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Abstract: Senile osteoporosis has become a worldwide bone disease with the aging of the world
population. It increases the risk of bone fracture and seriously affects human health. Unlike
postmenopausal osteoporosis which is linked to menopause in women, senile osteoporosis is due to
aging, hence, affecting both men and women. It is commonly found in people with more than their
70s. Evidence has shown that with age increase, bone marrow stromal cells (BMSCs) differentiate
into more adipocytes rather than osteoblasts and undergo senescence, which leads to decreased
bone formation and contributes to senile osteoporosis. Therefore, it is necessary to uncover the
molecular mechanisms underlying the functional changes of BMSCs. It will benefit not only for
understanding the senile osteoporosis development, but also for finding new therapies to treat senile
osteoporosis. Here, we review the recent advances of the functional alterations of BMSCs and the
related mechanisms during senile osteoporosis development. Moreover, the treatment of senile
osteoporosis by aiming at BMSCs is introduced.
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1. Introduction

The word “osteoporosis” means “porous bone”, which is actually a worldwide metabolic bone
disorder with high incidence. It is characterized by decreased bone mass, increased bone fragility and
deteriorated microstructural bone tissues [1]. It occurs due to the imbalance between bone formation
and bone resorption [2]. Although it has been observed in all races, gender and age groups, but more
commonly found in women and older people [3]. It remains hidden until being revealed as a disorder
through bone fractures, due to minor strokes [4]. It is considered amongst the most common human
diseases associated with bone fractures and other severe secondary major health problems. According
to the recent report of National Osteoporosis Foundation (NOF), every second woman and fourth
man worldwide over the age of 50 years will encounter bone fracture, due to osteoporosis in their
remaining lives.

Osteoporosis is generally divided into two forms, primary osteoporosis and secondary osteoporosis.
The primary osteoporosis mainly contains three categories, juvenile, postmenopausal, and senile
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osteoporosis, while the secondary osteoporosis is mainly caused by a large number of diseases and
medications [5]. The primary osteoporosis is more common than the second one, and the senile
osteoporosis has become one significant health concern of the world as it is an age-related disorder
that occurs in people’s 70s, leading to the attenuation of both the cortical and trabecular bones [6].

Besides the imbalance between bone formation conducted by osteoblasts and bone resorption
conducted by osteoclasts, evidence demonstrates that changes in number and function of bone marrow
stromal cells (BMSCs) are also one key cause for senile osteoporosis [7]. Study shows that BMSCs
normally differentiate in a proper manner into osteoblast, chondrocytes and adipocytes, but during
old ages, there is comparatively less differentiation of BMSCs into osteoblast than adipocytes. Such a
shift in cell differentiation of BMSCs results in reduced bone formation, which contributes to senile
osteoporosis (Figure 1) [8]. The underlying mechanism behind this abnormal decision in old ages is
still under investigation. However, some achievements have been made in the form of identification
of peroxisome proliferator-activated receptor γ (PPARγ) and core binding factor α1 (CEBPα/β/δ) as
master regulators of differentiation toward adipogenesis, while Osterix and runt-related transcription
factor 2 (Runx2) toward osteogenesis [9]. In addition, recent evidence demonstrates that the senescence
of BMSCs is also one important cause of senile osteoporosis (Figure 1). Cellular senescence was first
discovered by Hayflick in the 1960s, which is a phenomenon where the cells halt to divide in response
to various stresses causing DNA damage, and begin to secrete chemokines, cytokines, and extracellular
matrix proteins, creating a toxic microenvironment called senescence-associated secretory phenotype
(SASP) [10]. Such toxicity of SASP affects neighboring normal cells, resulting in further senescent cells
accumulation, and thus, damage the residing tissue [11]. The expression of senescence biomarker
p16Ink4a is also enhanced [12]. Cellular senescence has been demonstrated to play a crucial role
in age-related pathologies, such as atherosclerosis, type II diabetes, Alzheimer’s, and Parkinson’s
diseases [13]. Like the senescence of other cells associated with age-related pathologies, the exact
mechanism behind BMSCs senescence during senile osteoporosis is still unclear. However, telomere
shortening, oxidative stress and some genetic and epigenetic regulations have been found to contribute
to BMSCs senescence during senile osteoporosis [14]. Therefore, both abnormal differentiation and
senescence of BMSCs lead to the reduced number of osteoblasts in old ages, which result in decreased
bone formation, thus, cause senile osteoporosis.
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To date, numerous medicines have been used to treat senile osteoporosis, but there are still some
limitations, due to their side effects [15–19]. Therefore, in order to find out proper treatments, it is
the focus of new era cell-based therapy research to uncover the molecular mechanisms behind the
differentiation and senescence of BMSCs. Here, we summarize the recent advances of the functional
alterations of BMSCs during senile osteoporosis along with regulatory mechanisms behind their
differentiation and senescence. Moreover, we also discuss the various therapies that can be used to
treat senile osteoporosis by aiming at BMSCs. It will help the researchers to boost their knowledge in
understanding the development of senile osteoporosis and provide them with guidance for future
research on osteoporosis treatment.

2. Bone Marrow Stromal Cells (BMSCs) and Function Alterations of BMSCs in Senile
Osteoporosis

BMSCs are MSCs located in the bone marrow and have multiple differentiation potentials to
become osteoblasts, adipocytes, or chondrocytes, which play an important role in maintaining normal
bone stability. It has been demonstrated that the altered proliferation and differentiation of BMSCs is
one main cause of senile osteoporosis [20]. Moreover, recent evidence reveals that cellular senescence
of BMSCs also contributes to senile osteoporosis [21,22]. Here, we focus on the role of altered
differentiation of BMSCs and senescence of BMSCs in senile osteoporosis development.

