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Lysosome Sensing Is a Key
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Intracellular Development
Dan Zilberstein*

Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel

Phagolysosomes of macrophages are the niche where the parasitic protozoan
Leishmania resides and causes human leishmaniasis. During infection, this organism
encounters dramatic environmental changes. These include heat shock (from 26◦C
in the vector to 33◦C or 37◦C in the host, for cutaneous and visceral species,
respectively) and acidic pH typical to the lysosome and nutrient availability. Leishmania
cells developed ways to sense the lysosome-specific environment (acidic pH and body
temperature) as means of recognition and, subsequently, initiation of differentiation into
the intracellular form. Recent studies have indicated that protein kinase A plays a role as
the gatekeeper that enables differentiation initiation. This review provides an update on
the lysosome signaling pathway-mediated Leishmania intracellular development.

Keywords: Leishmania, development, sensing, differentiation, macrophages

INTRODUCTION

Pathogenic microorganisms invade and colonize our body because it contains nutrients that
pathogens need to complete their developmental cycle. Following infection, the microorganisms
must quickly find their destinations, which is where the specific nutrients can be reached. Over
many years of “learning”, these pathogens have selected host elements that are unique and
thereby tag these locations. Parasites developed sensors that utilize these cues as ligands that
indicate their arrival at their destination. Once they colonize, a second line of sensors monitor
metabolic availability inside that compartment, enabling parasite to manipulate and survive host
harsh conditions (Mancio-Silva et al., 2017; Zilberstein, 2018; Landfear and Zilberstein, 2019). My
research group has investigated these processes using Leishmania as a model organism.

Leishmania is an intracellular parasite that cycles between the midgut of female sand flies and
phagolysosomes of mammalian macrophages. Interestingly, Leishmania turned the extremely harsh
environment inside the host macrophage into a shelter to most likely hide from the host immune
system (Chang and Dwyer, 1976; Moradin and Descoteaux, 2012). To reach and identify the
phagolysosomes, Leishmania developed means to sense lysosome-specific cues. Once it identifies
its location inside phagolysosome, Leishmania starts to transform to the intracellular form, the
amastigote. To block parasite invasion, macrophages activate means to kill them, including release
of reactive oxygen species (ROS) and synthesis of cytotoxic nitric oxide (NO) by NO synthase
(iNOS). The latter requires a massive conversion of arginine to NO, which exhausts intracellular
arginine. To protect themselves, parasites developed sensing mechanism that monitor arginine
in the phagolysosome, a mechanism that is essential for their survival and ability to develop into
amastigotes (Goldman-Pinkovich et al., 2020).
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Over almost three decades, my laboratory has investigated
the signaling pathways that initiate Leishmania intracellular
development. We developed a host-free experimental system
that enabled monitoring of promastigote-to-amastigote
differentiation in axenic conditions (Barak et al., 2005;
Zilberstein, 2020). Using this system, we have identified
parasite molecules that helped complete the puzzle of Leishmania
development inside its host macrophage. This review is an update
on this puzzle, focusing on acidic pH/high temperature-mediated
differentiation. This time, I decided to tell the story with a flavor
of historical perspective.

Intracellular Leishmania Develops Inside
Mammalian Phagolysosomes: What
Does It Physiologically Mean?
It became apparent from studies in the 1970s that Leishmania
differentiation from extracellular promastigote to intracellular
amastigotes occurs within the phagolysosome of macrophages
(Alexander and Vickerman, 1975; Chang and Dwyer, 1976;
Berman et al., 1979). The in vitro studies were corroborated by
the in vivo demonstration that when BALB/C mice footpads,
infected by Leishmania, are suspended in a solution containing
colloidal gold, the gold particles colocalized with amastigotes
in the phagolysosomes of foot pad macrophages (Berman
et al., 1981). These studies determined that phagocytosis
is the basic mechanism underlying Leishmania entry
into the host, but concomitant with some active input by
parasites (Zilberstein and Shapira, 1994; Antoine et al., 1998;
Lodge and Descoteaux, 2008).

Exactly how parasites attach to macrophages and what are
the molecules that form the invasion pathway are still not fully
known, even though progress has been made (Rosazza et al.,
2020; Smirlis et al., 2020). A recent review has summarized
genetic and biochemical details on the molecular mechanism
of macrophage invasion (Horta et al., 2020). Our focus is on
Leishmania-regulated formation of the acidic phagolysosomes
and their role in the initiation of promastigote differentiation into
amastigotes. During phagocytosis of uninfected macrophages,
it takes about 30 min for lysosome markers to appear in a
phagosome, whereas it takes more than 2 h for lysosome markers
to appear in promastigote-infected phagosomes (Antoine et al.,
1998; Scianimanico et al., 1999; Vinet et al., 2009; Da Silva Vieira
et al., 2019). Lipophosphoglycan (LPG), a major component of
the promastigote surface, plays a key role in the infective pathway
as it restricts transiently the fusion of nascent promastigote-
containing phagosomes with late endocytic compartments
(Desjardins and Descoteaux, 1997; Moradin and Descoteaux,
2012). Interestingly, LPG delays the appearance of vacuolar
ATPases in phagosome membranes until they fuse with primary
lysosomes. Hence, LPG delays phagosome acidification and
maturation (Vinet et al., 2009). This is critical because, as
explained later, sensing acidic pH is one of the two cues that
signal parasite arrival to the phagolysosome and subsequently
initiate promastigote differentiation into amastigotes (Zilberstein
and Shapira, 1994; Saar et al., 1998; Zilberstein, 2008).

