
Review Article
On Training Efficiency and Computational Costs of
a Feed Forward Neural Network: A Review

Antonino Laudani, Gabriele Maria Lozito,
Francesco Riganti Fulginei, and Alessandro Salvini

Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy

Correspondence should be addressed to Francesco Riganti Fulginei; riganti@uniroma3.it

Received 7 May 2015; Revised 16 August 2015; Accepted 17 August 2015

Academic Editor: Saeid Sanei

Copyright © 2015 Antonino Laudani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A comprehensive review on the problem of choosing a suitable activation function for the hidden layer of a feed forward neural
network has been widely investigated. Since the nonlinear component of a neural network is the main contributor to the network
mapping capabilities, the different choices that may lead to enhanced performances, in terms of training, generalization, or
computational costs, are analyzed, both in general-purpose and in embedded computing environments. Finally, a strategy to convert
a network configuration between different activation functions without altering the networkmapping capabilities will be presented.

1. Introduction

Neural networks (NNs) are generally accepted in literature
as a versatile and powerful tool for nonlinear mapping of
a generic 𝑛-dimensional nonlinear function. The mapping
capabilities of a NN are strictly related to the nonlinear
component found in the activation function (AF) of the
neurons. Indeed, without the presence of a nonlinear activa-
tion function, the NN would be a simple linear interpolator.
The most generic representation of a NN is a group of
elementary processing units (neurons) characterized by a
weighted connection to 𝑛 other input units. The processing
of the unit consists of a linear part, where the inputs
are linearly combined through the weights values, and a
nonlinear part, where the weighted combination of the inputs
is passed through an activation function, which is usually a
threshold/squashing function. The nonlinear part of a NN
is completely separated from the linear combination of the
weighted inputs, thus opening a large number of possibilities
for the choice of an activation function. Given the represen-
tation of the elementary unit, the inner architecture of the
NN expresses the way those units are connected between
themselves and to the inputs and outputs of the NN itself.
Numerous authors studied the mapping capabilities of a NN,

according to the inner architecture. In particular, it has been
proved that the simple feed forward architecture with a single
layer [1] and multiple layer [2–6] can be used as universal
approximator givenmild assumptions on hidden layer. A feed
forward neural network (FFNN) is a NN where the inner
architecture is organized in subsequent layers of neurons, and
the connections are made according to the following rules:
every neuron of a layer is connected to all (and only) the
neurons of the subsequent layer. This topology rule excludes
backward connections, found in many recurrent NNs [7–11],
and layer-skipping, found in particular NN architectures like
Fully Connected Cascade (FCC) [12]. Another focal point is
the a-dynamicity of the architecture: in a FFNN no memory
or delay is allowed, thus making the network useful only
to represent static models. On this particular matter, several
studies showed that, even by lacking dynamic capabilities, a
FFNN can be used to represent both the function mapping
and its derivatives [13]. Nevertheless, the choice of a suitable
activation function for a FFNN, and in general, for a NN, is
subject to different criterions. The most common considered
criterions are training efficiency and computational cost. The
former is especially important in the occurrence that a NN is
trained in a general-purpose computing environment (e.g.,
using Matlab); the latter is critical in embedded systems

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 818243, 13 pages
http://dx.doi.org/10.1155/2015/818243

http://dx.doi.org/10.1155/2015/818243

2 Computational Intelligence and Neuroscience

(e.g., microcontrollers and FPGA (Field Programmable Gate
Array)) where computational resources are inherently lim-
ited. The core of this work will be to give a comprehensive
overview of the possibilities available in literature concerning
the activation function for FFNN. Extending some of the
concepts shown in this work could be possible to dynamic
NNs as well; however training algorithms for dynamic NNs
are completely different from the one used for FFNN, and
thus the reader is advised to exert a critical analysis on the
matter. The paper will be structured as follows. In the first
part of this survey, different works focusing on the training
efficiency of a FFNN with a specific AF will be presented.
In particular, three subareas will be investigated: first, the
analytic AFs, which enclose all the variants on the squashing
functions proposed in the classic literature [14, 15]; then, the
fuzzy AFs, which exploit complex membership functions to
achieve faster convergence during the training procedure;
last, the adaptive AFs, which focus on shaping the NN
nonlinear response tomimic asmuch as possible themapping
function properties. In the second part of this survey, the
topic of computational efficiency will be explored through
different works, focusing on different order approximations
found in literature. In the third and last part of this survey, a
method to transform FFNNweights and biases to change the
AF of the hidden layer without need to retrain the network
is presented. Conclusions will follow in the fourth part. An
appendix, containing the relevant figures of merit reported
by the authors in their work, closes this paper.

2. Activation Functions for Easy Training

2.1. Analytic Activation Functions. Thecommonly used back-
propagation algorithm for FFNN training suffers from slow
learning speed. One of the reasons for this drawback lies
in the rule for the computation of the FFNN’s weights
correction matrix, which is calculated using the derivative of
the activation function for the FFNN’s neurons.The universal
approximation theorem [1] states that one of the conditions
for the FFNN to be a universal approximator is for the
activation function to be bounded. For these reasons, most
of the activation functions show a high derivative near the
origin and a progressive flattening moving towards infinity.
Thismeans that, for neurons having a sum of weighted inputs
very large in magnitude, learning rate will be very slow.
A detailed comparison between different simple activation
functions based on exponentials and logarithms can be found
in [16], where the authors investigate the learning rate and
convergence speed on a character recognition problem and
the classic XOR classification problem, proposing the use
of the inverse tangent as a fast-learning activation function.
The authors compare the training performance, in terms of
Epochs required to learn the task, of the proposed inverse
tangent function, against the classic sigmoid and hyperbolic
tangent functions, and the novel logarithmic activation func-
tion found in [17], finding a considerable performance gain.
In [18], the sigmoid activation function is modified by intro-
ducing the square of the argument, enhancing the mapping
capabilities of the NN. In [19], two activation functions, one

based on integration of the triangular function and one on
the difference between two sigmoids (log-exponential), are
proposed and compared through a barycentric plotting tech-
nique, which projects themapping capabilities of the network
in a hyper dimensional cube. The study has shown that log-
exponential function has been slowly accelerated but it was
effective in MLP network with backpropagation learning.
In [20] a piecewise interpolation by means of cubic splines
is used as an activation function, providing performances
comparable to the sigmoid function with reduced compu-
tational costs. In [21], the proposed activation function is
derived by Hermite orthonormal polynomials. The criterion
is that every neuron in the hidden layer is characterized
by a different AF, which is more complex for every neuron
added.Through extensive simulations, the authors prove that
such network shows great performance in comparison to
analogous FFNN with identical sigmoid AFs. In [22], the
authors propose a performance comparison between eight
different AFs, including the stochastic AF and the novel
“neural” activation function, obtained by the combination
of a sinusoidal and sigmoid activation function. Two tests
sets are used for comparison: breast cancer and thyroid
diseases related data. The work shows that the sigmoid AFs
yield, overall, the worst accuracy, and the hyperbolic tangent
and the neural AF perform better on breast cancer dataset
and thyroid disease dataset, respectively, pointing out the
dataset dependence of the AF capabilities. The “neural” AF
is investigated in [23] as well (in this work, it is referred to as
“periodic”), where the NN is trained by the extended Kalman
filter algorithm.The network is tested, against classic sigmoid
and sinusoidal networks, in handwriting recognition, time
series prediction, parity generation, and XOR mapping. The
authors prove that the periodic function proposed outper-
forms both classic AFs in terms of training convergence. In
[24], the authors suggest the combination of sigmoid and
sinusoidal and Gaussian activation function, to exploit their
independent space division properties. The authors compare
the hybrid structure in a multifrequency signal classification
problem, concluding that even if the combination of the three
activation functions performs better than the sigmoid (in
terms of convergence speed) and the Gaussian (in terms of
noise rejection), the sinusoidal activation function by itself
still achieves better results. Another work investigating an
activation function based on sinusoidal modulation can be
found in [25], where the authors propose a cosine mod-
ulated Gaussian function. The use of sinusoidal activation
function is deeply investigated in [26], where the authors
present a comprehensive comparison between eight different
activation functions on eight different problems. Among
other results, the Sinc activation function is proved as a
valid alternative to the hyperbolic tangent, and the sinusoidal
activation function has good training performance on small
FFNNs. In Table 1, a summary of the different analytical AFs
proposed in this paragraph is shown.