2.1. Differentiation of BMSCs and Senile Osteoporosis

BMSCs differentiation is controlled by various biological, chemical and physical factors. They
have the ability to differentiate into osteoblast, chondrocytes and adipocytes, which are responsible for
making bones, cartilages and adipose tissues. Unfortunately, in old ages, BMSCs start to differentiate
into fewer osteoblasts, but more adipocytes, which is one main cause of senile osteoporosis [23].
Justesen et al. have reported that in older people, the number of osteoblasts decreases, while that of
adipocytes increases, ultimately resulting in reduced bone mineral density [24]. Similarly, Verma et al.
have found that during senile osteoporosis, the rate of adipogenesis increases, while that of osteogenesis
decreases [25]. Moreover, it has been demonstrated that BMSCs isolated from old mice show the high
efficiency of differentiation into adipocytes as compared to osteoblasts and vice versa [26].

2.2. Senescence of BMSCs and Senile Osteoporosis

Like other cells, BMSCs also follow senescence, as their primary culture does not grow infinitely,
but in a limited fashion. Senescence is considered to be strongly related to aging and age-related
disorders like senile osteoporosis [27]. Therefore, in a study that designed a regenerative therapeutic
model, Olivia et al. observed younger BMSCs more efficient than their older counterparts [28].
Moreover, during the old ages, BMSCs not only lose their functional and regenerative abilities, but also
meet with replicative senescence, thus, boosting inflammation and cancer progression [29].

BMSCs are constantly affected by various exogenous and endogenous factors. These factors
regulate BMSCs either to proliferate, die, or undergo a permanent cell cycle arrest [30]. Factors that
lead the BMSCs and other cells to senescence include telomeres shortening, genotoxic stresses/DNA
damage, strong mitogenic signals, oxidative stress, and distortions in chromatin organization [29,31–33].
Actually, all of these factors have the ability to elicit a DNA damage response (DDR). The DDR then
stimulates p53 and its target genes p21 and p16, which ultimately initiate and maintain cellular
senescence [34]. DDR also increases the level of zinc finger transcription factor GATA-binding factor 4
(GATA4), which stimulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF- kB) and
SASP to cause senescence [35]. SASP also induce the other neighboring cells into senescence until the
whole tissue is damaged [36,37]. Therefore, senescence is also considered a persistent DNA damage
response activation. In addition, with the occurrence of senescence, BMSCs are faced with the decreased
potential of differentiation into osteoblasts versus adipocytes lineages [38,39]. Immunoregulatory
activity is also altered, due to reduction in lymphocytes proliferation inhibition, impaired migration
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ability and increased proinflammatory cytokine secretion [39]. Furthermore, the increase in IL6, IL8
and galectin secretion is increased in senescent BMSCs during senile osteoporosis, which promotes
tumorigenesis [40,41].

Although BMSCs are pushed into irreversible growth arrest during senescence, being metabolically
active, they assume large, granular and flat shapes with increased β-galactosidase expression [42–44].
Despite their disorganized internal environment, they are still potentially viable and resistant to
apoptosis [45].

3. Molecular Mechanisms Regulating Differentiation and Senescence of BMSCs during Senile
Osteoporosis

During old ages, the shift of differentiation into adipocytes rather than osteoblast or become
senescence of BMSCs both contribute to senile osteoporosis. Therefore, it is necessary to elaborate on
the underlying molecular mechanisms. Here we primarily discuss the various intracellular biological
factors like transcriptional factors, signaling pathways and epigenetic regulations. Moreover, we also
introduce the various chemical and physical factors that affect BMSCs either positively or negatively,
like exercise, excessive fat diet and radiations.

3.1. Transcription Factors

Transcription factors play an important role in regulating BMSCs to differentiate into osteoblasts
or adipocytes, or undergo senescence. They are involved in regulating the expression of different genes
that are responsible for initiating and promoting differentiation and senescence in BMSCs.

3.1.1. Transcription Factors Involved in Osteogenic Differentiation of BMSCs

A series of transcription factors have been discovered to play major regulatory roles in osteogenic
differentiation of BMSCs. Besides Runx2 and Osterix, two key osteogenic transcription factors, there are
some other transcription factors that have been demonstrated as important regulators in differentiation
of BMSCs into osteoblasts including β-catenin, homeobox C7 (HOXB7), core binding factor α1 (CBF-1α),
forkhead box C2 (FOXC2), tumor necrosis factor-α (TNF-α), homeobox A2 (HOXA2), yes-associated
protein (YAP) and bone morphogenic factor 9 (BMP9) [46].

Runx2 also known as core binding factor α1 (Cbfa1) is an important transcription factor involved
in osteogenic differentiation of BMSCs. Its activation has been recognized as an initiation signal for
the commitment of BMSCs to osteogenesis [47]. Actually, it induces osteogenesis both in vivo and
in vitro by binding with the cis-element of the osteocalcin gene and initiates the transcription of some
osteogenic genes [48]. Moreover, Yang et al. have discovered that under hypoxic condition, Runx2 is
downregulated in human mesenchymal stem cells by a transcriptional repressor called twist-related
protein (TWIST), which is a downstream target of hypoxia inducible factor 1-alpha (HIF-1α). They
have demonstrated that during hypoxia, TWIST as a transcriptional repressor binds with the E-Box
on the promoter of type 1 Runx2, which further inhibits the expression of type 2 Runx2 and other
osteogenically important target genes, thus, results in impaired osteogenesis [49]. However, Jiang et al.
have reported that in aging, the expression of Runx2 is immensely decreased, leading to impaired
osteogenesis and bone loss [50]. Osterix, also named as Sp7, belongs to specificity protein 1 family
(Sp1) and is another important transcription factor responsible for osteogenic differentiation of BMSCs.
Nakashima et al. for the first time identified that Osterix functions downstream of Runx2, and there
is no bone formation in mice deficient of Osterix [51]. Recently, Querques et al. identified a novel
osteogenic transcriptional factor named osteoblast inducer 1 (ObI-1). They reported that knockdown
of Obl-1 in BMSCs impaired osteogenesis with a poor expression of osteogenic markers, while its
overexpression enhanced osteogenesis, as well as higher expression of osteogenic markers [52] (Table 1).
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3.1.2. Transcription Factors Involved in Adipogenic Differentiation of BMSCs

