
Fungi
Journal of

Review

Interactions between Aspergillus fumigatus and
Pulmonary Bacteria: Current State of the Field,
New Data, and Future Perspective

Benoit Briard 1,†, Gaëtan L. A. Mislin 2, Jean-Paul Latgé 1 and Anne Beauvais 1,*
1 Aspergillus Unit, Institut Pasteur, 75015 Paris, France; benoit.briard@stjude.org (B.B.);

jean-paul.latge@pasteur.fr (J.-P.L.)
2 UMR 7242 Biotechnologie et Signalisation Cellulaire, CNRS-Université de Strasbourg,

67400 Illkirch-Graffenstaden, France; gaetan.mislin@unistra.fr
* Correspondence: anne.beauvais@pasteur.fr
† Current address: Department of Immunology, St. Jude Children’s Research Hospital, Memphis,

TN 38105, USA

Received: 18 April 2019; Accepted: 10 June 2019; Published: 12 June 2019
����������
�������

Abstract: Aspergillus fumigatus and Pseudomonas aeruginosa are central fungal and bacterial members
of the pulmonary microbiota. The interactions between A. fumigatus and P. aeruginosa have only
just begun to be explored. A balance between inhibitory and stimulatory effects on fungal growth
was observed in mixed A. fumigatus–P. aeruginosa cultures. Negative interactions have been seen
for homoserine-lactones, pyoverdine and pyochelin resulting from iron starvation and intracellular
inhibitory reactive oxidant production. In contrast, several types of positive interactions were
recognized. Dirhamnolipids resulted in the production of a thick fungal cell wall, allowing the fungus
to resist stress. Phenazines and pyochelin favor iron uptake for the fungus. A. fumigatus is able to
use bacterial volatiles to promote its growth. The immune response is also differentially regulated
by co-infections.
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rhamnolipid; pyochelin; volatile

1. Introduction

A. fumigatus is the most important opportunistic aerial fungal pathogen. It is a ubiquitous
microorganism in the ambient air which is responsible for pulmonary infections resulting from the
inhalation of conidia [1]. Several types of aspergillosis can be seen, depending on the immune status
or the underlying disease or the environment of the patient [2–7].

Most of studies performed to date to understand the physiopathology of aspergillosis have
been focused on A. fumigatus alone. In nature, A. fumigatus is never alone, but is always present
in microbial communities [8,9]. Are the lung microbiota partners of A. fumigatus influencing the
pathogenic life of this fungal species? In this review, the analysis of the relationship between Aspergillus
and Pseudomonas aeruginosa (and a few other microbiota bacteria) resulting either from direct contact
between the two microorganisms or through secreted bacterial compounds are presented. In addition,
unpublished data on the role of pyochelin of P. aeruginosa siderophore on A. fumigatus, as well as the
immunological consequences of co-infections, have been added to draw up a more comprehensive
picture of these interactions.
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2. The Lung Microbiota in Different Clinical Situations

The respiratory tract is the human body site with the largest surface harboring interacting bacteria
and fungi. DNA-based culture-independent techniques are now used to identify the microbial species
harbored in the lung epithelial surface. Lung microbiota has been determined mainly in cystic fibrosis
(CF) and chronic obstructive pulmonary disease (COPD) patients, where it is easier and safer than in
other patients to collect human specimens. Among these patients, the fungal mycobiome composition
has been analyzed in bronchoalveolar lavages or sputum samples [6–8,10–12]. Despite discordance
in the results, mainly due to a lack of standardization of the methods, many fungal species were
isolated from the respiratory tract, including Candida albicans, A. fumigatus, A. flavus, Geotrichum
sp., Pneumocystis jirovecii, Malassezia sp., Scedosporium apiospermum and Exophiala dermatitidis. Many
independent studies have identified A. fumigatus as the principal colonizing fungus in COPD or CF
patients [3,9,12,13]. In these patients, the altered structure of the lung epithelium and the changes
in the composition of the normal flora in the respiratory airway can promote A. fumigatus adhesion
and persistence [3]. Detection and quantification of microbial species have also revealed that the
lung comprises a large number of bacterial taxa. In CF, the most abundant bacteria found in sputum
samples from patients with end-stage disease are usually from a small group of known CF pathogens
including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, Burkholderia
cenocepacia and non-tuberculous Mycobacteria abscessus [14,15]. S. aureus commonly infects pediatric
CF patients, while P. aeruginosa dominates the bacterial community in adult patients [16]. Eradication
therapy for P. aeruginosa increased the rate of infection with S. maltophilia [16]. In COPD, concomitant
isolation of A. fumigatus and P. aeruginosa was also reported [17]. The composition of the COPD
lung microbiota identified as the main phyla Actinobacteria, Firmicutes including Streptococcus sp and
Proteobacteria including P. aeruginosa [8]. Even though the role of the virome was not specifically
investigated in relation to A. fumigatus, several reports have indicated that viruses may have an impact
(although probably indirect) on Aspergillus infections. Cytomegalovirus and Epstein-Barr virus have
been known for years to be associated with Aspergillus infection. More recently, the influenza virus
was recognized as a strong inducer of aspergillosis [18]. Moreover, sputa collected from CF patients
contained high number of phages which can be stimulated by biofilm or hypoxia conditions during
bacterial growth [19]. Many A. fumigatus strains are strains host viruses intracellularly suggesting a
putative role in horizontal gene transfer [20].