2.2. Fuzzy Logic. An approach often found in literature is to
combine FFNNwith fuzzy logic (FL) techniques to create fast
converging FFNN. In [27], the authors define the hyperbolic

Computational Intelligence and Neuroscience 3

Table 1: Analytic AFs.

Ref. Name Expression Notes

[14, 15]

Step-like 𝑓 (𝑥) =

{

{

{

𝑎, 𝑥 ≥ 0

𝑏, 𝑥 < 0

Linear 𝑓 (𝑥) = 𝛼𝑥

Saturated linear 𝑓 (𝑥) =

{
{
{

{
{
{

{

0, 𝑥 ≤ 0

𝛼𝑥, 0 < 𝑥 < 𝑥
𝑚

1, 𝑥 ≥ 𝑥
𝑚

Where to ensure
continuity 𝑥

𝑚
is 𝛼−1

Sigmoid 𝑓 (𝑥) =

1

1 + 𝑒
−𝑥

Hyp. tangent 𝑓 (𝑥) =

2

1 + 𝑒
−2𝑥

− 1

[16] Arctangent 𝑓 (𝑥) = tan−1 (𝑥)

[18] Quadratic
sigmoid function

𝑓 (𝑥) =

1

1 + 𝑒
(𝑥
2
−𝜃)

[19, 22] Logarithmic-
Exponential 𝑓 (𝑥) = 1 −

1

2𝑏

ln[

1 + 𝑒
𝑎−𝑐𝑥+𝑏

1 + 𝑒
𝑎−𝑐𝑥−𝑏

]

𝑎 is responsible for
centering the function, 𝑏
distances the sigmoid, and

𝑐 is a coefficient that
controls the slope

[19] Triangular
approximation 𝑓 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

sign (𝑥) × [0.5 × 𝑚
1
× |𝑥|
2

+ 𝑐
1
× |𝑥| + 𝑑

1
] , 0 ≤ |𝑥| ≤ 𝑎

sign (𝑥) × [0.5 × 𝑚
2
× |𝑥|
2

+ 𝑐
2
× |𝑥| + 𝑑

2
] , 𝑎 ≤ |𝑥| ≤ 𝑏

sign (𝑥) , otherwise

Where𝑚
1
,𝑚
2
, 𝑐
1
, 𝑐
2
, 𝑎, and

𝑏 are −0.54324, −0.16957, 1,
0.42654, 1.52, and 2.57,

respectively. 𝑑
1
and 𝑑

2
are

0.016 and 0.4519,
respectively

[21] Hermite polyn.

𝑓 (𝑥) = ℎ
𝑛
(𝑥) = 𝛼

𝑛
𝐻
𝑛
(𝑥) 𝜙 (𝑥),

where
𝐻
𝑛
(𝑥) = (−1)

𝑛

𝑒
𝑥
2 𝑑
𝑛

𝑑𝑥
𝑛

(𝑒
−𝑥
2

), 𝑛 > 0, with𝐻
0
= 1

𝛼
𝑛
= (𝑛!)

−1/2

𝜋
1/4

2
−(𝑛−1)/2

𝜙 (𝑥) =

1

√2𝜋

𝑒
−𝑥
2
/2

[22] Gaussian 𝑓 (𝑥) = 𝑒
−(𝑥−𝑐)

2
/2𝜎
2

[26] PolyExp 𝑓 (𝑥) = (𝑎𝑥
2

+ 𝑏𝑥 + 𝑐) × 𝑒
−𝛾𝑥
2 Where 𝑎, 𝑏, and 𝑐 are

tunable constants
[24, 26] Wave 𝑓 (𝑥) = (1 − 𝑥

2

) 𝑒
−𝛾𝑥
2

[22, 23] Neural 𝑓 (𝑥) =

1

1 + 𝑒
−𝑆𝑝 sin(𝑟𝑝×𝑥)

Where 𝑆
𝑃
controls the slope

while 𝑟
𝑃
governs the

frequency of the resultant
function

[23] Sinusoidal 𝑓 (𝑥) = 0.5 (sin (𝑟
𝑠
× 𝑥) + 1)

Where 𝑟
𝑆
is a parameter

related to the frequency of
the sine function

[25] CosGauss 𝑓 (𝑥) = 𝑒
−𝛽𝑥
2

cos (𝛾𝑥)

The parameter 𝛽 in the
function scales the gradient
of the Gaussian function;
meanwhile 𝛾 controls the
frequency of repetition of

the “hills”

[26] Sinc 𝑓 (𝑥) =

{
{

{
{

{

sin (𝜋𝑥)

𝑥

, 𝑥 ̸= 0

1, 𝑥 = 0

[26] SinCos 𝑓 (𝑥) = 𝑎 sin (𝑝 × 𝑥) + 𝑏 cos (𝑞 × 𝑥)

Where 𝑝 and 𝑞 are
frequencies and 𝑎 and 𝑏 are
proportional parameters

4 Computational Intelligence and Neuroscience

tangent transfer using three different membership functions,
defining in fact the classical activation function by means
of the fuzzy logic methodology. The main advantage during
the training phase is a low computational cost, achieved
since weight updating is not always necessary. The perfor-
mance validation is verified through a comparison between
two identically initialized FFNNs, one with the hyperbolic
tangent and one with the proposed activation function. The
two FFNNs are tested on the problems of XOR gate, one-
step-ahead prediction of chaotic time series, equalization
of communication channels, and independent components
analysis. The authors in [28] use a Type 2 Fuzzy Function,
originally proposed in [29, 30], as the activation function
for a FFNN, and compare the training performance on the
classic XOR problem and induction motor speed prediction.
An additional application of NNwith fuzzy AFs can be found
in [31], where the authors use the network for detection
of epileptic seizure, processing and classifying EEG signals.
In [32], the authors propose an analytic training method,
noted as extreme machine learning (EML), for FFNNs with
fuzzy AFs. The authors test the procedure on problems of
medical diagnosis, image classification, and satellite image
analysis.

2.3. Adaptive Strategies. Although the universal mapping
capabilities of a FFNN have been proven, some assumptions
on the activation function can be overlooked in favor of a
more efficient training procedure. Indeed, it has been seen
that a spectral similarity between the activation function
and the desired mapping gives improved performance in
terms of training [33]. The extreme version of this approach
consists in having an activation function that is modified
during the training procedure, creating in fact an ad hoc
transfer function for neurons. Variations of this approach can
be found for problems of biomedical signal processing [34],
structural analysis [35], and data mining procedures [36].
The training algorithm for such networks requires taking into
consideration the activation function adaptation, as well as
the weights tuning. The authors in [37] propose a simple
BP-like algorithm to train a NN with trainable AF and
compare the training performance with a classic sigmoid
activation function on both XOR problem and a nonlinear
mapping.