Mutant promastigotes that lack LPG are delivered quicker
to lysosomes and, consequently, are more susceptible to
macrophage killing than wild-type promastigotes (Scianimanico
et al., 1999; Spath et al., 2000; Turco et al., 2001; Moradin and
Descoteaux, 2012). However, it is agreed by most experts in the
field that LPG is not the only factor that regulates Leishmania
entry into the host (Horta et al., 2020). For example, LPG
null mutants of Leishmania mexicana are as effective as wild
type in macrophage invasion (Ilg, 2000). The demonstration
that virulent Leishmania chagasi is localized in caveolae during
phagocytosis by host macrophages has prompted speculation that
these specialized membrane domains play a role in intracellular
parasite survival by targeting parasites to a phagocytosis pathway
where lysosome fusion is delayed (Rodriguez et al., 2006).
These analyses further support the notion that metacyclic-specific
LPG delays the process of phagosome maturation until parasite
complete shedding it. Hence, everything that happens after the
pause is independent of LPG. Based on this model for the
invasion pathway, I proposed that parasites that reach the acidic
phagolysosomes and start to differentiate to amastigotes are not
metacyclic anymore (Zilberstein, 2008).

To summarize the preceding section, phagolysosome
biogenesis in Leishmania-infected macrophages is actively
delayed by the invading parasite to assure that they do not
initiate transformation into amastigotes before LPG is released
and phagolysosome completed maturation.

Sensing the Lysosome-Specific
Environment Is How Leishmania
Identifies Its Intracellular Destination
Once engulfed into the macrophage phagosome, except
for shedding LPG, promastigotes halt development until
phagosomes fuse with primary lysosomes to form the acidic
phagolysosomes. Parasites that not long ago underwent heat
shock (33◦C and 37◦C for cutaneous and visceral species,
respectively) are now, in addition, exposed to acidic pH (around
5.5; Courret et al., 2001; Séguin and Descoteaux, 2016). Parasite
cells combine these two cues into a single signaling pathway
that indicates arrival at their destination and thereby initiates
promastigote differentiation into amastigotes. However, this
is not a straightforward phenomenon. It was important to
show that exposing parasites concomitantly to these two stress
conditions indeed activates a true signal transduction pathway,
not an additional stress response.

Experiments have been carried out to prove that concomitant
exposure to acidic pH and high temperature signal promastigotes
to start differentiating into amastigotes. Exposing axenic
promastigotes to either acidic pH without changing the
temperature (Zilberstein et al., 1991) or to 37◦C without changing
the medium pH (Pan, 1984) induced expression of a few
amastigote-specific genes, but parasites did not differentiate.
Only combining both acidic pH and high temperature induced
promastigote differentiation into amastigotes (Bates, 1994; Saar
et al., 1998; Zilberstein, 2020). Barak et al. (2005) exposed
promastigotes to pH 5.5 but replaced the high temperature
with 5% methanol or 200 mM of azetidine-2-carboxylic acid,
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a synthetic proline analog. These compounds induce protein
misfolding, typical to heat shock response. Leishmania donovani
promastigotes grown in these conditions started to differentiate
as did parasites that were exposed to the complete differentiation
signal. The stronger evidence for the nature of the differentiation
signal came from a phosphoproteomic experiment we have
carried out in L. donovani promastigotes that were exposed for
2.5 h to pH 5.5 at 26◦C, pH 7 at 37◦C, or both, i.e., pH 5.5
at 37◦C. The analysis revealed protein phosphorylation induced
by either acidic pH or temperature. But most interestingly,
these analyses discovered phosphorylation that was induced
only by the complete signal (see figure 6 in Tsigankov et al.,
2014). Eight such proteins were identified: two proteins of the
translation machinery, two unknown protein kinases, and four
hypothetical proteins. Altogether, these studies indicated that
the combined pH 5.5 and 37◦C is a true signal that activates
a signal transduction pathway in promastigotes that initiate
differentiation into amastigotes.