To date, a range of transcriptional factors has been identified to participate in adipogenic
differentiation in BMSCs. The most well-known transcription factor is PPARγ. In addition, early
B cell factor-1 (EBF-1), Twist-1, Twist-2, CCAAT/enhancer binding protein α (C/EBPα), chicken
ovalbumin upstream promoter transcription factor II (COUP-II), PR domain containing 16 (PRDM16),
sex determining region Y-box 2 (Sox2) and octamer-binding transcription factor 4 (Oct4) also play
roles in regulating adipogenic differentiation of BMSCs [46]. Forkhead transcription factor 1 (Foxa1),
GATA-binding factor 2 (GATA2) and homeobox C8 (HOXC8) transcription factors have shown an
inhibitory role in regulating differentiation of MSCs into adipocytes [53–55].

PPARγ belongs to the nuclear receptor (NR) superfamily of ligand-activated transcription
factors that regulates the genes involved in adipocyte differentiation of BMSCs [56]. It has been
demonstrated that upregulation of PPARγ promotes adipogenesis in BMSCs and vice versa [57]. There
are two isoforms of PPARγ, PPARγ1 and PPARγ2, both of which are prominently expressed and
differentially regulated during adipogenesis [58]. Interestingly, Yu et al. reported that PPARγ1 played
a lesser role in adipogenesis compared to PPARγ2, because knockdown of C/EBPα inhibited PPARγ2,
but not PPARγ1 [59]. However, it has been demonstrated that in old ages, the expression of PPARγ
increases, hence, promotes adipogenesis and suppresses osteogenesis [50]. Moreover, EBF-1 is another
transcription factor that plays a crucial role in the adipogenic differentiation of BMSCs [60] (Table 1).

3.1.3. Transcription Factors Involved in Senescence of BMSCs

During aging, BMSCs become senescent, and transcription factors are involved in this process.
Nuclear factor erythroid 2-related factor 2 (NRF2) is downregulated in senescent BMSCs [50,61].
Actually, NRF2 regulates several antioxidant responsive element (ARE)-dependent genes, which
express the required antioxidant, thus, ensuring the survival of BMSCs during oxidative damage [62].
Moreover, it has been reported that forkhead box protein P1 (FOXP1) level is also decreased with age
in both human and murine BMSCs, which results in bone loss [63] (Table 1).

Table 1. Transcriptional factors involved in differentiation and senescence of BMSCs.

Transcriptional Factors Function References

Runx2

Promotes osteogenic
differentiation, and inhibits

adipogenic differentiation and
senescence

[48–50]

Osterix Promotes osteogenic
differentiation [51]

Obl-1 Promotes osteogenic
differentiation [52]

PPARγ
Promotes adipogenic

differentiation and senescence, and
inhibits osteogenic differentiation

[50,56–59]

EBF-1 Promotes adipogenic
differentiation [60]

NRF2 Inhibits senescence [61,62]
FOXP Inhibits senescence [63]

Runx2, runt-related transcription factor 2; Obl-1, osteoblast inducer 1; PPARγ, peroxisome proliferator-activated
receptor-gamma; EBF-1, early B cell factor; NRF2, nuclear factor Erythroid 2-related factor 2; FOXP, forkhead
transcription factor P.

3.2. Signaling Pathways

To date, several signaling pathways have been reported to be involved in the regulation of BMSCs
differentiation and senescence. Bone morphogenic protein (BMP), wingless-type MMTV integration
site (Wnt) and Notch signaling pathways are critically important for differentiation of BMSCs, while
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p53/p21 and p16/Rb are important for BMSCs senescence. Apart from these, other signaling pathways
like Hedgehogs (Hh), neural epidermal growth factor-like (NEL)-like protein 1 (NELL-1), insulin-like
growth factor-I (IGF-I) and fibroblast growth factors (FGFs) also plays an important role in BMSCs
differentiation and senescence.

3.2.1. Signaling Pathways Involved in Differentiation of BMSCs

BMP Signaling

BMPs belong to TGFβ1 family that is widely involved in regulating various BMSCs cellular
processes like proliferation and differentiation [64]. To date, more than 20 different BMPs have been
recognized to be involved in BMSCs differentiation, of which BMP2 and BMP7 have been approved by
FDA for use in bone regeneration and other orthopedic applications [65] (Table 2).

The BMP signaling is normally considered as a dual role player in controlling adipogenic and
osteogenic differentiation of BMSCs [66]. However, different BMP functions in different ways, and some
are also dependent on the quantity of dose. BMP4 can induce adipogenesis of BMSCs [67]. High
dose of BMP2 promotes osteogenesis and chondrogenesis in C3H10T1/2, while low dose induces
adipogenesis in the same cells [68].

BMPs induce their effects by interacting with the cell surface BMP receptors (BMPRs) including
BMPR-I and BMPR-II and activates canonical Smad-dependent pathways (BMP ligands, receptors,
and Smads) or non-canonical Smad-independent signaling pathway (p38 mitogen-activated protein
kinase (MAPK) pathway) [69,70]. Stimulation of these important pathways results in the expression of
Runx2/Cbfa1 and PPARγ, whose altered levels directly regulate BMSCs differentiation [71] (Figure 2).
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Figure 2. The schematic program of signaling pathways involved in regulating differentiation and
senescence of BMSCs. BMP, Wnt and Notch signaling pathways regulate BMSCs differentiation into
osteoblast (A) or adipocyte (B) either by promoting or inhibiting their respective transcriptional factors.
Telomeres shortening, accumulation of ROS or mitochondrial damage activate p53/p21 and p16/Rb
pathways in BMSCs to push them into senescence (C).