3. Activation Functions for Fast Computation

The computational cost of a FFNN can be split into two main
contributions. The first one is a linear cost, deriving from the
operations needed to perform the sum of the weighted inputs
of each neuron. The second one, nonlinear, is related to the
computation of the activation function. In a computational
environment, those operations are carried out considering
a particular precision format for numbers. Considering the
AF is usually limited in a small codomain, the use of integer
arithmetic is unadvisable. Fixed-point and floating-point
arithmetic are the most commonly used to compute the
FFNN elementary operations. The linear part of the FFNN is
straightforward: operations of products and sums are carried

out by multipliers and adders (usually found in the floating-
point unit (FPU) of an embedded device). The nonlinear
part, featuring transcendental expressions, is carried out
through complex arithmetic evaluations (IEEE 754 is the
reference standard) that, in the end, still use elementary
computational blocks like adders and multipliers. Addition
and product with floating-point precision are complex and
long operations, and the computational block that executes
these operations often features pipeline architectures to speed
up the arithmetic process. Although a careful optimization
of the linear part is required to completely exploit pipeline
capabilities [38], the ratio between the two costs shows, usu-
ally, that the linear quota of the operations is negligible when
compared to the nonlinear part. In embedded environment,
computational resources are scarce, in terms of both raw
operations per second and available memory (or resources,
for synthesizable digital circuits like FPGAs and ASICs).
Since embedded applications usually require real-time inter-
action, the development of NN applications in embedded
environments shows the largest contributions in terms of fast
and light solutions for AFs computation. Three branches of
approaches can be found in literature: PWL (piecewise linear)
interpolation, LUT (Lookup-Table) interpolation, and higher
order/hybrid techniques. The following part of this survey
will present the different approaches found in literature,
grouped under these three sets.

3.1. Lookup-Table Approximations. Approximation by LUT
is the simplest approach that can be used to reduce the
computational cost of a complex function.The idea is to store
inside the memory (i.e., a table) samples from a subdomain
of the function and access those instead of calculating the
function. The table either can be preloaded in the embedded
device (e.g., in the flash memory of a microcontroller) or
could be calculated at run-time with values stored in the
heap. Both alternatives are valid, and the choice is strictly
application dependent. In the first case, the static approach
occupies a memory section that is usually more available.
In the second case, the LUT is saved in the RAM memory,
which is generally smaller than the flash; however, in this case
the LUT is adjustable in case a finer (or coarser) version is
needed. A variation of the simple LUT is the RA-LUT (Range
Addressable LUT), where each sample corresponds not only
to a specific point in the domain, but to a neighborhood of the
point. In [39] the authors propose a comparison between two
FPGA architectures which uses floating-point accelerators
based on RA-LUT to compute fast AFs. The first solution,
refined from the one proposed in [40, 41], implements theNN
on a soft processor and computes the AFs through a smartly
spaced RA-LUT. The second solution is an arithmetic chain
coordinated by a VHDL finite state machine. Both sigmoid
and hyperbolic tangent RA-LUTs are investigated. In [42] an
efficient approach for LUT address decoding is proposed for
the hyperbolic tangent function. The decoder is based on
logic expressions derived by mapping the LUT ranges into
subdomains of the original function. The result obtained is

Computational Intelligence and Neuroscience 5

LUT implementation that requires less hardware resources
to be synthesized. A particular consideration was given to
AFs derivatives in [43] where the authors studied the LUT
and RA-LUT for on-chip learning applications. The authors
conclude that the RA-LUT implementation yields on-chip
training performances comparable with the Full-Precision
Floating Point even introducing more than 10% precision
degradation.

3.2. Piecewise Linear Approximations. Approximation thr-
ough linear segments of a function can be easily carried out in
embedded environment since, for every segment, the approx-
imated value can be computed by one multiplication and one
addition. In [44] the authors propose an implementation of
a NN on two FPGA devices by Xilinx, the Virtex-5 and the
Spartan 3. On both devices, the NN is implemented in VLSI
language and as a high-level software running on microblaze
soft processor.The authors conclude that although the imple-
mentation in VLSI is more complex, the parallel capabilities
of the hardware neurons yield much higher performance
overall. In [45] authors propose a low-error implementation
of the sigmoid AF on a Virtex-4 FPGA device, with a
comprehensive analysis on error minimization. To further
push the precision versus speed tradeoff, in [46] the authors
present a comparison between PWL and LUT techniques
under both floating-point and fixed-point arithmetic, testing
the approximation on a simple XOR problem. In [47] four
different PWL techniques (three linear and one quadratic
that will be discussed in the next section) are analyzed
considering the hardware resources required for implemen-
tation, the errors caused by the approximation, the processing
speed, and the power consumption. The techniques are all
implemented using the SystemGenerator, a Simulink/Matlab
toolbox released by Xilinx. The first technique implemented
by the authors is called A-Law approximation, which is based
on a PWL approximationwhere every segment has a gradient
expressed as a power of two, thus making it possible to
replace multipliers with adders [48]. The second technique
is the Alippi and Storti-Gajani approximation [49], based
on a segmentation of the function in specific breakpoints
where the value can be expressed as sum of power of
two numbers. The third technique, called PLAN (Piecewise
Linear Approximation of a Nonlinear Function), uses simple
digital gate design to perform a direct transformation from
input to output [50]. In this case, the shift/add operations,
replacing the multiplications, were implemented with simple
gate design that maps directly the input values to sigmoidal
outputs. All the three techniques are compared together
and against the classic LUT approach. The authors conclude
that, overall, the best results are obtained through PLAN
approximation. Approximation through PLAN method is
used in [51] as well, where the authors propose a complete
design in System Generator for on-chip learning through
online backpropagation algorithm.

3.3. Hybrid and Higher Order Techniques. Hybrid techniques
try to combine both LUT and PWL approximations to obtain

a solution that yields a compromise between the accuracy
of the PWL approximation and the speed of the LUT.
Higher order techniques push the boundaries and try to
represent the AF through higher order approximation (e.g.,
polynomial fitting). An intuitive approach is to use Taylor
series expansion around origin and is used by [52, 53] at the
4th and 5th order, respectively. In [54, 55] the authors propose
two approaches, one composed of a PWL approximation
coupled with a RA-LUT and one composed of the PWL
approximationwith a combinatorial logic circuit.The authors
compare the solutions with classic (Alippi, PLAN) PWL
approximation focusing on resources required and accuracy
degradation. Combination of LUT and PWL approximation
is also used in [56, 57], where different authors investigate the
approximation in fixed point for the synthesis of exponential
and sigmoid AFs. In [39, 58] authors propose a piecewise
II-degree polynomial approximation of the activation func-
tion for both the sigmoid and the hyperbolic tangent AFs.
Performance, resources required, and precision degradation
are compared to full-precision and RA-LUT solutions. In
[59] authors propose a semiquadratic approximation of the
AF (similar to the one proposed in [19]) and compare
the embedded performances in terms of throughput and
consumed area against simple PWL approximation. In [60]
a simple 2nd-order AF, which features an origin transition
similar to the hyperbolic tangent, is proposed. The digital
complexity of this function is in the order of a binary product,
since one of the two products required to obtain a 2nd-
order function is performed by a binary shift. A similar 2nd-
order approximation is proposed by Zhang et al. in [61]
and is applied in [47] where the authors comprehensively
compare it to 1st PWL techniques and LUT interpolations.
In [62] the proposed approach is based on a two-piece
linear interpolation of the activation function, later refined
by correction factors stored in a LUT. This hybrid approach
reduces the dynamic range of the data stored in the LUT, thus
making it possible to save space on both the adder and the
table itself.