Associations between A. fumigatus and lung infecting bacteria specifically linked with COPD have
not been studied until now. In contrast, the joint presence of A. fumigatus and P. aeruginosa has been
investigated in CF patients, particularly in the chronically infected oldest patients [21]. P. aeruginosa
evolves in CF airways, producing variants, such as those resulting in mucoid colony types which
are adapted to chronic residence there. In most patients, A. fumigatus colonization is preceded by
P. aeruginosa infection [22]. It has been shown that more rapid decline in pulmonary function due to an
increase of the inflammatory response, and more severe clinical outcomes have been observed in CF
patients simultaneously infected with A. fumigatus and P. aeruginosa, when compared to P. aeruginosa
infection alone [23]. However, in a murine pulmonary model, immunosuppressed mice co-infected
with A. fumigatus and P. aeruginosa had a higher survival rate than mice infected by A. fumigatus alone,
and the score for hyphal growth in the A. fumigatus infected mice after inoculation of P. aeruginosa
was significantly lower than that of mice infected by A. fumigatus alone, suggesting that P. aeruginosa
may secrete antifungal compounds or stimulate the immunological antifungal host response [24].
The transition of P. aeruginosa from non-mucoid to mucoid, a process that occurs with time in CF
disease, increased its virulence inside the patient body but decreases P. aeruginosa inhibitory effect on
A. fumigatus explaining why establishment of A. fumigatus in the airways occurs later in CF disease [25].
Bacteria other than P. aeruginosa have been noticed to accompany A. fumigatus during lung infection.
Significant associations have been reported between the upper airways colonization by A. fumigatus
and the presence of S. maltophila [26]. S. maltophila is an important hospital-associated pathogen; it is
not highly virulent, but its environmental dissemination and resistance to selective pressure antibiotics
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promote its opportunistic pathogenicity in immunocompetent patients or CF patients. However, the
clinical impact of this association has not been evaluated yet. No studies were reported on interactions
between A. fumigatus and S. aureus or B. cenocepacia in CF context. The reasons are that CF patients
are infected by A. fumigatus later after S. aureus infection, and negative associations were reported
between A. fumigatus and B. cenocepacia, which means that the two bacterial species were never found
at the same time as A. fumigatus in CF patients [16,27]. However, outside of the lungs, co-colonization
of A. fumigatus and S. aureus on contact lenses can cause co-infectious keratitis [28]. The presence of
A. fumigatus has been mentioned to be associated with an increased risk of non-tuberculous Mycobacteria
infection, especially M. abscessus, which is one of the most clinically virulent and antibiotic-resistant
bacterial species [15].

3. Interactions In Vitro between Lung Bacteria and A. fumigatus

3.1. Methodologies for Studying Bacterial–Fungal Interactions In Vitro

Due to the difficulty of studying bacteria–A. fumigatus interactions in a host, interactions were
first investigated in in vitro models. Of course, these in vitro models cannot mimic in vivo infections,
because it is still unknown how the bacteria and A. fumigatus enter in contact within the host. The
relevance to host airway of these in vitro models is that they are the best way to study the molecules
produced by one partner to control the growth of the other. Some of these molecules are secreted,
acting at distance, and can be specifically produced in response to the presence of the partner. These
models can help the understanding of what happens in vivo during co-infections. However, lack
of standardization in the methods induced high variability in the data from one study to another
one [29]. In vitro models of interaction are highly dependent on the bacterial and fungal inoculum, the
strains used, the composition of the medium, solid or liquid medium, shaken conditions including a
membrane separating the two microorganisms or unshaken conditions, temperature and pH [29]. To
analyze in the most efficient way the interactions between bacteria and A. fumigatus, it is necessary
to avoid the overgrowth of one partner over the other since it may be responsible for an excessive
killing of the second partner. The best experimental settings to study direct interactions during
mixed P. aeruginosa–A. fumigatus biofilms were obtained at 37 ◦C on Sabouraud dextrose broth with
106 conidia/mL inoculated 18 h before the inoculation of 106 P. aeruginosa/mL and further incubation
for 24 h [30], or on RPMI-MOPS agar plates inoculated with 2 × 107 A. fumigatus conidia and at the
same time 5 µL of 2.5 × 105 P. aeruginosa spotted in the center of the Petri dish [31]. In this last model,
the mixed biofilm was observed at the junction between the bacterial and the fungal colonies. The best
mixed S. maltophila–A. fumigatus biofilm was obtained on RPMI-MOPS supplemented with 10% bovine
fetal serum with simultaneous inoculation of 105 A. fumigatus conidia/mL and 106 S. maltophila/mL
and incubation for 24 h [26]. The best mixed S. aureus–A. fumigatus biofilm was obtained on RPMI
supplemented with 2% glucose inoculated with 105 A. fumigatus conidia/mL and 108 S. aureus/mL and
incubated for 4 h. The supernatant in this last biofilm model was eliminated to remove non-adherent
cells and replaced by fresh RPMI. The incubation was pursued for 24 h [28].

3.2. Cell–Cell Interactions

3.2.1. Fungal Adaptation to the Presence of Bacteria

• Production of a protective extracellular matrix

In the mixed in vitro bacteria–A. fumigatus models presented above, bacterial cells were always
seen adhering to the fungal hyphae [26,31]. Galactosaminogalactan (GAG), which is a virulent factor
of A. fumigatus synthesized on the surface of the cell wall and in the extracellular matrix [32], was
responsible for the binding of P. aeruginosa to the hyphae and in the biofilm. The production of this
polysaccharide increased in response to the bacterial assault against the fungus [31]. Moreover, in
P. aeruginosa–A. fumigatus mixed biofilm, an electron-dense material was observed on the extracellular
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matrix of the hyphae, and was found to be dihydroxynaphthalene (DHN)- and pyo-melanin [31].
DHN-melanin protects A. fumigatus conidia against a range of aggressions such as desiccation,
UV light or oxidant agents. During infection, DHN-melanin inhibits the non-canonical autophagy
pathway termed LC3-associated phagocytosis (LAP) that promotes phagolysosomal fusion and fungal
killing [33]. Pyomelanin is synthesized via the tyrosine degradation pathway. Cell wall stress induced
the production of pyomelanin [34]. The presence of these three molecules in the extracellular matrix
should protect A. fumigatus against host response. The appearance of these phenotype in A. fumigatus
requires a tight contact with the bacteria in the host airway, which is likely, since both microorganisms
are recovered in sputum samples [6,7].

• Production of a thick cell wall/role of bacterial dirhamnolipids and maltophilin

One morphogenetic modification of the presence of P. aeruginosa or S. maltophila is a thickening
of the cell wall in response to the bacterial stress [26,31]. In addition, in the presence of bacteria, the
hyphae are highly ramified, with short ramifications at the tips. The molecules secreted by P. aeruginosa
or S. maltophila responsible for increasing the thickness of the fungal cell wall are dirhamnolipids and
maltophilin, respectively [31,35–37].