To further demonstrate that the differentiation signal induces
a true signaling pathway, Rosenzweig et al. (2008) performed a
proteomic time course analysis along L. donovani differentiation.
In those days, the time affinity tagging of peptide started to merge
for quantitative proteomics. My laboratory was one of the first to
apply isobaric tags for relative and absolute quantitation (iTRAQ)
to determine protein dynamics in differentiation. Promastigotes
were exposed to the differentiation signal, and samples were
collected at various time points along the 120 h of differentiation.
These studies indicated that exposing promastigotes to the
differentiation signal induced coordinated changes in protein
abundance, including enzymes of metabolic pathways and
proteins of the translation machinery (see figure 5 in Rosenzweig
et al., 2008). For example, glycolytic enzyme of the cytosol
gradually decreased with time as did proteins of translation
pathways. In contrast, enzymes of the β oxidation pathway
and amino acid catabolism gradually increased in abundance.
For the first time, these iTRAQ analyses enabled to quantitate
abundance changes of more >1,700 proteins at the same time
point. The results of these experiments indicated that the axenic
differentiation represents a highly coordinated and regulated
process, a phenomenon typical to a true pathway. Further
transcriptomic analyses indicated that differentiation activated
dynamic changes in mRNA abundance, which suggested that
at the beginning of differentiation, there were more proteins
whose expression is regulated by mRNA, but later, most changes
were post translational in nature (Lahav et al., 2011). In my
opinion, this set of experiments clearly indicates that the
differentiation signal induced a true signaling pathway that
initiates promastigote differentiation into amastigotes.

Development of host-free systems using axenic parasites has
enabled a better understanding of the molecular mechanism
of Leishmania intracellular development. L. donovani
differentiation can be induced by exposing promastigotes
to high temperature and acidity (37◦C, pH 5.5, 5% CO2) typically
found in the phagolysosome (Zilberstein, 2020). Differentiation
to mature amastigotes takes 5 days, resembling the time it takes
in vivo (Courret et al., 2001). When mature axenic amastigotes
are transferred into promastigote medium and incubate at

26◦C, they differentiate back to promastigotes. It takes 48 h for
wild-type L. donovani to differentiate into mature promastigotes
(Bachmaier et al., 2016). This flexibility of developing back and
forth enables complete control of in vitro analysis of the complete
developmental cycle of L. donovani.

Barak et al. (2005) described differentiation time course and
showed that following exposure to the signal, parasite cells
undergo cell cycle arrest at G1. Subsequently, differentiation
continues synchronously. Morphogenesis from elongated to
round cells is initiated at early hours. At 12 h after exposure to the
differentiation, signal parasites complete rounding; and at 24 h,
they lose their flagella completely.

Protein Kinase A Is the Differentiation
Gatekeeper
Among the earliest events during promastigote-to-amastigote
differentiation in Leishmania donovani are changes in the
phosphorylation of a yet unexplored regulatory subunit of
protein kinase A (LdPKAR3, LinJ.34.2680; Tsigankov et al.,
2014). LdPKAR3 exists only in the genomes of intracellular
trypanosomatids that include amastigotes in their life cycle, i.e.,
Leishmania and American trypanosomiasis (Trypanosoma cruzi).
Functionally, promastigotes contain several phosphorylated
proteins with PKA-specific motifs, most of them promptly
dephosphorylate after initiating promastigote-to-amastigote
differentiation (Bachmaier et al., 2016). These data pointed to the
involvement of a PKA pathway in Leishmania development. My
laboratory hypothesized that a check point keeps promastigotes
from spontaneously transforming into amastigotes. Prompt
activation of PKA dissociation opens this checkpoint, thereby
initiating differentiation.

Protein kinase A is ubiquitous in eukaryotic cells, where it
has been implicated in regulation of growth, development, and
metabolism. The catalytic subunits of PKA assemble with the
regulatory subunits into a holoenzyme complex that is inactive
in the absence of cyclic AMP (cAMP). Two cyclic nucleotide-
binding domains (cNBDs) in each PKAR bind cAMP and thereby
cause a conformational change that leads to the dissociation
of the PKAC-R complex. This unbound PKAC becomes active
(Taylor et al., 2012).

Trypanosomatid PKAs differ from that of higher eukaryotes
(Bachmaier and Boshart, 2013; Bachmaier et al., 2019); their
genomes encode a regulatory subunit, PKAR1 (LinJ.13.0160 in
Leishmania), which lacks the conserved dimerization/docking
domain at the N-terminus but keeps the (pseudo) substrate
inhibitor motif in the hinge and two cyclic nucleotide-binding
domains at the C terminus. This ancient PKAR1 cannot
dimerize, and therefore, the holoenzyme is a heterodimer, not
heterotetrameric, as that of the higher eukaryotes. However,
more interestingly, trypanosomatid PKA is a cAMP-independent
protein kinase. Two essential arginines in their cNBD-binding
pockets contain other amino acids (Bubis et al., 2018;
Bachmaier et al., 2019). Evolutionarily, this indicates that PKAR
underwent significant changes in higher single-cell Eukaryotes
(i.e., plasmodium and yeast) until it became a cAMP-dependent
protein kinase. This hypothesis is supported by the fact that
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genomes of the trypanosomatid family lack the G-trimeric
proteins (Ivens et al., 2005; Landfear and Zilberstein, 2019).
These findings indicate that the older versions of PKAR in
which trypanosomatids regulate PKAC activities are different
from the canonical PKA.