3.4. Weight Transformation. Different papers shown in this
survey pointed out advantages and drawbacks of using an
AF instead of another one. Two very common AFs that are
found in almost any comparison are the sigmoid activation
function and the hyperbolic tangent activation function.
Considering an embedded application, as the one suggested
in [39], where the activation function is directly computed by
a floating-point arithmetic chain of blocks, using a sigmoid
AF instead of a hyperbolic tangent AF allows synthesizing
the chain with less arithmetic units. However, as shown in
several papers in Section 2, the low derivative of the sigmoid
AF makes it a poor candidate for training purposes when
compared to the hyperbolic tangent. In this final part of
the survey, a set of transformation rules, for a single layer
FFNN with arbitrary inputs and outputs, is proposed. The
rules allow modifying weights and biases of a NN so that

6 Computational Intelligence and Neuroscience

Table 2: From sigmoid to tanh.

Hidden bias [𝐵
𝐿

𝐻
] = 2 × [𝐵

𝑇

𝐻
]

Hidden weights [𝑊
𝐿

𝐻
] = 2 × [𝑊

𝑇

𝐻
]

Output bias [𝐵
𝐿

𝑂
] = [𝐵

𝑇

𝑂
] − [𝑊

𝑇

𝑂
] [1]

Output weights [𝑊
𝐿

𝑂
] = 2 × [𝑊

𝑇

𝑂
]

Table 3: From tanh to sigmoid.

Hidden bias [𝐵
𝑇

𝐻
] =

1

2

× [𝐵
𝐿

𝐻
]

Hidden weights [𝑊
𝑇

𝐻
] =

1

2

× [𝑊
𝐿

𝐻
]

Output bias [𝐵
𝑇

𝑂
] = [𝐵

𝐿

𝑂
] +

1

2

[𝑊
𝐿

𝑂
] [1]

Output weights [𝑊
𝑇

𝑂
] =

1

2

× [𝑊
𝐿

𝑂
]

changing the hidden layer AF does not change the NN
output:

𝐵
𝐿

𝑂
+ ∑

̇
𝑊
𝐿

𝑂
∗ (

1

1 + 𝑒
−{𝐵
𝐿

𝐻
+∑𝑊

𝐿

𝐻
∗𝑖𝑛}

) = 𝐵
𝑇

𝑂

+ ∑𝑊
𝑇

𝑂
∗ (

2

1 + 𝑒
−2{𝐵
𝑇

𝐻
+∑𝑊

𝑇

𝐻
∗𝑖𝑛}

− 1) ,

(1)

𝐵
𝐿

𝑂
+ ∑

̇
𝑊
𝐿

𝑂
∗ (

1

1 + 𝑒
−{𝐵
𝐿

𝐻
+∑𝑊

𝐿

𝐻
∗𝑖𝑛}

) = [𝐵
𝑇

𝑂
− ∑𝑊

𝑇

𝑂
]

+ ∑(2 ∗ 𝑊
𝑇

𝑂
) ∗ (

1

1 + 𝑒
−{(2∗𝐵

𝑇

𝐻
)+∑(2∗𝑊

𝑇

𝐻
)∗𝑖𝑛}

) ,

(2)

[𝐵
𝐿

𝑂
+ ∑

𝑊
𝐿

𝑂

2

]

+ ∑(

̇
𝑊
𝐿

𝑂

2

) ∗ (

2

1 + 𝑒
−{(𝐵
𝐿

𝐻
/2)+∑(𝑊

𝐿

𝐻
/2)∗𝑖𝑛}

) = 𝐵
𝑇

𝑂

+ ∑𝑊
𝑇

𝑂
∗ (

2

1 + 𝑒
−2{𝐵
𝑇

𝐻
+∑𝑊

𝑇

𝐻
∗𝑖𝑛}

− 1) .

(3)

Right side of (1) shows the output for multiple inputs single
output (MISO) FFNN with sigmoid activation function. Left
side of (1) shows the output MISO FFNN with hyperbolic
tangent activation function. In (2) and (3), right hand side
and left hand side have been, respectively, rearranged to
highlight the matrix relations that allow AF transformations.
Indeed (1), (2), and (3) express the relations for a MISO
FFNN, but it is straightforward to generalize a translation
procedure valid for a MIMO network. Tables 2 and 3 allow
an easy translation of weights and biases to switch between
sigmoid and hyperbolic function AFs ([1] denotes a 1-by-𝑁
vector, where𝑁 is the number of output neurons). A possible
strategy to exploit these relations would be to create a tanh
based FFNN in a general-purpose environment, like Matlab.
Then, after the FFNN has been trained, translate the weights
in sigmoid form to obtain a FFNN that features a simpler AF.

4. Conclusions

The topic of the choice of a suitable activation function in a
feed forward neural network was analyzed in this paper. Two
aspects of the topicwere investigated: the choice of anAFwith
fast training convergence and the choice of an AF with good
computational performance.

The first aspect involved several works proposing alterna-
tive AFs, analytical or not, that featured quick and accurate
convergence during the training process, while retaining
generalization capabilities. Instead of finding a particular
solution that performs better than the others, the aspect
that was highlighted by several works is that the simple
sigmoid functions that were introduced with the first FFNN,
although granting the universal interpolation capabilities,
are far from being the most efficient choice for a neural
problem. Apart from this negative consideration, no deal-
breaker conclusion can be drawn from the comparative
analysis found in literature. Indeed, it has been shown that
some preliminary analysis on the mapping function allows
the choice of a “similar” AF that could perform better on
a specific problem. However, this conclusion is a method-
ological consideration, rather than a position on a particular
advantageous AF choice. On the other hand, the adaptive
strategies proposed, which feature tunable AFs that can
mimic some of the mapping function characteristics, suffer
from a more complex and error prone training algorithm.

The second aspect involved both approximations of
the classic AFs found in literature and brand new AFs
specifically proposed for embedded solutions. The goal
pursued by the works summarized in this section was to
find a good deal between accuracy, computational costs,
and memory footprint, in a limited resources environment
like an embedded system. It is obvious that the direct use
of a FFNN in embedded environment, without the aid of
some kind of numerical approximation, is unfeasible for any
real-time application. Even using a powerful computation
system, featuring floating-point arithmetic units, the full-
precision IEEE 745 compliant AF computation is a plain
waste of resources.This is especially true for many embedded
applications where the FFNN is used as a controller [63]
that process data obtained from low precision sources [64]
(e.g., a 10-Bit Analog-to-Digital Converter, which is found
on numerous commercial microcontroller units). The point
of the analysis was to show the wide range of possibilities
that are available for the implementation, since, in this case,
the particular choice of AFs is strictly application dependent.
The optimum trade point between accuracy, throughput, and
memory footprint cannot be generalized.