A mixture of mono and dirhamnolipids are produced by P. aeruginosa and other Pseudomonas sp.
They are non-diffusible molecules overproduced during stress conditions and are components of the
biofilm. For a long time, dirhamnolipids were only known to display tensioactive properties, conferring
to the molecules anti-microbial and anti-human cell activity [37–41]. The biosurfactant activity of the
dirhamnolipids induces the disorganization of the plasma membrane, resulting in quantitative changes
in phospholipid headgroup in Bacillus subtilis [40]. In addition, dirhamnolipids are responsible for the
induction of galactosaminogalactan and melanin production, hyphal wall thickness and ramifications
by A. fumigatus [31]. Dirhamnolipids induced the production of an increased concentration of cell wall
chitin (3-fold increase) in compensation for β1,3 glucan synthase inhibition. The branched lipid tail
with β-hydroxy-fatty acids of the dirhamnolipids is essential for its activity on the β1,3 glucan synthase
activity. The effect of dirhamnolipids is never fungicidal and is very reminiscent of the echinocandin
effect. Echinocandins are clinical antifungal lipopeptides used in the treatment of invasive pulmonary
aspergillosis which target the β1,3 glucan synthase [42]. Echinocandins are also fungistatic against
A. fumigatus and the hyphae are also highly ramified with short ramifications at the tips [42]. However,
we demonstrated that the di-rhamnolipid site of action on the β1,3 glucan synthase is different from
the one of echinocandins. The mode of action of dirhamnolipids on A. fumigatus is summarized in
Figure 1.

Maltophilin, which is produced by S. maltophila, has been also shown to increase A. nidulans cell
wall thickening and chitin levels, in response to defective sphingolipid metabolism [36]. Maltophilin
induces the accumulation of sphingolipid intermediates which may stimulate cell wall synthesis by
activating cell wall integrity pathways.
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Figure 1. Diagram illustrating the mode of action of P. aeruginosa dirhamnolipids on A. fumigatus
growth. Dirhamnolipids inhibit β1,3 glucan synthase (GS) at the hyphal tip (1). This inhibition
stimulates the formation of new apices (2), containing active GS which will be further inhibited by the
dirhamnolipids, giving the multibranched phenotype with short apical cells. The inhibition of the β1,3
glucan synthesis is compensated by an increase in chitin synthesis (3). Dirhamnolipids also induce
melanin and galactosaminogalactan production in the extracellular matrix (4).

3.2.2. Extracellular Soluble Molecules

Various studies have confirmed the presence of bacterial quorum-sensing molecules in the sputum
of CF patients [43–45]. These molecules have low molecular weight and different structure, and
are known to modulate the pathogenicity of pathogens [46]. The best-known and most-studied
quorum-sensing molecules are from Pseudomonas spp. These include homoserine lactones (HSLs),
quinolones (PQS) and phenazines [47–49]. The two siderophores pyoverdine and pyochelin are also
known virulence factors in P. aeruginosa [50,51]. The role of these compounds in the communication
between P. aeruginosa and A. fumigatus has been investigated.

• Homoserine Lactones and Quinolones

HSLs are known P. aeruginosa virulence factors as they induce the production of IFNγ and the
disruption of NFκB, resulting in an inflammatory process [52]. HSLs significantly restricted the
capacity of A. fumigatus to form hyphae and reduced the biomass of the fungal biofilm [47], but their
mode of action is not yet understood. The effect of HSL is similar on C. albicans, as it inhibits hyphal
growth and consequently the biofilm formation [53]. PQS also altered biofilm biomass and structure by
reducing the attachment of the conidia to the polystyrene plates and blocking the germination [48]. In
comparison, C. albicans quorum-sensing molecule farnesol inhibits P. aeruginosa PQS biosynthesis [54],
but to date, nothing is known about a similar A. fumigatus quorum-sensing molecule acting on bacterial
production of HSLs or PQS [55].

• Phenazines

Four major phenazines have been described: pyocyanin (PYO), phenazines-carboxamide (PCN),
phenazines-carboxylic acid (PCA) and 1-hydroxy-phenazine (1HP) [56]. They are heterocyclic
redox-active compounds. They are small diffusible quorum-sensing molecules that easily penetrate all
kinds of cells, including A. fumigatus conidia, as soon as they undergo swelling and germination [49].
They are considered one of the strongest virulence factors of P. aeruginosa against a broad range
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of target organisms and host immune cells. Their antagonistic effects are attributed to their redox
potential [49,57–59]. Reduced phenazines are oxidized in the fungal cell by oxygen and NADPH through
a NapA-dependent oxidative stress response, generating ROS [57]. The main ROS target of phenazines
is the mitochondria in the hyphal cells [49]. In A. fumigatus cells, all phenazines at high concentrations
induce the production of ROS and reactive nitrogen species (RNS) by mitochondria, which are released
into the cytoplasm, leading to the fungal death. Sod2, which is the mitochondrial superoxide dismutase
in A. fumigatus, is essential for ROS and RNS resistance induced by phenazines [49]. A. fumigatus
has been shown to metabolize phenazines [60]. PYO is bio-transformed into phenazine dimers and
PCA into 1-HP which is then metabolized into 1-methoxyphenazine (1-MP) and phenazine-1-sulfate.
1-MP also has an antifungal activity, while phenazine-1-sulfate does not. The capability of fungi to
metabolize a variety of molecules is a known mechanism to detoxify and mineralize compounds,
particularly in fungal–bacterial interactions. However, 1-MP was a more potent inhibitor than PCA,
suggesting that 1-MP was an intermediate in the detoxification process [60].

1-HP was found to be the most active phenazine against A. fumigatus. In addition to ROS and
RNS production, its high inhibitory activity is due to a specific iron chelation property [49]. Indeed,
1-HP-iron complex causes A. fumigatus iron starvation and consequently induces the production of
fungal extracellular siderophores fusarine C (FsC) and triacetylfusarinine C (TAFC). Moreover, all
genes required for adaptation to iron starvation (HAPX, SIDA, SIDF, SIDG and MIRB) are induced by
1-HP, whereas genes encoding iron-dependent proteins are repressed (ACOA and CYCA) [49,60].