Wnt Signaling

Wnt signaling pathway is an evolutionarily conserved pathway that has been recognized to
perform a critical role in cell fate determination, cell proliferation and differentiation [72]. Therefore,
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inappropriate modifications in Wnt signaling will cause severe disorders like cancer, osteoporosis
and congenital disabilities [72,73]. Wnt family consists of a range of secreted glycoproteins modified
with lipids, which restrict them to function as short-range cellular signals [74]. Wnt signaling
pathway can be classified as canonical Wnt signaling and non-canonical Wnt signaling, of which
canonical Wnt signaling is well-established in regulating bone formation both in human and in
animals. Being dependent on β-catenin, canonical signaling is also called Wnt/β-catenin signaling.
Wnt ligands function by interacting with 7-transmembrane domain-spanning Frizzled receptor (FZD)
and lipoprotein receptors-related protein 5/6 (LRP5/6) coreceptors, thereby stabilizing β-catenin by
saving it from phosphorylation and degradation which translocate readily into the nucleus to regulate
various target genes expression [75] (Figure 2).

Wnt signaling plays a crucial role in BMSCs differentiation by promoting osteogenesis and
inhibiting adipogenesis. Wnt3a can induce osteogenic differentiation by activating TAZ through
PP1A-mediated dephosphorylation [76]. Overexpression of Wnt10b was found to increase postnatal
bone formation by promoting osteoblastogenesis [77]. Increase in adipocytes number during old ages
is also considered to be related to the decline of Wnt10b [78]. Moreover, Arango et al. also found
promotion in adipogenesis in myometrium with conditional deletion of β-catenin in the mesenchyme
of the developing mouse uterus in vivo [79] (Table 2).

Notch Signaling

The notch signaling pathway is involved in regulating adipogenic and osteogenic differentiation
of BMSCs, either through directly targeting the respective genes or communicating with other signaling
pathways. It consists of Notch and notch ligands, which are transmembrane proteins involved in cell
differentiation [80] (Figure 2). In addition to its function in adipogenic differentiation, this signaling has
been found to suppress osteogenic differentiation as well [80]. On the other hand, Shimizu et al. have
reported that Notch signaling can induce osteogenesis through interaction with BMP2 signaling [81].

Other Signaling Pathways

Other signaling pathways like Hedgehog, NELL-1, FGFs and IGF-I are also involved in the
differentiation of BMSCs. Hedgehog signaling is another pathway involved in BMSCs differentiation
that promotes osteogenesis and suppresses adipogenesis. Spinella-Jaegle et al. reported that Hedgehog
signaling was found with inhibited adipogensis and promoted osteogenesis at the same time [82].
NELL-1 signaling also induces osteogenesis associated with antiadipogenic effects in BMSCs [83,84].
Furthermore, FGFs have been reported to play an important role in both adipogenic and osteogenic
differentiation of BMSCs [85,86]. Moreover, IGF-I signaling is also known for its critical role in bone
remodeling and adipogenic differentiation of BMSCs [87] (Table 2).

3.2.2. Signaling Pathways Involved in Senescence of BMSCs

p53/p21 and p16/Rb

p53/p21 and p16/Rb (tumor suppressor retinoblastoma protein, Rb) are the two interrelated key
pathways involved in regulating senescence of BMSCs. In addition, some other pathways like TGF-β,
Wnt, MAPK, PI3K/AKT/mTOR, Notch and FGFs also function in controlling senescence of BMSCs.

p53/p21 and p16/Rb signaling pathways are actually regulated in responding to some phenomena
causing DNA damage, such as telomeres shortening, reactive oxygen species (ROS) accumulation.
Shortening of telomeres occurs after every cell division, ultimately reach to “Hayflick limit”, which
deprives the cells of further division [88]. This phenomenon of telomeres shortening elicits DNA damage
response which contains multiple signaling events centered on p53/p21 and p16/Rb pathways [89].
Both of these pathways are based on anti-proliferative mechanisms that halt the cells from dividing
further, allowing the cells to repair themselves. However, when the DNA damage is exceeding in the
cells, these phenomenon forward them to senescence [90]. Similarly, immoderate accumulation of ROS,
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such as superoxide anion, hydrogen peroxide and hydroxyl radical also trigger DNA damage response,
followed by p16/Rb and p53 pathways, which ultimately lead the cells to senescence [91] (Figure 2).

Other Signaling Pathways

BMP signaling is also involved in inducing senescence in BMSCs through contributing to the
production of ROS and triggering DNA damage response [92]. Wnt/β-catenin signaling pathway
being actively involved in BMSCs differentiation also participates in inducing senescence through
interacting with p53/p21 pathway to produce ROS [93]. Moreover, other signaling pathways including
MAPK, PI3K/AKT/mTOR, Notch, FGFs and Hipo have been reported to play a crucial role in causing
senescence in BMSCs as well [94] (Table 2).

Table 2. Signaling pathways involved in differentiation and senescence of BMSCs.

Signaling Pathways Functions References

TGF-β/BMP
Controls both osteogenesis and

adipogenesis in a proper manner,
and also induces senescence

[66,92]

Wnt Induces osteogenesis and inhibits
adipogenesis [77,78]

Notch Promotes osteogenesis and
inhibits adipogenesis [80]

Hedgehog Promotes osteogenesis and
suppresses adipogenesis [82]

NELL-1 Induces osteogenesis with
antiadipogenic effects [83]

FGFs Control both osteogenesis and
adipogenesis with equal effects [85,86]

IGF-I Promotes adipogenic
differentiation [87]

p53/p21 Induces senescence [88–91]
p16/Rb Induces senescence [88–91]

BMP, bone morphogenic protein; Wnt, wingless-type MMTV integration site; NELL-1, Neural epidermal growth
factor-like (NEL)-like protein 1; FGFs, fibroblast growth factor; IGF-I, insulin-like growth factor-I.