Unfortunately, the outcome of a successful NN solution
of a problem is influenced by several aspects that cannot be
separated from the AF choice. The choice of the training
algorithm, for example, can go from simple backpropagation-
like algorithms to heuristics assisted training, with all the
possible choices in between. The suitable sizing of the
hidden layer and the training/validation sets [65], the a
priori simplification of the problem dimensionality [66],
and use of pruning techniques like OBD (Optimal Brain
Damage) [67] and OBS (Optimal Brain Surgeon) [68] to

Computational Intelligence and Neuroscience 7

Table 4: Summary of analytic AF.

Ref. Method Convergence Precision Computational costs Notes

[26] Hyperbolic
tangent N/A MSE = 0.0165 0.3435 us (Pentium II

Machine)

[16] Arctangent 24 Epochs MSE = 1𝑒 − 3

0.3435 us (Pentium II
Machine)

Backpropagation with 𝜂 = 0.5
(learning rate) and 𝛼 = 0.8

(Momentum)

[18] Quadratic
sigmoid 4000 Epochs

MSE = 0.1–0.5 (2x more accurate
than sigmoid on the same

problem)
N/A

Backpropagation with 𝜂 = 0.1
(learning rate) and 𝛼 = 0.1

(Momentum), reduced during
training

[19, 22] Logarithmic-
Exponential 250 Epochs

MSE = 0.048 (fitting problem)
97.2% accuracy (classification

problem)

6.1090 us (Pentium II
Machine)

[20] Spline-
interpolant 2000 Epochs

MSE ⟨dB⟩ = −17.94 dB (3.26 dB
less than sigmoid on the same

problem)
N/A Backpropagation with 𝜇 = 0.8

(learning rate)

[21] Hermite polyn. N/A 98.5% accuracy (classification
problem) N/A

[22, 23] Neural 50 Epochs
97.6% accuracy (classification

problem)
MSE = 0.082 (prediction

problem)

N/A

[24] Composite AF 900 Epochs 92.8% accuracy (classification
problem) N/A Even distribution of Gaussian,

sinusoidal, and sigmoid

[24, 26] Wave 250 Epochs
MSE = 0.2465 (15x less accurate

than sigmoid on the same
problem)

0.3830 us (Pentium II
Machine)

[25] CosGauss 20 Epochs
MSE = 1.0 (10x more accurate
than sigmoid on the same

problem)
N/A Implemented on a cascade

correlation network

[26] Sinc 250 Epochs
MSE = 0.0132 (0.25x more

accurate than tanh on the same
problem)

104.3360 us (Pentium II
Machine)

[26] PolyExp 250 Epochs MSE = 0.1007 (6x less accurate
than tanh on the same problem)

0.3840 us (Pentium II
Machine)

[26] SinCos 250 Epochs MSE = 0.0114 (0.7x more accurate
than tanh on the same problem)

1.1020 us (Pentium II
Machine)

remove unimportant weights from a network all influence
the outcome as well. And even if a standard procedure could
be thought and proposed, there is no universally recognized
benchmark that could be used to test and compare different
solutions: as it can be seen from the works proposed, NN
approach is tested on real world problems. This is not due
to the lack of recognized benchmarks in literature [69] but
rather due to the attitude of authors proposing a particular
NN solution (whether it is a novel AF, an architecture, or a
training algorithm), to test it only for a specific application.
This hinders the transfer potential of the solution, enclosing
it in the specific application it was thought for.

Appendix

This appendix contains a summarized description, in form
of tables (see Tables 4–9), of the results in terms of con-
vergence error and performance reported by the authors
in their articles. Some terms and acronyms, used in
Tables 4, 5, 6, 7, 8, and 9, are explained below.

(i) Ref.: Reference in bibliography
(ii) Method:The name of the activation function, as given

by the authors in their work
(iii) Precision: Performance of the proposed method in

terms of ability to yield a correct output

8 Computational Intelligence and Neuroscience

Table 5: Summary of fuzzy logic AF.

Ref. Method Convergence Precision Computational costs Notes

[27, 31] Fuzzy-tanh
20 Epochs (up to 4x faster
than tanh on the same

problem)

MAE = 0.039 (2.5x more
accurate than tanh)

93% accuracy (classification
problem, 1% more than a classic

MLP)

N/A

[28] Type 2 Fuzzy 41 Epochs (5x faster than
tanh on the same problem) MAE = 0.35 N/A Backpropagation with

learning rate 𝛼 = 0.25

[32] Fuzzy-tanh 2 N/A

RMSE = 0.0116 (comparable to
tanhon the same problem)

95–98% accuracy (classification
problem, comparable to tanh on

the same problem)

N/A Trained with extreme
machine learning algorithm

Table 6: Summary of adaptive strategies.

Ref. Method Convergence Precision Computational costs Notes

[34]
Scalable
sigmoid

(NNAAF-1)
6960 Epochs % error = 0.033 Training time: 2739 s Learning rate 0.9

[34] Sin-sigmoid
(NNAAF-2) 8232 Epochs % error = 0.045 Training time: 2080 s Learning rate 0.9

[34] Morlet wavelet
(NNAAF-3) 10000 Epochs % error = 0.097 Training time: 3046 s Learning rate 0.2

[35] Sigmoid-
radial-sin 5250 Epochs N-RMSE = 0.09301 N/A Trained with Levenberg

Marquardt Algorithm

[36] Sin-sigmoid 5000–9000 Epochs 89.60–94.3% accuracy
(classification problem) N/A Implemented on higher

order NN (HONN)
[37] Trainable AF 20000 Epochs RMSE ⟨dB⟩ = −35 dB N/A

(iv) Computational costs: Estimate of the heaviness of the
proposed method

(v) Epoch: Definition changes from one training algo-
rithm to another. It generally corresponds to a full
dataset “sweep” of the training algorithm

(vi) Learning rate: Damping factor applied to weights
correction during training (mainly used for back-
propagation algorithms)

(vii) Momentum: Inertial factor applied to maintain the
direction of weight changing during training (mainly
used for backpropagation algorithms)

(viii) MSE/RMSE/N-RMSE: Mean Squared Error, Root
Mean Squared Error, and Normalized Root Mean
Squared Error

(ix) % error: Percent of error (relative to signal, if not
indicated otherwise)

(x) MAE: Mean Absolute Error

(xi) Classification problem: Problem where the ANN
must assign a belonging class to a set of inputs. Error
relative to these problems is usually given in terms of
% of correctly classified inputs

(xii) Fitting problem: Problem where the ANNmust repli-
cate a nonlinear relationship. Error is usually given in
terms of MSE between desired and actual output

(xiii) Prediction problem: Similar to the fitting problem,
but involving state-space models

(xiv) Computation delay: Time required for digital com-
mutation of the implemented hardware (upper limit
to the maximum operative frequency)

(xv) Elaboration time: Time required to compute the
operations for a single neuron implementing the AF
with the relative method

(xvi) Full NN computation: Time required to compute a
single sample byNN featuring neurons implementing
the AF with the relative method.

Computational Intelligence and Neuroscience 9

Table 7: Summary of Lookup-Table approximations.

Ref. Method Convergence Precision Computational costs Notes

[39] RA-LUT (tanh) N/A MSE = 0.0053 17.5 us on 50MHz FPGA
Resources used:
1815 LC comb.

4 LC reg.

[39] RA-LUT (Logsig) N/A MSE = 0.1598 17.5 us on 50MHz FPGA
Resources used:
1617 LC comb.