Interestingly, phenazines have a dual effect on A. fumigatus [49]. In addition to the antifungal
activity at high concentrations, an enhancing fungal activity has been described for PYO, PCN and
PCA at low concentrations and in iron-starved environment. This effect is due to the ability of these
phenazines to reduce ferric iron Fe3+ to ferrous iron Fe2+, which is taken up by the bacterial cells via
the ferrous iron transporter. This characteristic is also an advantage for A. fumigatus growth. Fe2+ is
more soluble than Fe3+ and can penetrate the fungal cell by low affinity ferrous iron uptake pathway,
involving the FetCp/FrA permease complex [49]. Similarly, it has been reported that phenazines
were responsible for enhanced A. fumigatus conidiation at sub-inhibitory concentrations, which is an
operative stress response pathway [57].

By comparison, in C. albicans, only the antifungal activity of phenazines via the production of ROS
altering respiratory activity has been reported so far [59]. In this way, P. aeruginosa causes C. albicans to
secrete more fermentation products that are readily used by the bacteria to enhance its own growth
and survival.

• Pyoverdine and Pyochelin Siderophores

An important factor allowing host colonization is the efficient uptake of iron by the bacterium. In
the mammalian host, iron is not freely available, since it is either present in the heme molecule found in
hemoproteins or strongly chelated by the extracellular proteins transferrin and lactoferrin. P. aeruginosa
secretes two siderophores to acquire iron, pyoverdine, the high affinity siderophore (pFe = 27), and
pyochelin, the low affinity siderophore (pFe = 16) [51]. Both are also chelators of other divalent metals,
such as zinc (Zn2+) and copper (Cu2+), which are cofactors of enzymes with crucial roles in bacterial
metabolism [61]. It has been demonstrated that P. aeruginosa first produces pyochelin and switches to
pyoverdine production when concentration of iron becomes really low [62]. The role of pyoverdine
and pyochelin in a murine model of P. aeruginosa and C. albicans gut co-colonization and the antifungal
activity of pyoverdine on A. fumigatus were recently analyzed [50,63]. No studies have reported
the role of pyochelin on A. fumigatus. Since we had unpublished data on the effect of pyochelin on
A. fumigatus, we decided to include these data for a more comprehensive understanding of the role of
the P. aeruginosa siderophores on A. fumigatus. For this purpose, the following paragraph on pyochelin
is in a different style than the rest of the review, since it presents in a more detailed way the role of
pyochelin on A. fumigatus.
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X Pyochelin

Pyochelin is an unusual siderophore in that it has a lower molecular mass than other bacterial or
fungal siderophores [51]. It is hydrophobic and unlike pyoverdine or ferrichrome, it does not contain
catecholate or hydroxamate as iron-chelating groups [64]. Pyochelin is a redox-active compound
which has been shown to cause oxidative damage and inflammation in human immune cells and
bacteria [65]. Pyochelin has been described to be one of the bacterial siderophores that has the best
affinity for zinc [61], even if pyochelin does not behave as a zincophore for P. aeruginosa [66].

→ Deprivation of iron and zinc from the medium by pyochelin results in an inhibition of
A. fumigatus growth

Pyochelin has an antifungal activity on A. fumigatus at 250 µM. The depletion of iron alone from
the medium reduced the MIC by 35x and the joint depletion of Fe, Zn and Cu from the medium
reduced the MIC by 500×, indicating that the chelation of these cations is responsible for the antifungal
activity of pyochelin (Figure 2a–c).J. Fungi 2019, 5, x FOR PEER REVIEW 7 of 19 
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responses (∆hapX) or siderophore (∆sidC, ∆sidD, ∆sidF) in MM medium or MM depleted in iron MM(-Fe),
zinc MM(-Zn). Medium composition and methodology are described in the Supplementary Materials.

Strain MM MM(-Fe) MM(-Zn)

WT 250 µM 7.8 µM 250 µM
∆hapX 250 µM 1.9 µM 250 µM
∆sidC 250 µM 7.8 µM 250 µM
∆sidD 62 µM 0.1 µM 0.8 µM
∆sidF 62 µM 0.1 µM 0.8 µM
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The triple zinc transporter mutant ∆zrfA∆zrfB∆zrfC also presented higher pyochelin sensitivity
(MIC of 62 µM in MM medium) than its parental strain (MIC of 250 µM). This result confirmed the role
of pyochelin in zinc uptake and depletion from the medium, inhibiting A. fumigatus growth (Figure 2b).

→ In absence of iron, concentrations of pyochelin higher than MIC stimulate A. fumigatus growth

Surprisingly, we observed that 62 to 125 µM of pyochelin stimulate the growth of A. fumigatus in
MM depleted in iron but not the growth of the iron mutants ∆sidD and ∆sidF in MM medium (∆sidD
and ∆sidF do not grow in MM depleted in iron) (Figure 3). This result suggested that A. fumigatus can
use pyochelin as an external ferrochelator for iron exchange with its own siderophore TAFC (PCH
pFe = 16.0; TAFC pFe = 31.8), promoting its survival when iron access is limited. Above 125 µM,
pyochelin inhibited again A. fumigatus growth.
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— Pyochelin induces ROS production in A. fumigatus cells

We demonstrated then that pyochelin and pyoverdine have a different antifungal mode of action
on A. fumigatus. First, we showed that like pyochelin, pyoverdine also inhibited A. fumigatus growth
(Figure 4a). This inhibitory effect was abolished by adding an excess of iron, showing that antifungal
activity of pyoverdine is exclusively due to iron starvation. Surprisingly, an excess of iron did not
abolish the antifungal effect of pyochelin on A. fumigatus (Figure 4b), suggesting that pyochelin, in
addition to its chelating function and conversely of pyoverdine, has an additional antifungal effect.

J. Fungi 2019, 5, x FOR PEER REVIEW 8 of 19 

 

TAFC (PCH pFe = 16.0; TAFC pFe = 31.8), promoting its survival when iron access is limited. Above 
125 μM, pyochelin inhibited again A. fumigatus growth.  

 
Figure 3. A. fumigatus growth stimulation (arrow) by pyochelin (PCH) sub-inhibitory concentrations. 
Effect of pyochelin on ΔsidD and ΔsidF in MM (a) and on WT in MM(-Fe) (b). Note the absence of 
pyochelin stimulation in the TAFC siderophore minus mutant’s ΔsidD and ΔsidF, showing the 
essentiality of the presence of TAFC. Medium composition and methodology are described in 
Supplementary Materials. 