3.3. Epigenetic Regulations

Epigenetic regulations play important roles in the differentiation and senescence of BMSCs.
During transcription, transcriptional factors are not only involved in regulating gene expressions,
but also in correlation with epigenetic factors. Mutations in such epigenetic factors even result in severe
disorders like osteoporosis and cancer. Therefore, it is important to elaborate the role of epigenetic
regulations including DNA methylation, histone modifications, and epigenetic regulators such as
non-coding RNAs (e.g., MicroRNAs) in the differentiation and senescence of BMSCs.

3.3.1. Epigenetic Factors Involved in Osteogenic Differentiation of BMSCs

Epigenetic regulations actually alter the binding ability of osteogenic transcriptional factors with
their target promoters by changing chromatin structures. It is a recognized fact that Runx2 works as
a master regulator in inducing osteogenesis in BMSCs [95]. However, its transcriptional activity is
controlled by various epigenetic factors including coactivators and corepressors [96]. Osteocalcin (OC)
promoter is the most widely studied promoter providing the binding sites for numerous osteogenically
important transcriptional factors like Runx2 [97]. It has been reported that hypo DNA methylation
and histones, H3 and H4 acetylation enhance the binding ability of OC promoter to osteo-inductive
transcription factors [98]. Villar-Garea et al. found that very eminent hypermethylation was observed
at the OC gene promoter, which was confirmed to be related to condensed chromatin structure [99].
Villagra et al. have shown the decrease in DNA methylation of OC promoter region during in vitro
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osteoblast differentiation of BMSCs [100]. Upregulation of bone related genes, due to mechanical
loading has also been found with decreased CpG methylation [101]. Further, Shen et al. found an
increased level of acetylation at H3 and H4 histones near the promoter region of OC gene during
osteoblastic differentiation of BMSCs, hence, reported an absolute association between core histone and
OC gene expression [98]. Apart from these, nicotinamide phosphoribosyltransferase (Nampt), absent,
small, or homeotic disc1 like (Ash1l) and CCAAT/enhancer-binding protein beta (CEBPB) have also
been reported to play important roles in augmenting osteogenic differentiation of BMSCs [102–104].
MicroRNAs being epigenetic regulators also play their roles during osteogenic differentiation of BMSCs.
To date, most of the miRNAs have shown negatives effects in regulating the osteogenic differentiation
of BMSCs. MicroRNAs including miR-31, miR-138, miR-204, and mir-637 have been investigated to
inhibit osteogenic differentiation of BMSCs [105–108]. However, recently, Yan et al. reported that
let-7c-5p, miR-181c-3p, miR-3092-3p and miR-5132-3p promoted osteogenic differentiation of mouse
BMSCs [109].

3.3.2. Epigenetic Factors Involved in Adipogenic Differentiation of BMSCs

Epigenetic regulations also play an important role in adipocyte differentiation. Just as osteogenic
differentiation, adipogenic differentiation is a well-organized phenomenon containing transcription
factors performing various functions. PPAR-γ is the master regulator of adipogenic differentiation
of BMSCs [110]. Its activity is regulated by various epigenetic regulation. Noer et al. found certain
adipogenic promoters including PPARγ, leptin, fatty acid-binding protein 4 (fabp4), and lipoprotein
lipase (lpl) hypomethylated by investigating isolated adipose stromal cells, hence, showed the
importance of epigenetic activity, such as methylation in adipogenesis [111]. Bowers et al. treated
C3H/10T1/2 cells with 5-azacytidine that induce them into adipocytes spontaneously, due to the
proper demethylation and expression of BMP4 gene [112]. Similar to DNA methylation, histone
methylation is also very necessary in adipogenic differentiation of BMSCs, of which H3 lysine 4 (H3K4)
is of prime importance. 3T3-L1 fibroblast cells treated with low-dose of methyltransferase inhibitor
methylthioadenosine showed a quite significant decline in adipocyte differentiation, which is due to the
removal of epigenetic sign from the promoters, thus, proved the important role of histone modification
in regulating adipogenesis [113]. H3K4me2, which is considered to be the active mark of transcription
has been found on the promoter region of certain important adipogenic genes that are adiponectin,
glut4, and lep during commitment [113]. Moreover, the decreased level of HDACs has been identified
to be associated with adipogenesis and vice versa. Unphosphorylated retinoblastoma (Rb) protein has
been found to repress adipogenesis by recruiting HDAC3 to the promoters of PPARγ gene [114].

Apart from these, microRNAs also function in regulating adipogenic differentiation of BMSCs.
Qadir et al. have identified that miR-124 promotes adipogenesis of BMSCs by suppressing the expression
of a pro-osteogenic transcription factor Dlx5 [115]. Similarly, miR-30, miR-204, miR-211, miR-320 have
been recognized to induce adipogenesis of BMSCs by targeting Runx2 [116,117]. Furthermore, miR-188
has been found to play a role in fat accumulation and bone loss, especially during aging [118].