4 LC reg.

[40] RA-LUT (Tansig)
+ FPU N/A MSE = 0.0150 47 us on 50MHz FPGA Resources used:

6538 LE

[41] Error-optimized
LUT N/A Max. error = 0.0378

Propagation delay: 0.95 ns (2x
faster than classic LUT

approach)

Gate Count: 70
Area (𝜇m2): 695.22

(10x smaller than classic LUT
approach)

[42] Compact
RA-LUT N/A Max. error = 0.0182 Propagation delay: 2.46 ns

Gate Count: 181
Area (𝜇m2): 780 (4.5x smaller
than classic LUT approach)

[43] Hybrid 11 Epochs
% error = 1.88

(normalized to Full-Precision
Floating Point)

Propagation delay: 0.8 ns

Trained on-chip with
Levenberg Marquardt

Algorithm
Area (𝜇m2): 309

[43] LUT 16 Epochs
% error = 1.34

(normalized to Full-Precision
Floating Point)

Propagation delay: 2.2 ns

Trained on-chip with
Levenberg Marquardt

Algorithm
Area (𝜇m2): 19592

[43] RA-LUT 12 Epochs
% error = 0.89

(normalized to Full-Precision
Floating Point)

Propagation delay: 1.0 ns

Trained on-chip with
Levenberg Marquardt

Algorithm
Area (𝜇m2): 901

Table 8: Summary of Piecewise Linear Approximations.

Ref. Method Convergence Precision Computational costs Notes

[44] Piecewise linear
“VHDL-C” N/A MSE = 0.00049 213 clock cycles

Resources used:
Flip Flop Slices: 1277
4 input LUTs: 3767

BRAMS: 4

[45] “Bajger-Omondi”
method N/A

Absolute error: up to 10−6
for 128 pieces with 18-bit

precision
N/A

[46] PWL
approximation N/A N/A

Propagation delay: 1.834 ns
(100 ns more than LUT

approach)

Resources used:
4 input LUTs: 108 (79

less than LUT
approach)

Slices: 58 (44 less than
LUT approach)

Total gates: 1029 (329
less than LUT)

[47, 48] A-Law N/A
% error = 0.63
84% accuracy

(classification problem)
Propagation delay: 3.729 ns

Resources used:
Slices: 185
LUTs: 101

Total gates: 1653

[47, 49] Alippi N/A % error = 1.11 Propagation delay: 3.441 ns

Resources used:
Slices: 127
LUTs: 218

Total gates: 1812

[47, 50, 51] PLAN N/A
% error = 0.63

85% accuracy (classification
problem)

Propagation delay: 4.265 ns

Resources used:
Slices: 127
LUTs: 218

Total gates: 1812

10 Computational Intelligence and Neuroscience

Table 9: Summary of hybrid and higher order techniques.

Ref. Method Convergence Precision Computational costs Notes

[52] 4th-order Taylor N/A
From 99.68% to 45%
accuracy (classification

problem)

Full NN computation time:
1.7ms

Resources used:
Slices: 4438

Flip Flops: 2054
LUTs: 8225

[53] 5th-order Taylor N/A % error = 0.51 N/A

Resources used:
Slices: 4895

Flip Flops: 4777
LUTs: 8820

[54, 55] Hybrid with PWL and
RA-LUT N/A Up to 6.80𝑒 − 4 for 404

elements
Elaboration time: 40𝜇s on

50MHz FPGA

Resources used:
Slices: 12

4 Inputs LUT: 17
BRAM: 1

[54, 55] Hybrid with PWL and
combinatorial N/A Up to 2.28𝑒 − 3 for 404

elements
Elaboration time: 40𝜇s on

50MHz FPGA

Resources used:
Slices: 12

4 inputs LUT: 17
BRAM: 0

[56] High precision
sigmoid/exponential N/A

RMSE = 8.362𝑒 − 6

(sigmoid)
RMSE = 6.493𝑒 − 6

(exponential)

Maximum operative
frequency: 868.056MHz

Resources used:
(as low as)
43 LUTs

26 registers

[57] PWL and optimized LUT N/A N/A Propagation delay: 0.06 ns
Resources used:

Number of gates: 35
Area (𝜇m2): 148

[39, 58] Four-polynomial tanh
“4PY-T” N/A MSE = 0.0039

Full NN computation
(50MHz FPGA)

142 𝜇s

[39, 58] Five-polynomial tanh
“5PY-T” N/A MSE = 0.0018

Full NN computation
(50MHz FPGA)

174 𝜇s

[39, 58] Five-polynomial Logsig
“5PY-L” N/A MSE = 0.0075

Full NN computation
(50MHz FPGA)

185 𝜇s

[61] Piecewise Quadratic Tanh
“scheme 2” N/A MEA = 4.1𝑒 − 3

Throughput rate:
0.773MHz

Resources used:
Area (𝜇m2): 83559.17

[60] Piecewise Quadratic Tanh
“Gs” 33 Epochs

SE = 0.1
99.6 generalization

capability
N/A

[47, 61] Zhang quadratic
approximation N/A MEA = 7.7𝑒 − 3

% error = 1.10 Propagation delay: 3.9 ns

Resources used:
Slices: 93
LUTs: 86

Total gates: 1169

[62] Adjusted LUT
(0.02 max. errors) N/A MEA = 0.0121 Propagation delay: 2.80 ns Area (𝜇m2): 5130.78

[62] Adjusted LUT
(0.04 max. errors) N/A MEA = 0.0246 Propagation delay: 2.31 ns Area (𝜇m2): 3646.83

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Mathematics of Control, Signals, and Systems, vol. 2,
no. 4, pp. 303–314, 1989.

[2] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation func-
tion can approximate any function,”Neural Networks, vol. 6, no.
6, pp. 861–867, 1993.

[3] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[4] K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,”Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

Computational Intelligence and Neuroscience 11

[5] K.-I. Funahashi, “On the approximate realization of continuous
mappings by neural networks,” Neural Networks, vol. 2, no. 3,
pp. 183–192, 1989.

[6] J. L. Castro, C. J. Mantas, and J. M. Benı́tez, “Neural networks
with a continuous squashing function in the output are univer-
sal approximators,” Neural Networks, vol. 13, no. 6, pp. 561–563,
2000.

[7] H. Jaeger, Tutorial on Training Recurrent Neural Networks, Cov-
ering BPPT, RTRL, EKF and the ‘Echo State Network’ Approach,
GMD—Forschungszentrum Informationstechnik, 2002.

[8] H. Jaeger, “Echo state network,” Scholarpedia, vol. 2, no. 9, article
2330, 2007.

[9] T. Lin, B. G. Horne, P. Tiňo, and C. L. Giles, “Learning long-
term dependencies in NARX recurrent neural networks,” IEEE
Transactions on Neural Networks, vol. 7, no. 6, pp. 1329–1338,
1996.

[10] A. Rodan and P. Tiňo, “Minimum complexity echo state
network,” IEEE Transactions on Neural Networks, vol. 22, no. 1,
pp. 131–144, 2011.

[11] D. Li, M. Han, and J. Wang, “Chaotic time series prediction
based on a novel robust echo state network,” IEEE Transactions
onNeural Networks and Learning Systems, vol. 23, no. 5, pp. 787–
799, 2012.

[12] B. M.Wilamowski, “Neural network architectures and learning
algorithms,” IEEE Industrial Electronics Magazine, vol. 3, no. 4,
pp. 56–63, 2009.