⎯ Pyochelin induces ROS production in A. fumigatus cells 

We demonstrated then that pyochelin and pyoverdine have a different antifungal mode of 
action on A. fumigatus. First, we showed that like pyochelin, pyoverdine also inhibited A. fumigatus 
growth (Figure 4a). This inhibitory effect was abolished by adding an excess of iron, showing that 
antifungal activity of pyoverdine is exclusively due to iron starvation. Surprisingly, an excess of iron 
did not abolish the antifungal effect of pyochelin on A. fumigatus (Figure 4b), suggesting that 
pyochelin, in addition to its chelating function and conversely of pyoverdine, has an additional 
antifungal effect.  

 
Figure 4. Pyoverdine (PVD) (a) and pyochelin (PCH) (b) activities on A. fumigatus growth in MM in 
presence of iron excess, showing that the antifungal effect of pyoverdine on A. fumigatus was 
abolished in presence of iron excess, whereas pyochelin antifungal activity was not abolished. 
Methodology is described in Supplementary Materials. 

This result also suggested that this antifungal activity of pyochelin followed the penetration of 
the fungal cell. Indeed, to confirm our hypothesis, a pyochelin conjugated to the fluorochrome 
4-nitrobenzo [1,2,5]oxadiazole (PCH-NBD) [67] (Figure 5a) penetrated into fungal cell as soon as the 
conidia underwent swelling, as shown previously for phenazines [49] (Figure 5b). 

Figure 4. Pyoverdine (PVD) (a) and pyochelin (PCH) (b) activities on A. fumigatus growth in MM in
presence of iron excess, showing that the antifungal effect of pyoverdine on A. fumigatus was abolished
in presence of iron excess, whereas pyochelin antifungal activity was not abolished. Methodology is
described in Supplementary Materials.
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This result also suggested that this antifungal activity of pyochelin followed the penetration
of the fungal cell. Indeed, to confirm our hypothesis, a pyochelin conjugated to the fluorochrome
4-nitrobenzo [1,2,5]oxadiazole (PCH-NBD) [67] (Figure 5a) penetrated into fungal cell as soon as the
conidia underwent swelling, as shown previously for phenazines [49] (Figure 5b).J. Fungi 2019, 5, x FOR PEER REVIEW 9 of 19 
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Pyochelin has been shown to induce ROS in bacterial, endothelial and pulmonary cells [65,68].
We showed that indeed pyochelin induced ROS and RNS production by A. fumigatus in a similar way
to phenazines (Figure 6). The production of ROS and RNS explained the resurgence of the pyochelin
inhibitory effect at concentration higher than 120 µM as observed in MM(-Fe) (Figure 3b).
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In conclusion, we demonstrated that pyochelin penetrates into A. fumigatus cells and has three
distinct modes of action: two are antifungal, resulting from iron and zinc starvation and ROS-RNS
induction, whereas the third one stimulated growth by acting as an external ferrochelatorfor the
fungal cell.

X Pyoverdine

By the use of P. aeruginosa mutants and analysis of the effect of depletion of single or several
molecules or pathways by gene deletion, Sass et al. demonstrated that pyoverdine is a major P. aeruginosa
factor conferring antifungal activity [50]. The predominant mode of action of pyoverdine appears to
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be iron starvation, resulting in A. fumigatus inhibition and confirming our results described above
in Figure 4. Pyoverdine increases A. fumigatus siderophores production three-fold, showing that
TAFC, which have a similar pFe (pFe = 31.8), compete with pyoverdine for iron acquisition. However,
conversely to pyochelin, pyoverdine cannot be used by A. fumigatus as an external ferrochelator [50],
which is in agreement with our results.

Pyoverdine is the principal mediator of antifungal activity on A. fumigatus biofilms [50]. As CF
progresses, much of the airway becomes hypoxic [69], and under this condition, P. aeruginosa produces
less pyoverdine [50,69]. P. aeruginosa is also able to use hemin, a blood heme component, as a source of
iron. The addition of hemin in P. aeruginosa culture medium abolished pyoverdine production by the
bacteria [50]. Thus, hemin present in the blood in patient’s lungs might suppress in vivo pyoverdine
production, which favors A. fumigatus establishment. By comparison, Lopez-Medina et al. [63], using
a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, showed
that C. albicans inhibits the virulence of P. aeruginosa by inhibiting pyochelin and pyoverdine gene
expression. No such experiments were undertaken with A. fumigatus.

3.2.3. Pf4 P. aeruginosa Phage–A. fumigatus Interaction

Among the different bacteriophages produced by P. aeruginosa, one of them, Pf4, inhibited the
metabolic activity of A. fumigatus biofilm [19]. First, the phage binds to A. fumigatus hyphae by an
unknown mechanism, which could be GAG-mediated, similar to the binding of P. aeruginosa on
A. fumigatus hyphae [70]. Second, Pf4 binds ferric iron, which has the effect of iron denial to A. fumigatus
and inhibition of fungal growth, similarly to pyoverdine and pyochelin.

3.2.4. Microbial Interaction is Promoted by Volatiles

P. aeruginosa and A. fumigatus can interact at distance via volatile-mediated communication [70].
The P. aeruginosa volatile compound dimethylsulfide (DMS) is responsible for the stimulatory effect
on A. fumigatus growth. DMS contains sulfur, which serves as a nutrient source for A. fumigatus.
Organic S-compounds are essential for the growth of A. fumigatus. Sulphur-volatile compounds have
also been detected in sputum samples from CF patients. This volatile interaction can promote the
growth of A. fumigatus, even if the P. aeruginosa and A. fumigatus infection sites are different in the CF
patient airway. Volatiles can predispose to A. fumigatus co-colonization. Volatiles are also produced by
A. fumigatus, but they have not been tested yet on bacteria [71].