3.3.3. Epigenetic Factors Involved in Senescence of BMSCs

In addition to the other factors, epigenetic changes are also involved in causing senescence of
BMSCs. It has been identified that the DNA methylation levels slowly decrease with time in cell
culture [119]. So et al. have reported that DNA methyltransferase (DNMT) level decreases during
replicative senescence of BMSCs, thus, leads to hypomethylation, which is a well-known characteristic
of senescent cells. Furthermore, they demonstrated that DNMTs played a role in inducing senescence
not only through DNA methylation status, but also by activating or inactivating histone marks in
genomic regions of Polycomb group (PcG)-targeting miRNAs and p16INK4A and p21CIP1/WAF1 promoter
regions [120]. Histone modifications, such as acetylation and methylation, also contribute to senescence
in BMSCs. Histone deacetylases (HDACs) are mostly downregulated during senescence of BMSCs,
which result in the low expression of the polycomb group genes and high expression of Jumonji domain
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containing three proteins, thus, controlling cell cycle [121]. Moreover, Fernandez et al. observed the
active chromatin mark H3K4me1 enriched with hypomethylated regions during cellular senescence
of BMSCs, hence, showing the importance of histone methylation in senescence [122]. MicroRNAs
also participate in the induction and maintenance of senescence through regulating various parts of
the cell cycle or nuclear organization. To date, about 45 miRNAs have been identified to be involved
in replicative senescence of BMSCs [123]. The let-7 family of miRNAs is of prime importance in
inducing senescence through transcriptional gene silencing of E2F-regulated proliferation promoting
genes [124]. Lal et al. have reported that miR-24 promotes p16-dependent senescence pathway by
targeting and downregulating p16 mRNA, which leads to replicative senescence of BMSCs [125].
Wagner et al. have found the upregulation of miR-369-5p, miR-29c, and let-7f during replicative
senescence [126]. In addition, miR-34a has been identified to downregulate the expression of class-III
histone deacetylase silent information regulator 1 (SIRT1), thus, resulting in the increased level of p21
levels, triggering senescence [127]. MiR-195 and miR-495 have also played roles in causing senescence
in BMSCs [128,129].

3.4. Other Factors

Besides transcription factors, signaling pathways and epigenetic regulations, there are some other
external or internal chemical, physical and biological factors that induce differentiation and senescence
of BMSCs.

3.4.1. Chemical Factors

Normally, for osteogenic differentiation, BMSCs are cultured in a medium containing L-ascorbic
acid (AA), β-glycerophosphate (βGP) and Dexamethasone. Combination of these chemicals has
the ability to initiate collagenous extracellular matrix formation, which upregulates the expression
of osteogenic indicators alkaline phosphatase (ALP) and OC [130]. Similarly, the combination of
chemicals, such as isobutylmethylxanthine (IBMX), insulin and dexamethasone results in adipogenic
differentiation of BMSCs in culture [131]. It has been reported that IBMX and dexamethasone initiate
adipogenic differentiation, while the insulin is associated with the uptake of glucose to synthesize
triglycerides in adipocytes [132,133]. Moreover, a low dose of pesticides mixtures and high glucose
levels have been reported to induce senescence by triggering the formation of ROS and upregulating
autophagy in BMSCs, respectively [134,135].

3.4.2. Physical Factors

Some physical factors, such as radiations and mechanical stimuli also contribute importantly to
the differentiation and senescence of BMSCs. It was observed that a range radiations (0–16 Gy) applied
on human pluripotent cells and BMSCs promoted adipogenesis and declined osteogenesis [136].
Furthermore, Alessio et al. have found that treatment of BMSCs with a low dose of radiations induces
cell senescence [137]. Being mechanosensitive, BMSCs differentiation is also regulated by certain
mechanical factors, such as exercise, vibration, and microgravity. It has been reported in several studies
that exercise enhances osteogenesis and reduces adipogenesis in BMSCs. Interestingly, Menuki et al.
have shown that 28 days of climbing exercise increased bone volume and osteoblast number and
decreased bone marrow adipocyte number in a 8-week-old male mice [138]. Vibration at low frequency
has been identified with a positive effect on bone formation and negative effect on adipogenesis in
BMSCs [139,140]. Moreover, Zayzafoon et al. found a decrease in osteoblastic differentiation and
increase in adipogenic differentiation of human BMSCs in response to modelled microgravity, hence,
showed the negative effect of microgravity on bone formation [140]. However, there is still no data
available regarding mechanical stimuli to induce senescence in BMSCs.
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3.4.3. Biological Factors

Other biological factors like aging and metabolism, also regulate BMSCs differentiation and
senescence. During aging, BMSCs differentiate more into adipocytes and less into osteoblasts, resulting
in bone loss. Moerman et al. found increased expression of PPARγ in aged BMSCs, which is considered
as the master regulator of adipogenesis [26]. Altered mitochondrial metabolism and generation of ROS
are also main factors regulate the adipogenic differentiation of BMSCs [141]. High uptake of glucose
and fat diet are also responsible for promoting adipogenic differentiation and decreasing osteogenic
differentiation of BMSCs [142]. Moreover, oxidative stress has been reported to induce senescence both
in vitro and in vivo in BMSCs [143].

4. Treatment of Senile Osteoporosis by Aiming at BMSCs

In old ages, BMSCs either differentiate into more adipocytes than osteoblasts or assume senescence,
which ultimately results in senile osteoporosis. Therefore, in order to treat senile osteoporosis,
it is required to use the strategies in what BMSCs can be stimulated either to differentiate into
more osteoblasts than adipocytes or be eliminated their senescence. To date, numerous molecules
including parathyroid hormone (PTH 1–84) or only its N-terminal fragment teriparatide (PTH 1–34),
bisphosphonates, tetracycline, cationic peptides and antibodies like denosumab and romosozumab
have been used in the treatment of senile osteoporosis [15–19]. However, most of them are limited
either, due to their severe side effects or inhibition of just bone resorption without decreasing bone
regeneration. Therefore, in order to reduce such limitations, there is the need of using cell-based
therapy strategy, for which BMSCs can act as an ideal cell source, due to their self-renewing and
differentiation ability into various types of cells. In addition, easy isolation with high yields from
different tissues, and immunosuppressive and immunoprivileged properties of BMSCs also make
them the preferable cell source in cell-based therapies [144].