[13] K. Hornik, M. Stinchcombe, and H. White, “Universal approx-
imation of an unknown mapping and its derivatives using
multilayer feedforward networks,” Neural Networks, vol. 3, no.
5, pp. 551–560, 1990.

[14] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2004.

[15] T. Chen and H. Chen, “Universal approximation to nonlin-
ear operators by neural networks with arbitrary activation
functions and its application to dynamical systems,” IEEE
Transactions on Neural Networks, vol. 6, no. 4, pp. 911–917, 1995.

[16] J. Kamruzzaman and S. M. Aziz, “A note on activation function
in multilayer feedforward learning,” in Proceedings of the Inter-
national Joint Conference on Neural Networks (IJCNN ’02), vol.
1, pp. 519–523, IEEE, Honolulu, Hawaii, USA, May 2002.

[17] J. Bilski, “The backpropagation learning with logarithmic trans-
fer function,” in Proceedings of the 5th Conference on Neural
Networks and Soft Computing, pp. 71–76, Zakopane, Poland,
June 2000.

[18] C.-C. Chiang and H.-C. Fu, “A variant of second-order mul-
tilayer perceptron and its application to function approxi-
mations,” in Proceedings of the International Joint Conference
on Neural Networks (IJCNN ’92), vol. 3, pp. 887–892, IEEE,
Baltimore, Md, USA, June 1992.

[19] F. Piȩkniewski and L. Rybicki, “Visual comparison of perfor-
mance for different activation functions in MLP networks,” in
Proceedings of the IEEE International Joint Conference on Neural
Networks (IJCNN ’04), pp. 2947–2952, July 2004.

[20] P. Campolucci, F. Capparelli, S. Guarnieri, F. Piazza, and A.
Uncini, “Neural networks with adaptive spline activation func-
tion,” in Proceedings of the 8th Mediterranean Electrotechnical
Conference (MELECON ’06), pp. 1442–1445, IEEE, May 1996.

[21] L. Ma and K. Khorasani, “Constructive feedforward neural
networks usingHermite polynomial activation functions,” IEEE
Transactions on Neural Networks, vol. 16, no. 4, pp. 821–833,
2005.

[22] I. S. Isa, Z. Saad, S. Omar, M. K. Osman, K. A. Ahmad, and H.
A. M. Sakim, “Suitable MLP network activation functions for
breast cancer and thyroid disease detection,” in Proceedings of
the 2nd International Conference on Computational Intelligence,
Modelling and Simulation (CIMSim ’10), pp. 39–44, IEEE, Bali,
India, September 2010.

[23] K. W. Wong, C. S. Leung, and S.-J. Chang, “Use of periodic
and monotonic activation functions in multilayer feedforward
neural networks trained by extended Kalman filter algorithm,”
Vision, Image and Signal Processing, IEE Proceedings, vol. 149,
no. 4, pp. 217–224, 2002.

[24] K. Hara and K. Nakayamma, “Comparison of activation func-
tions in multilayer neural network for pattern classification,”
in Proceedings of the IEEE International Conference on Neural
Networks. IEEE World Congress on Computational Intelligence,
vol. 5, pp. 2997–3002, IEEE, Orlando, Fla, USA, June-July 1994.

[25] S.-W. Lee and C. Moraga, “Cosine-modulated Gaussian activa-
tion function for hyper-hill neural networks,” in Proceedings of
the 3rd International Conference on Signal Processing (ICSP ’96),
pp. 1397–1400, IEEE, October 1996.

[26] M. Ö. Efe, “Novel neuronal activation functions for feedforward
neural networks,” Neural Processing Letters, vol. 28, no. 2, pp.
63–79, 2008.

[27] E. Soria-Olivas, J. D. Mart́ın-Guerrero, G. Camps-Valls, A. J.
Serrano-López, J. Calpe-Maravilla, and L. Gómez-Chova, “A
low-complexity fuzzy activation function for artificial neural
networks,” IEEE Transactions on Neural Networks, vol. 14, no.
6, pp. 1576–1579, 2003.

[28] M. Karaköse and E. Akin, “Type-2 fuzzy activation function for
multilayer feedforward neural networks,” in Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics
(SMC ’04), pp. 3762–3767, IEEE, October 2004.

[29] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and
Soft Computing: A Computational Approach to Learning and
Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ, USA,
1997.

[30] L. A. Zadeh, “The concept of a linguistic variable and its
application to approximate reasoning—I,” Information sciences,
vol. 8, no. 3, pp. 199–249, 1975.

[31] A. Subasi, “Automatic detection of epileptic seizure using
dynamic fuzzy neural networks,” Expert Systems with Applica-
tions, vol. 31, no. 2, pp. 320–328, 2006.

[32] H. T.Huynh andY.Won, “Extreme learningmachinewith fuzzy
activation function,” in Proceedings of the 5th International Joint
Conference on INC, IMS and IDC (NCM ’09), pp. 303–307, IEEE,
2009.

[33] B. E. Segee, “Using spectral techniques for improved perfor-
mance in artificial neural networks,” in Proceedings of the IEEE
International Conference on Neural Networks, pp. 500–505,
IEEE, April 1993.

[34] Y. Özbay and G. Tezel, “A newmethod for classification of ECG
arrhythmias using neural network with adaptive activation
function,”Digital Signal Processing, vol. 20, no. 4, pp. 1040–1049,
2010.

[35] A. Ismail, D.-S. Jeng, L. L. Zhang, and J.-S. Zhang, “Predictions
of bridge scour: application of a feed-forward neural network
with an adaptive activation function,” Engineering Applications
of Artificial Intelligence, vol. 26, no. 5-6, pp. 1540–1549, 2013.

[36] S. Xu, “Data mining using higher order neural network models
with adaptive neuron activation functions,” International Jour-
nal of Advancements in Computing Technology, vol. 2, no. 4, pp.
168–177, 2010.

12 Computational Intelligence and Neuroscience

[37] Y. Wu, M. Zhao, and X. Ding, “Beyond weights adaptation: a
new neuron model with trainable activation function and its
supervised learning,” in Proceedings of the IEEE International
Conference on Neural Networks, pp. 1152–1157, IEEE, June 1997.

[38] A. Laudani, G. M. Lozito, F. Riganti Fulginei, and A. Salvini,
“An efficient architecture for floating point based MISO neural
neworks on FPGA,” in Proceedings of the 16th International
Conference on ComputerModelling and Simulation (UKSim ’14),
pp. 12–17, IEEE, Cambridge, UK, March 2014.

[39] G.-M. Lozito, A. Laudani, F. Riganti-Fulginei, and A. Salvini,
“FPGA implementations of feed forward neural network by
using floating point hardware accelerators,” Advances in Elec-
trical and Electronic Engineering, vol. 12, no. 1, pp. 30–39, 2014.

[40] P. Santos, D. Ouellet-Poulin, D. Shapiro, and M. Bolic, “Arti-
ficial neural network acceleration on FPGA using custom
instruction,” in Proceedings of the 24th Canadian Conference on
Electrical and Computer Engineering (CCECE ’11), pp. 450–455,
IEEE, Niagara Falls, NY, USA, May 2011.

[41] B. Zamanlooy and M. Mirhassani, “Efficient VLSI implemen-
tation of neural networks with hyperbolic tangent activation
function,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 1, pp. 39–48, 2014.