3.3. Influence of Polymicrobial Biofilms on Drug Sensitivity

The role of mixed fungal–bacterial biofilms in the modification of the sensitivity to antifungal
or antibacterial drugs has been poorly investigated. C. albicans and S. aureus are responsible for
many infections in hospitalized patients and often co-isolated. It has been reported that, when grown
together in a mixed biofilm, C. albicans provides the bacterium with enhanced tolerance to antimicrobial
drugs [72]. This process was mediated by the cell wall polysaccharide β1,3 glucan secreted in the
biofilm matrix, which sequestered drugs in the matrix [73].

Nothing similar has been demonstrated for mixed A. fumigatus–bacteria biofilms.
Manuvathu et al. [30] demonstrated that mono A. fumigatus and mixed A. fumigatus–P. aeruginosa
biofilms were equally susceptible to antifungal drugs such as voriconazole and posaconazole. However,
P. aeruginosa cells are less susceptible to cefepime in A. fumigatus–P. aeruginosa mixed biofilm in
comparison to P. aeruginosa biofilm [30]. The most plausible explanation is that the extracellular matrix
secreted by A. fumigatus and embedding the bacteria [31] prevents the adequate access of cefepime
to the bacteria compared to mono P. aeruginosa biofilm extracellular matrix [30], as observed with
C. albicans for S. aureus.
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3.4. Summary

As shown in this review, except for maltophilin, all our knowledge of A. fumigatus–bacterial
interactions exclusively concern the role of P. aeruginosa molecules. Table 2 recapitulates the effect of
these molecules. Negative interactions (in red in Table 2) have been observed for HSLs, pyoverdine and
pyochelin resulting from iron starvation, for pyochelin and phenazine 1-HP resulting from ROS/RNS
production, and for dirhamnolipids resulting in β1,3 glucan synthase inhibition. Positive interactions
(in black in Table 2) have been observed for (i) dirhamnolipids which induce the formation of a thick
fungal cell wall enriched in the immunomodulatory molecule GAG, in chitin and melanin, modifying
the drug diffusion and A. fumigatus susceptibility; (ii) phenazines which at biological concentrations
(<100 µM) [74] enhance fungus growth with ferrous iron uptake; (iii) pyochelin, which at sub-inhibitory
concentrations can be used by A. fumigatus as an external ferrochelator; and (iv) the volatile DMS
secreted by P. aeruginosa, which is an essential component for A. fumigatus growth. On the host cells,
all P. aeruginosa molecules have negative impact (Table 2).

Table 2. Bacteria–A. fumigatus–host interactions. Effect of P. aeruginosa molecules on A. fumigatus and
host immune cells. In grey, antifungal and anti-host cell activity by P. aeruginosa molecules; in blue,
stimulation of A. fumigatus growth by P. aeruginosa molecules.

P. aeruginosa A. fumigatus Host Immune Cells

Homoserine lactones Fungal growth inhibition Interferon-γ induction, NFκB
disruption

Pyoverdine Iron starvation, fungal growth inhibition ?

Pyochelin
Iron starvation, ROS/RNS production,
fungal killing ROS production, cell apoptosis
Ferric iron provision, fungal growth
stimulation

Phenazine 1HP Iron chelation, ROS/RNS production,
fungal killing ROS production, cell apoptosis

Phenazines PYO, PCA,
PCN (<100 µM)

Ferric iron provision, fungal growth
stimulation ROS production, cell apoptosis

Inhibition of β1,3 glucan synthase

Dirhamnolipids Thick cell wall, high chitin, GAG and
melanin production, persistence,
resistance to caspofungin

Polymorphonuclear leucocytes
necrosis, calcium-mediated
protein kinase C inhibition

Dimethylsulfide Fungal growth stimulation ?
1HP, 1-hydroxy-phenazine; PYO, pyocyanin; PCA, phenazines-carboxylic acid; PCN, phenazines-carboxamide;
ROS, reactive oxidant species; RNS, reactive nitrogen species; GAG, galactosaminogalactan.

4. How are Mixed Bacterial–Fungal Infections Seen by the Host Immune Response?

4.1. Fungal and Bacterial Metabolites Influence the Host Immune Response

However, the host immune response to polymicrobial infections remains insufficiently investigated.
Whether the dual infection stimulates both pathogen-specific immune pathway responses or is
dominated by one pathogen-specific response has only just started to be explored. Developing an
understanding of how the host immune system responds to polymicrobial infection may help elucidate
disease mechanisms and uncover new insights for novel therapeutic strategies. Allard et al. [75] reported
that oropharyngeal instillation of C. albicans or A. fumigatus lysates without previous immunization
and in the absence of adjuvant led to airway eosinophilia, release of Th2-type cytokines and changes
in mucus production as in allergic bronchopulmonary aspergillosis (ABPA). In contrast, bacterial
antigens from P. aeruginosa induced an inflammatory response dominated by neutrophils recruitment
and secretion of Th1 type cytokines with minimal mucus production [75]. Many molecules produced
by P. aeruginosa can be responsible in vivo for the pathophysiological responses such as HSLs in
inflammation [52], host immune cells apoptosis due to ROS production induced by phenazines,
pyochelin and rhamnolipids [37,58,65,68,74,76]. Co-administration of same amount of bacterial and
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fungal antigens activated immune responses typical of the single bacterial antigens [75]. However,
these results only concern immune responses to a certain amount of molecules, which can be very
different to the concentration found in vivo during an infection, and we know now that microorganisms
interact to establish equilibrium between them and can modulate the growth of the other partner and
the production of new molecules.

4.2. In Vivo/Ex Vivo Models

Co-infections and persistence of the two microorganisms in a host is difficult to attain in in vivo
models because of the fast killing of the animal by the dissemination of one partner. Nevertheless,
the development of such models is necessary to decipher the immunological perturbations resulting
from the cohabitation of the bacterial and fungal partners. Two chronic pulmonary mouse and one
Galleria mellonella models of co-infection by M. abcessus or P. aeruginosa and A. fumigatus have been
described [15,24,77]. However, in the first M. abcessus–A. fumigatus mouse model, the mice were
not immunosuppressed and there was no infection by A. fumigatus [15]. In the second model of
P. aeruginosa–A. fumigatus coinfection, mice were immunosuppressed and A. fumigatus was embedded
in agar beads, which had the advantage of allowing 16 days of chronic development of the fungus
before invasive aspergillosis and killing of the mice [24]. Rat or murine models of chronic P. aeruginosa
pneumonia, using agar beads containing P. aeruginosa have been described but they do not include a
co-infection with A. fumigatus [78,79]. However, all these models do not mimic co-infections in COPD
or CF patients where the genetic and pathophysiological mechanisms are key drivers of fungal and
bacterial persistence. The only CF model described is A. fumigatus inhalation in CFTR−/− mice [80].
However, mice with deletion in the CFTR gene do not recapitulate human CF disease [81]. CFTR−/−

pigs or ferrets developed lung disease characterized by airway inflammation, mucus accumulation
and infection with multiple bacterial species as in CF patients, but P. aeruginosa was absent in the lungs
of these animals and fungal infections were not reported, making this model unsuitable for studying
A. fumigatus–P. aeruginosa interactions [81]. Consequently, a good model of chronic co-infections by
A. fumigatus and bacteria does not exist to date.