In order to treat senile osteoporosis, several researchers have reported the successful transplantation
of BMSCs using animal models. Transplanted BMSCs, serve in bone formation either by allocating
damaged areas to differentiate into osteoblasts or assume paracrine mode, due to which they secrete
specific growth factors to make a favorable environment for the nearby cells to repair the degenerative
tissue [145]. Ichioka et al. injected normal allogeneic BMSCs intra bone marrow into the senescence
accelerated mouse prone 6 (SAMP6) mice, naturally prone to senile osteoporosis in their early lives.
They demonstrated that the injected normal BMSCs were able to prevent the senile osteoporosis in
SAMP6 mice with an increase in trabecular bone mass and decline in BMD loss [146]. Takada et al.
also treated osteoporosis after it occurred in aged SAMP6 mice by injecting normal allogeneic BMSCs
locally into their bone marrow. After the clinical examinations, no signs of senile osteoporosis were
found, hence, succeeded in proving their hypothesis [147]. In another experimental procedure, when
BMSCs isolated from healthy rats were injected into the bone marrow of femurs of osteoporotic female
ovariectomized rats, a quite increase in the bone mass of femur was observed after examination [148].
Similarly, Kiernan et al. also found an increase in bone formation when they injected systemically
normal allogeneic BMSCs into the bone marrow of senile osteoporotic mouse model, giving a clue
towards their applications against human senile osteoporosis [149].

Certain factors, microRNAs and long non-coding RNAs have also been recognized to play
significant roles in treating senile osteoporosis by stimulating BMSCs to differentiate into more
osteoblasts than adipocytes. Suppression of ectopic viral integration site-1 (Evi1) gene through RNA
interference in rat BMSCs resulted in increased osteogenesis and decreased adipogenesis, suggesting
Evi1 as a potent target for targeting osteoporosis [150]. Huan et al. have reported enhancer of zeste
homology 2 (EZH2) factor as a competent therapeutic target for enhancing bone formation during
osteoporosis as its suppression led to increased osteogenesis rather than adipogenesis [151]. Recently,
Zhou et al. uncovered the role of orcinol glucoside (OG), a constituent of traditional Chinese medicine,
in promoting bone formation. They reported that OG was able to revert the BMSCs differentiation
fashion of more into adipocytes than osteoblasts in old ages through Wnt/β-catenin signaling pathway,
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thus, may act as a novel therapeutic agent against senile osteoporosis [152]. Chang-Jun et al. found
the increased bone formation and decreased fat accumulation after injecting aptamer-antagomiR-188
into the bone marrow of osteoporotic aged mice. The aptamer-antagomiR-188 actually inhibited
miR-188, whose overexpression is actually responsible for reducing osteogenesis and increasing
adipogenesis [118]. Let-7, a miRNA family, has also been distinguished to promote osteogenesis and
decline adipogenesis in BMSCs [153]. Very recently, Zhao et al. demonstrated that miR-21 possesses
the ability to stimulate the osteogenic differentiation of BMSCs by finding the role of miR-21 inhibitor
in inhibiting BMSCs differentiation into osteoblasts [154]. Recently, long noncoding RNA Bmncr was
found as key regulator in promoting osteogenesis and inhibiting adipogenesis in mice during aging,
suggesting it to be a therapeutic target against senile osteoporosis in future [155]. Chen et al. reported
that overexpression of lncRNA XIST led to the inhibition of osteogenic differentiation of BMSCs in
3-week-old Sprague Dawley rats [156], thus, its inhibition through specific inhibitor can revert the
phenomenon and can treat the senile osteoporosis. Most recently, Zhu et al. have identified lncRNA
HOXA-AS2 as a key positive regulator in causing osteogenesis in BMSCs through NF-κB signaling
inactivation [157], which may act as a new therapeutic target against senile osteoporosis.

Different approaches have also been used to eliminate the senescence of BMSCs, and thus, treat
senile osteoporosis. Elimination of senescent cells is of much importance regarding bone mass and
strength. In order to uncover such importance, Joshua et al. used some genetic and pharmacological
procedures to eliminate the senescent cells. They found that activating INK-ATTAC caspase 8 in
senescent cells or treating senescent cells with JAK inhibitor or senolytics increased bone mass and
bone strength in mice with the bone loss [21]. A senolytic drug, ABT263 can also reduce senescence
associated factors, hence, can act as a good therapeutic drug against senile osteoporosis [158]. Gao et
al. delivered tetramethylpyrazine (TMP) locally into the bone marrow of aging mice with established
senescent BMSCs microenvironment, a significant reduction was found in senescent phenotype via
modulating Ezh2-H3k27me3, suggesting TMP as a potent local eliminator of senescent BMSCs in
age-related bone loss [159]. Sun et al. suppressed the expression of NADPH oxidase, which is mainly
involved in ROS formation in BMSCs; they found a significant increase in osteoblasts differentiation
of BMSCs. Moreover, they also found an increase in bone formation after treating SAMP6 mice with
apocynin for three months, hence, declared as a competent therapeutic agent against age-related bone
loss [160]. More recently, Zhou et al. demonstrated that resveratrol was able to attenuate senescence
and promote osteogenic differentiation of BMSCs by inhibiting AMPK activation/ROS inhibition
signaling pathway in aged mouse, suggesting resveratrol as a novel therapy against senile osteoporosis,
due to its inhibiting effects on ROS formation in BMSCs [161].

5. Conclusion and Perspectives

Senile osteoporosis is an age dependent bone disorder occurring both in men and women, which
has become a worldwide health concern. The functional change of BMSCs has been demonstrated
to contribute to senile osteoporosis, showing as BMSCs differentiate into fewer osteoblasts, but
more adipocytes and BMSCs become senescent. Besides the critical involvement of BMSCs in senile
osteoporosis, BMSCs are also favorite cell source for cell therapy and have been applied for osteoporosis
treatment. Therefore, uncovering the underlying mechanisms of function changes of BMSCs during
senile osteoporosis is important not only for better understanding the involvement of BMSCs in senile
osteoporosis, but also for manipulating them for clinical applications.