[42] P. K. Meher, “An optimized lookup-table for the evaluation of
sigmoid function for artificial neural networks,” in Proceedings
of the 18th IEEE/IFIP VLSI System on Chip Conferene (VLSI-SoC
’10), pp. 91–95, IEEE, Madrid, Spain, September 2010.

[43] K. Leboeuf, R. Muscedere, andM. Ahmadi, “Performance anal-
ysis of table-based approximations of the hyperbolic tangent
activation function,” in Proceedings of the 54th IEEE Interna-
tional Midwest Symposium on Circuits and Systems (MWSCAS
’11), pp. 1–4, IEEE, August 2011.

[44] A. L. Braga, C. H. Llanos, D. Göhringer, J. Obie, J. Becker,
and M. Hübner, “Performance, accuracy, power consumption
and resource utilization analysis for hardware/software realized
artificial neural networks,” in Proceedings of the IEEE 5th
International Conference on Bio-Inspired Computing: Theories
and Applications (BIC-TA ’10), pp. 1629–1636, IEEE, 2010.

[45] M. Bajger and A. Omondi, “Low-error, high-speed approxima-
tion of the sigmoid function for large FPGA implementations,”
Journal of Signal Processing Systems, vol. 52, no. 2, pp. 137–151,
2008.

[46] V. Saichand, D. M. Nirmala, S. Arumugam, and N. Mohanku-
mar, “FPGA realization of activation function for artificial neu-
ral networks,” in Proceedings of the 8th International Conference
on Intelligent Systems Design and Applications (ISDA ’08), vol. 3,
pp. 159–164, IEEE, Kaohsiung, Taiwan, November 2008.

[47] A. Tisan, S. Oniga, D. Mic, and A. Buchman, “Digital imple-
mentation of the sigmoid function for FPGA circuits,” Acta
Technica Napocensis—Electronics and Telecommunications, vol.
50, no. 2, p. 6, 2009.

[48] D. J. Myers and R. A. Hutchinson, “Efficient implementation
of piecewise linear activation function for digital VLSI neural
networks,” Electronics Letters, vol. 25, no. 24, pp. 1662–1663,
1989.

[49] C. Alippi and G. Storti-Gajani, “Simple approximation of
sigmoidal functions: realistic design of digital neural networks
capable of learning,” in Proceedings of the IEEE 1991 Interna-
tional Sympoisum on Circuits and Systems, pp. 1505–1508, IEEE,
1991.

[50] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, “Piecewise
linear approximation applied to nonlinear function of a neural

network,” IEE Proceedings—Circuits, Devices and Systems, vol.
144, no. 6, pp. 313–317, 1997.

[51] A. Tisan, S. Oniga, and C. Gavrincea, “Hardware implementa-
tion of a MLP network with on-chip learning,” in Proceedings
of the 5th WSEAS International Conference on Data Networks,
Communications & Computers, pp. 162–167, Bucharest, Roma-
nia, October 2006.

[52] Y. Lee and S.-B. Ko, “FPGA implementation of a face detector
using neural networks,” in Proceedings of the Canadian Confer-
ence on Electrical and Computer Engineering (CCECE ’06), pp.
1914–1917, IEEE, May 2006.

[53] D. E. Khodja, A. Kheldoun, and L. Refoufi, “Sigmoid function
approximation for ANN implementation in FPGA devices,”
in Proceedings of the 9th WSEAS International Conference on
Circuits, Systems, Electronics, Control, and Signal Processing,
Stevens Point, Wis, USA, 2010.

[54] M. A. Sartin and A. C. R. Da Silva, “Approximation of hyper-
bolic tangent activation function using hybrid methods,” in
Proceedings of the 8th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC ’13),
pp. 1–6, IEEE, Darmstadt, Germany, July 2013.

[55] M. A. Sartin and A. C. da Silva, “ANN in hardware with floating
point and activation function using hybrid methods,” Journal of
Computers, vol. 9, no. 10, pp. 2258–2265, 2014.

[56] F. Ortega-Zamorano, J. M. Jerez, G. Juarez, J. O. Perez, and
L. Franco, “High precision FPGA implementation of neural
network activation functions,” in Proceedings of the IEEE Sym-
posium on Intelligent Embedded Systems (IES ’14), pp. 55–60,
IEEE, 2014.

[57] S. Saranya and B. Elango, “Implementation of PWL and LUT
based approximation for hyperbolic tangent activation function
in VLSI,” in Proceedings of the 3rd International Conference on
Communication and Signal Processing (ICCSP ’14), pp. 1778–
1782, IEEE, April 2014.

[58] G. M. Lozito, L. Bozzoli, and A. Salvini, “Microcontroller based
maximum power point tracking through FCC and MLP neural
networks,” in Proceedings of the 6th European Embedded Design
in Education and Research Conference (EDERC ’14), pp. 207–211,
IEEE, September 2014.

[59] C.-W. Lin and J.-S. Wang, “A digital circuit design of hyperbolic
tangent sigmoid function for neural networks,” in Proceedings
of the IEEE International Symposium on Circuits and Systems
(ISCAS ’08), pp. 856–859, IEEE, May 2008.

[60] H. K. Kwan, “Simple sigmoid-like activation function suitable
for digital hardware implementation,” Electronics Letters, vol.
28, no. 15, pp. 1379–1380, 1992.

[61] M. Zhang, S. Vassiliadis, and J. G. Delgado-Frias, “Sigmoid gen-
erators for neural computing using piecewise approximations,”
IEEE Transactions on Computers, vol. 45, no. 9, pp. 1045–1049,
1996.

[62] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M.
Ahmadi, “Efficient hardware implementation of the hyperbolic
tangent sigmoid function,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS ’09), pp. 2117–
2120, IEEE, May 2009.

[63] M. Carrasco, F. Mancilla-David, F. R. Fulginei, A. Laudani,
and A. Salvini, “A neural networks-based maximum power
point tracker with improved dynamics for variable dc-link grid-
connected photovoltaic power plants,” International Journal of
Applied Electromagnetics andMechanics, vol. 43, no. 1-2, pp. 127–
135, 2013.

Computational Intelligence and Neuroscience 13

[64] F. Mancilla-David, F. Riganti-Fulginei, A. Laudani, and A.
Salvini, “A neural network-based low-cost solar irradiance sen-
sor,” IEEE Transactions on Instrumentation and Measurement,
vol. 63, no. 3, pp. 583–591, 2014.

[65] F. Riganti-Fulginei, A. Laudani, A. Salvini, and M. Parodi,
“Automatic and parallel optimized learning for neural networks
performing MIMO applications,” Advances in Electrical and
Computer Engineering, vol. 13, no. 1, pp. 3–12, 2013.

[66] F. R. Fulginei, A. Salvini, andM. Parodi, “Learning optimization
of neural networks used for MIMO applications based on
multivariate functions decomposition,” Inverse Problems in
Science and Engineering, vol. 20, no. 1, pp. 29–39, 2012.

[67] Y. LeCun, J. S. Denker, S. A. Solla et al., “Optimal brain damage,”
inAdvances inNeural Information Processing Systems (NIPs), pp.
598–605, Morgan Kaufmann, 1989.

[68] B.Hassibi andD.G. Stork, SecondOrder Derivatives for Network
Pruning: Optimal Brain Surgeon,MorganKaufmannPublishers,
1993.

[69] L. Prechelt and Fakultat Fur Informatik, “Proben1: a set of
neural network benchmark problems and benchmarking rules,”
Tech. Rep. 21/94, 1994.