Ex vivo/in vitro host immune cellular models in which host cells are infected in multi-well plates
by bacteria and A. fumigatus have been developed. These models use immortalized lung cell lines
(in vitro immune cell models) or monocytes or differentiated host immune cells purified after removal
from the host (ex vivo immune cell models). However, A. fumigatus or the bacteria growth in these
systems cannot be controlled and induces cell death after a short period of time. They therefore
represent more of an infection process than a sustained colonization. Most ex vivo studies have
been done with one live microorganism and antigens of the partner, or killed microorganisms. For
examples, in one ex vivo model of M. abscessus infecting macrophages, fungal products were added
prior the bacterial infection and activation of macrophages was investigated [15], and in the other ex
vivo model, killed P. aeruginosa and A. fumigatus antigens were used to stimulate CF peripheral blood
mononuclear cells (PBMC), and cytokines were quantified [82]. Only one in vitro immune cell model
of co-infection with different strains of alive P. aeruginosa and A. fumigatus in CF bronchial epithelial cell
lines (CFBE cells derived from a cystic fibrosis patient homozygous for the ∆F508 CFTR mutation) has
been reported [77]. After 24 h co-infection, supernatants were removed and used for pro-inflammatory
assays. In our laboratory, we developed a model in which live P. aeruginosa first infected macrophages,
followed by the inoculation of live conidia of A. fumigatus (see Supplementary Materials for a precise
description of the experimental method). After 16 h of co-infection, the cytokine production was
quantified (Rasoldier, Briard, Hatinguais, Quintin and Beauvais, unpublished results). We add our
data in this review because it is the first ex vivo model in which we used live microorganisms.

4.3. Immune Response in Animal Model of Co-Infection

In mono-infection, A. fumigatus induced IL17 cytokines and neutrophilia which has been associated
with inflammation and impaired immune response. IL17 is beneficial for A. fumigatus persistence, given
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that it inhibited Th1 responses required to control infection and promote fungal biofilm formation [15].
In mono-infection, M. abscessus dysregulated the immune response and the presence of dead or
dying neutrophils enhanced the capacity of M. abscessus to form a biofilm [83]. Mice co-infected with
M. abcessus and A. fumigatus exhibited lung inflammation but improved clearance of M. abcessus. This
improved control was partly dependent on IL17RA and STAT1 signaling in addition to high expression
of T-bet and RORγt, which are transcription factors for the Th1 and Th17 responses, respectively. In the
second model, agar beads containing A. fumigatus conidia were inoculated prior to immunosuppression
and P. aeruginosa infection [24]. This model allows the histological observation of the two species and
host response in lungs. A higher proliferation of A. fumigatus hyphae from the agar beads in the lungs
of co-infected mice was observed compared to A. fumigatus mono-infected mice, and the bacterial CFU
in the lungs of co-infected mice was higher than in P. aeruginosa mono-infected mice. Thickening of
the interalveolar septum, bleeding and infiltration of inflammatory cells were observed but without
significant difference between mono- or co-infections [24].

The pathogenesis of A. fumigatus and P. aeruginosa during a co-infection was also evaluated in the
Galleria mellonella acute infection model [77]. G. mellonella were inoculated with non-lethal doses of
A. fumigatus strains 24 h prior to subsequent inoculation with P. aeruginosa strains. Pre-exposure of
larvae to A. fumigatus resulted in an increase in virulence of P. aeruginosa.

In CF patients who are unable to easily clear infection due to CFTR-deficient phagocytes against
microorganisms, the increased lung inflammation and damage will contribute to a decline in pulmonary
function. In CFTR−/− mice, the fungus promoted exaggerated lymphocytic inflammation, mucin
accumulation, and lung injury [80]. However, co-infection with P. aeruginosa has never been performed
in this model.

4.4. Immune Response in In Vitro and Ex Vivo Models of Co-Infection

In the model of CF epithelial cells, the joint inoculation of one P. aeruginosa clinical isolate and one
A. fumigatus clinical isolate resulted in a significant increased production of pro-inflammatory cytokines
IL6 and IL8 [77]. The lack of enhancement of pro-inflammatory responses for the majority of tested
co-infections with other P. aeruginosa and A. fumigatus clinical strains suggests that their association
may not generally further exacerbate the inflammatory response, compared to mono-cell infection [77].
In the ex vivo model of A. fumigatus and P. aeruginosa stimulating PBMC, secretion of increased amount
of the anti-inflammatory IL10, inhibiting A. fumigatus T cell responses, was observed, suggesting an
adaptive mechanism observed in CF patients in response to prolonged cycles of lung inflammation
and damages due to infections [82]. Using the ex vivo model of co-infected by M. abscessus and fungal
antigens, the authors demonstrated that β1,3 glucans treatment of macrophages improved M. abscessus
control [15].

In our ex vivo model with macrophages, we observed that sequential infection of monocytes by
P. aeruginosa and A. fumigatus synergistically increased the secretion of the pro-inflammatory cytokine
IL1β (Figure 7). Under the same experimental conditions, the production of TNFα by macrophages
was additively but not synergistically increased after co infection. IL6 secretion was similar in
P. aeruginosa–A. fumigatus sequential infection compared to mono P. aeruginosa or A. fumigatus infections.
The synergistic increase in IL1β release during co-infection could explain the dramatic decrease
in respiratory functions of CF patients colonized by both pathogens due to an over-inflammatory
environment [23].
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In CF patients who are unable to easily clear infection due to CFTR-deficient phagocytes against 
microorganisms, the increased lung inflammation and damage will contribute to a decline in 
pulmonary function. In CFTR−/− mice, the fungus promoted exaggerated lymphocytic inflammation, 
mucin accumulation, and lung injury [80]. However, co-infection with P. aeruginosa has never been 
performed in this model. 