Recent findings demonstrate that numerous transcriptional factors, signaling pathways, epigenetic
regulations and other factors play key roles in regulating the differentiation and senescence of BMSCs,
the alteration of which contributes to senile osteoporosis. Runx2 and PPARγ are two key transcription
factors that are responsible for osteogenic differentiation and adipogenic differentiation of BMSCs,
respectively. Decreased Runx2 expression and increased PPARγ results in senile osteoporosis. NRF2
and FOXP1 are two transcription factors related to the senescence of BMSCs by regulating antioxidant
responsive genes. They are decreased with age, thus, leads to BMSCs senescence and bone loss. BMP
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signaling, Wnt signaling and Notch signaling pathways all show dual roles in regulating osteogenic and
adipogenic differentiation of BMSCs. They function either by targeting the downstream transcription
factors, such as Runx2, PPARγ, or by cross-talking with each other. Recently, p53/p21 and p16/Rb
signaling pathways have been demonstrated to be involved in the senescence of BMSCs, which is
one main cause of senile osteoporosis. These signaling pathways are activated by DNA damage or
ROS accumulation and finally lead to cell senescence. Besides, BMP signaling and Wnt signaling also
participate in inducing senescence of BMSCs by inducing ROS, triggering DNA damage or interacting
with p53/p21 signaling. Moreover, epigenetic regulation also plays important role in regulating
differentiation and senescence of BMSCs. The epigenetic regulation, such as DNA methylation
and histones acetylation, regulates the differentiation and senescence of BMSCs by regulating the
expression of transcription factors or disturbing the binding of transcription factors to specific gene’s
promoter. These findings provide an understanding of the molecular mechanisms underlying the
altered differentiation and senescence of BMSCs during senile osteoporosis and provide potential
targets or methods for treating senile osteoporosis.

Direct transplantation of normal BMSCs and elimination of senescent BMSCs both efficiently
treat senile osteoporosis. Transplantation of normal allogeneic BMSCs into aged mice shows both
prevention and treatment effects on senile osteoporosis. In addition, modification of the differentiation
ability of BMSCs through targeting some genes can be applied for treating senile osteoporosis. More
recently, elimination of senescent BMSCs has been demonstrated to be an effective therapeutic method
for treating senile osteoporosis. All these findings strongly demonstrate that BMSCs can be applied
for clinical treatment of senile osteoporosis by directly transplanting normal BMSCs, modifying
differentiation of BMSCs, or eliminating senescent BMSCs. However, present findings are obtained
from animal studies. Further clinical trials are needed.

In summary, the altered differentiation and senescence of BMSCs contribute to senile
osteoporosis. Transplantation of normal BMSCs, modification of altered differentiation ability of
BMSCs, and elimination of senescent BMSCs can effectively treat the senile osteoporosis. However,
as differentiation and senescence, the two key physiological processes of BMSCs, are sometimes closely
linked, there are still some questions to be investigated. How do BMSCs make a choice, to differentiate
to specific cell type or undergo senescence? What regulatory factors play a primary role in regulating
these processes? Moreover, for the treatment of senile osteoporosis, as present findings are from animal
studies, clinical trials are needed in future. By answering these questions and conducting clinical trials,
we will get a better understanding of the role and mechanisms of BMSCs in senile osteoporosis and
may provide new insights for manipulating BMSCs for clinical applications.
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Abbreviations

AA ascorbic acid
Ash1l absent, small, or homeotic disc1 like
Ash1l alkaline phosphatase
AMPK adenosine monophosphate-activated protein kinase
βGP β-glycerophosphate
BMD bone mineral density
BMP bone morphogenic protein
BMSCs bone marrow stromal cells
CEBPB CCAAT/enhancer-binding protein beta
C/EBPα core binding factor α1
DLX5 distal-less Homeobox 5
DDR DNA damage response
DNMT DNA methyltransferase
EBF-1 early B cell factor
EZH2 enhancer of zeste homology 2
Ezh2-H3k27me3 enhancer of zeste homolog2-tri-methylation of histone H3 at Lys 27
FGFs fibroblast growth factors Foxa1
FOX forkhead transcription factor
FZD 7-transmembrane domain-spanning Frizzled receptor
GATA2 GATA-binding factor 2
HDACs histone deacetylases
HOXA-AS2 HOXA Cluster Antisense RNA 2
HIF1 Hypoxia-Inducible Factor 1
IBMX isobutylmethylxanthine
IGF-I insulin-like growth factor-I
JAK janus kinase
LRP5/6 lipoprotein receptors-related protein 5/6
MAPK mitogen-activated protein kinase
miRNA microRNA
Nampt nicotinamide phosphoribosyltransferase
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NELL-1 neural epidermal growth factor-like (NEL)-like protein 1
NRF2 nuclear factor Erythroid 2-related factor 2
ObI-1 osteoblast inducer 1
OC osteocalcin
OG orcinol glucoside
PcG Polycomb group
PPARγ peroxisome proliferator-activated receptor-gamma
Rb retinoblastoma
ROS reactive oxygen species
Runx2 runt-related transcription factor 2
SAMP6 senescence accelerated mouse prone 6
SASP senescence-associated secretory phenotype
SIRT1 silent information regulator 1
Sox2 sex determining region Y-box 2
TGF-β transforming growth factor-β TGF-β
TMP tetramethylpyrazine
TNF-α tumor necrosis factor-α
Twist twist-related protein
Wnt wingless-type MMTV integration site
Xist X-inactive specific transcript
YAP yes-associated protein 1
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