 15% of SS patients [62].

A schematic representation of all the identified secondary fibrosis in SS is shown in
Figure 2.
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5. Conclusions

Sjögren’s syndrome is a chronic inflammatory autoimmune disease of variable severity
and course. Although SS continues to be a challenging disease, there is now a better
knowledge of its causes, earlier recognition of its symptoms, and more effective therapeutic
treatments. In this review update, we are discussing evolving concepts in SS which is
considered, in fact, to be a systemic disease with a fibrotic evolution of SGs. We discuss
more recent studies, mostly published within the last 5 years, highlighting the possibility
that secondary organ fibrosis could be a feature of SS. The clinical implication of this review
article is, therefore, to summarize the current state of knowledge of molecular mechanisms
involved in SG fibrosis in SS. The relationship between inflammation, EMT, and fibrosis
has been established in several autoimmune diseases. The majority of studies on EMT-
dependent fibrosis in SS have been carried out in the SGs, and, actually, the possibility
that the same pathways operate during other secondary fibrotic processes in SS, including
cardiac, pulmonary, renal, or hepatic fibrosis, has not yet been investigated. The purpose
of our review is to draw precise attention to a possible and probable involvement of an
EMT program in the fibrotic evolution of secondary diseases associated with SS, and to
emphasize that a multidisciplinary approach is needed to identify the secondary fibrotic
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forms observed in SS disease. These data will help physicians better understand the disease,
and to identify novel therapeutic protocols to block fibrosis in SS patients.
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