4.4. Immune Response in In Vitro and Ex Vivo Models of Co-Infection 

In the model of CF epithelial cells, the joint inoculation of one P. aeruginosa clinical isolate and 
one A. fumigatus clinical isolate resulted in a significant increased production of pro-inflammatory 
cytokines IL6 and IL8 [77]. The lack of enhancement of pro-inflammatory responses for the majority 
of tested co-infections with other P. aeruginosa and A. fumigatus clinical strains suggests that their 
association may not generally further exacerbate the inflammatory response, compared to mono-cell 
infection [77]. In the ex vivo model of A. fumigatus and P. aeruginosa stimulating PBMC, secretion of 
increased amount of the anti-inflammatory IL10, inhibiting A. fumigatus T cell responses, was 
observed, suggesting an adaptive mechanism observed in CF patients in response to prolonged 
cycles of lung inflammation and damages due to infections [82]. Using the ex vivo model of 
co-infected by M. abscessus and fungal antigens, the authors demonstrated that β1,3 glucans 
treatment of macrophages improved M. abscessus control [15]. 

In our ex vivo model with macrophages, we observed that sequential infection of monocytes by 
P. aeruginosa and A. fumigatus synergistically increased the secretion of the pro-inflammatory 
cytokine IL1β (Figure 7). Under the same experimental conditions, the production of TNFα by 
macrophages was additively but not synergistically increased after co infection. IL6 secretion was 
similar in P. aeruginosa–A. fumigatus sequential infection compared to mono P. aeruginosa or A. 
fumigatus infections. The synergistic increase in IL1β release during co-infection could explain the 
dramatic decrease in respiratory functions of CF patients colonized by both pathogens due to an 
over-inflammatory environment [23]. 

 

Figure 7. Previous bacterial challenge synergistically increases the production of IL1β in response to
A. fumigatus. Monocytes were stimulated by RPMI medium (in black), bacterial lipopolysaccharide
(LPS, 10ng/mL, in orange), P. aeruginosa alone (in green), A. fumigatus alone (in blue), P. aeruginosa–A.
fumigatus sequential infection (in red) according to protocol described in Supplementary Materials.
Stars represent statistical difference (* p < 0.05; ** p < 0.01).

5. Perspectives

As shown in this review, most data on A. fumigatus and bacterial lungs was obtained with
P. aeruginosa during in vitro confrontations. Studies on other bacteria and the consideration of the host
responses in CF and other diseases are only starting to be analyzed. We showed that P. aeruginosa
has antifungal or fungal growth stimulating effects on A. fumigatus. In vivo, a balance between these
two opposite actions should also exist in CF patients co-infected by A. fumigatus and bacteria, as it
was observed that intravenous antibiotics targeting P. aeruginosa during CF pulmonary exacerbations
reduces the presence of A. fumigatus in the patients [84]. In contrast, Burns et al. [85] observed that
exposure to frequent antibacterial therapy increases pulmonary fungal load. In addition, in pulmonary
diseases, much of the airway is hypoxic or anaerobic [69]. In the areas of hypoxia, the ratio Fe3+ to Fe2+

decreases, inducing a change in P. aeruginosa metabolism with for example a decrease in pyoverdine
production which is replaced by phenazines for Fe2+ transport into the bacterial cells [51]. The bacterial
metabolites are also less inhibitory towards A. fumigatus growth and biofilm formation than those under
aerobic conditions, promoting fungal growth [69]. Moreover, changes in the environmental conditions
will lead to the selection of mucoid or non-mucoid isolates of P. aeruginosa, which have a different
inhibitory capacity, especially against A. fumigatus biofilm [25]. Therefore, there is an urgent need to
develop in vivo animal models for pulmonary co-infection with immunological disorders such as CF,
COPD, ABPA and chronic granulomatous disease, with bacterial or viral preexisting infections. Since
in vivo models of infection mimicking human diseases with all their associated pathophysiological
adjustments will be difficult to implement, ex vivo models in trans-well inserts is feasible and would
have the advantage of growing hyphae and bacteria in the presence of host cells. Organoid models
recently developed could be an interesting alternative [86,87]. These models will present also the
advantage of analyzing A. fumigatus molecules specifically produced in contact with the host and
the bacteria.

The impact of the different bacterial lung inhabitants on the production of Aspergillus secondary
metabolites has been ignored, thus far, whereas it has been shown that soil bacterial species such
as Streptomyces peucetius, S. bullii or S. rapamycinicus modify the secretion of Aspergillus secondary
metabolites. These bacteria led Aspergillus to produce formyl xanthocillin, ergosterol or to upregulate
meroterpenoïd pathway [88–90]. The activation of new secondary metabolite pathways that are
normally silent was mediated by manipulating the chromatin-based regulation in A. fumigatus by
the bacteria [88]. Such modifications of the secondary metabolite spectrum during host infection in
contact with bacteria could contribute to modifications of the host immune defense. In addition, no
studies have investigated the role of secreted A. fumigatus molecules (mycotoxin but also enzymes) on
bacterial metabolism.
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More and more data show that the gut microbiota has a profound impact on the lung microbiota [91].
Alterations of the gut microbiome by antibiotics predispose to A. fumigatus-induced allergic airway
disease in murine model [9]. The gut microbiome and its metabolites can modulate pulmonary
host defense: immune pulmonary responses induced by A. fumigatus infection are influenced by the
composition of the microbiome [91]. Accordingly, the investigation of the links between lung and gut
microbiota in specific Aspergillus lung diseases such as CF, COPD, ABPA and invasive aspergillosis
should open up new research avenues in Aspergillosis. If microbial ecology has recently become a
major concern in human health, it is time to take better account of its role in in medical mycology and
especially for a better understanding of the different forms of aspergillosis in humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/5/2/48/s1,
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