In addition to R1, Leishmania genome encodes LdPKAR3
(LinJ.34.2680) that similar to R1 form heterodimers with
LdPKAC subunits and is cAMP-independent. In LdPKAR3,
the C-terminus half is conserved with higher Eukaryotes while
the N-terminus half is divergent and most likely unstructured
(Fischer-Weinberger et al., 2021).

A salient feature of the R3 subunit is a set of 12
phosphorylation sites that dynamically change during
differentiation (Tsigankov et al., 2013, 2014). Of these, there was
a four-fold increase in the phosphorylation of serine 262 (S262)
within minutes of exposure to the promastigote-to-amastigote
differentiation signal. Phosphorylation of this site is also achieved
by exposure to acidic pH only, supporting an idea that this
phosphorylation is induced by a pH sensor that activates a
downstream kinase that subsequently phosphorylates S262. This
site localizes within a region of LdPKAR3 that is likely to interact
with a catalytic subunit (LdPKAC).

Leishmania donovani (as do all Leishmania species) has three
distinct catalytic subunits (LdPKAC1, LdPKAC2, and LdPKAC3,
encoded by LinJ.35.4060, LinJ.35.4010, and LinJ.18.1090,
respectively). Extensive phylogenetic analyses indicated that
LdPKAC3 is conserved across all taxa, while C1 and C2
are restricted to the Kinetoplastidae. Recent experiments
indicate that LdPKAR3 is covalently bound to the subpellicular
microtubules at the cell cortex. R3 associates with C3, and this
association is important for the elongated shape of promastigotes
(Fischer-Weinberger et al., 2021).

Cumulatively, Leishmania promastigotes have the means
to sense the lysosome environment, and together with
heat shock response, they turn these cues to a signal that
initiates differentiation. Moreover, to date, data support
the idea that Leishmania PKA plays a role in transducing
promastigote-to-amastigote differentiation signal, thereby
initiating differentiation.

Iron Metabolism Activates an Alternative
Leishmania Differentiation Pathway
Even though this review focuses on acidic pH/high temperature-
induced differentiation, it is not the only pathway described
to date. It is established that stress, mostly deprivation of
essential metabolites, triggers parasites to escape to a life
form that is less susceptible to these stresses. Amastigotes
are “stress-relaxed” organisms. For example, heat (Pan, 1984),
overflow of serum (Doyle et al., 1991), and osmotic shock
(Blum and Balber, 1996) impose shape change in promastigotes.

None of these stresses induced complete differentiation of
promastigotes into amastigotes, except for the stress induced by
iron. The laboratory of Norma Andrews has investigated iron
transport and metabolism in Leishmania and its role in virulence
and development. They found a novel role for iron uptake
in orchestrating the differentiation of amastigotes, through
a mechanism that involves production of ROS (Mittra and
Andrews, 2013) and is independent from pH and temperature
changes. ROS are generally thought to be deleterious for
pathogens, but it is becoming increasingly apparent that they
can also function as signaling molecules regulating Leishmania
differentiation, in a process that is tightly controlled by
iron availability. These studies indicated that the ability to
import iron is critical for both promastigotes and amastigotes
viability. Interestingly, Leishmania ferric iron reductase 1
(LFR1) overexpression induced differentiation into amastigote-
like parasites (Rocco-Machado et al., 2019). These cells resembled
intracellular amastigotes as they are round, lost most of their
flagella, and are virulent. How this iron-dependent pathway
functions in disease development is still to be investigated.

CONCLUDING REMARKS

In 2001, Burchmore and Barrett published an article titled “Life
in vacuoles – nutrient acquisition by Leishmania amastigotes”
where they described what was known almost 20 years ago on
how Leishmania parasite metabolically co-op with the extreme
environment inside the phagolysosome (Burchmore and Barrett,
2001). The focus was on how nutrient transport and metabolism
are influenced by the acidic pH environment encountered
by amastigotes. A few years earlier, Shapira and Zilberstein
speculated that acidic pH and high temperature are key elements
in signaling promastigotes’ arrival at their destination and to
employ means of adaptation to the phagolysosome milieu. Our
laboratory is getting close to describe the first amino acid-sensing
signal transduction pathway. This pathway will open new avenues
to understand intracellular parasitism.
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