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Although recent evidence indicates an association between gene co-expression and
functional connectivity in human brain, specific association patterns remain largely
unknown. Here, using neuroimaging-based functional connectivity data of living
brains and brain-wide gene expression data of postmortem brains, we performed
comprehensive analyses to dissect relationships between gene co-expression and
functional connectivity. We identified 125 connectivity-related genes (20 novel genes)
enriched for dendrite extension, signaling pathway and schizophrenia, and 179 gene-
related functional connections mainly connecting intra-network regions, especially
homologous cortical regions. In addition, 51 genes were associated with connectivity
in all brain functional networks and enriched for action potential and schizophrenia; in
contrast, 51 genes showed network-specific modulatory effects and enriched for ion
transportation. These results indicate that functional connectivity is unequally affected
by gene expression, and connectivity-related genes with different biological functions
are involved in connectivity modulation of different networks.

Keywords: functional connectivity, gene co-expression, coupling, network, tensor decomposition algorithm,
schizophrenia

INTRODUCTION

Functional connectivity calculated from functional magnetic resonance imaging (fMRI) has been
widely used to characterize intrinsic low-frequency synchronization of brain activity at rest
between anatomically distinct brain regions (Ogawa et al., 1992). Regions and connections are
organized into brain functional networks responsible for such distinct functions as vision, audition,
motion, attention, memory, and emotion. Different combinations of connectivity impairments
are indicative of different neuropsychiatric disorders, which are useful for diagnosing diseases,
monitoring clinical courses, and predicting outcomes (Seeley et al., 2009; Vertes and Bullmore,
2015). Despite functional connectivity is found to be heritable (Jansen et al., 2015), the molecular
mechanisms supporting functional connectivity remain largely unknown.

Genome-wide association study (GWAS) is a putative method to identify genetic substrates
of neuroimaging phenotypes, such as functional connectivity. Using a discovery dataset of 8428
subjects, a GWAS study has identified several genetic loci that are associated with a few functional
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connectivity phenotypes (Elliott et al., 2018). However, rather
large sample size is needed to identify reliable genetic loci in
GWAS studies, and most GWAS-identified loci are located in
non-coding regions of the genome. Instead, a bulk of studies have
used brain-wide gene expression data from the Allen Human
Brain Atlas (AHBA) to identify genes associated with functional
connectivity by interrogating spatial correlations between gene
co-expression and functional connectivity across brain regions.

A pioneer study reveals that brain regions within a functional
network showing strong correlations of brain activity at rest also
demonstrate highly correlated gene expression (CGE) and that
genes with significant association with functional connectivity
are enriched for ion channel and synaptic function (Richiardi
et al., 2015). Thereafter, several specific associations between gene
expression and functional connectivity have been reported. The
long-range cortico-cortical functional connectivity is found to
be associated with the co-expression of genes uniquely enriched
for the supra-granular layers of the cerebral cortex in humans
(Krienen et al., 2016). In human brain functional networks,
high inter-modular degree and long connection distance are
associated with genes enriched for oxidative metabolism and
mitochondria, whereas high intra-modular degree and short
connection distance are associated with genes enriched for
RNA translation and nuclear components (Vertes et al., 2016).
The parallel limbic and somato/motor cortico-striatal functional
networks are associated with different sets of genes (Anderson
et al., 2018), which is also true for the functional connectivity of
different visual subregions (Zhang et al., 2021).

Although these studies have advanced our knowledge on the
association between functional connectivity and gene expression
in the human brain, there are at least three questions need
to be further answered. Prior studies have identified genes
associated with the averaged functional connectivity phenotypes
derived from a group of subjects. It is still unknown that which
expression-connectivity associations are consistently present in
most individuals. Heritability analysis indicates that genetic
and environmental factors influence functional connectivity
architecture with different weights (Ge et al., 2017; Teeuw
et al., 2019). It is an open question that which kinds of
functional connectivity are prone to be affected by genetic factors
(e.g., gene expression). Inter-regional gene expression similarity
within brain functional networks is much higher than those
between networks (Richiardi et al., 2015), suggesting that the
distributed brain functional networks may possess dissociable
genetic signatures (Richiardi et al., 2015; Anderson et al., 2018;
Zhu et al., 2021). However, we barely know which genes
contribute generally to functional connectivity architecture of
all functional networks, and which genes contribute specifically
to a certain functional network. Answering these questions will
largely improve our understanding on the molecular mechanisms
of functional connectivity.

In this study, we calculated correlations between gene co-
expression and functional connectivity across 4005 pairs of brain
regions for each of the 800 healthy subjects and identified 1291
genes with significant correlations in most of the 800 subjects
(>80%). Then we used multiple comprehensive methods to
identify genes associated functional connectivity and functional

connectivity more likely affected by gene expression. By assigning
4005 connections into eight functional networks, a series of
methods were used to differentiate genes contributing generally
to all functional networks and genes contributing specifically to a
certain network. The pipeline of this study is shown in Figure 1.

MATERIALS AND METHODS

Calculating Functional Connectivity and
Networks
Subjects
According to the inclusion criteria of Chinese Han, aged
18–30 years and right handedness and the exclusion
criteria of a history of alcohol or drug abuse, a history of
neuropsychiatric disorders, and MRI contraindications, we
recruited 800 healthy young adults (330 males, 470 females;
mean age = 23.8 ± 2.4 years, range: 18–30 years) from the
Tianjin Medical University General Hospital (n = 400) and
Cancer Hospital (n = 400). This study was approved by the ethics
committee of Tianjin Medical University and all volunteers
signed written informed consent before the experiment.

MRI Data Acquisition
MRI data from the two hospitals were acquired using the
same type of 3.0-Tesla MR scanners (Discovery MR750,
General Electric, Milwaukee, WI, United States) with the same
scan parameters. The high-resolution structural T1-weighted
images were acquired using a brain volume sequence with the
following parameters: repetition time (TR) = 8.14 ms; echo
time (TE) = 3.17 ms; inversion time (TI) = 450 ms; field of
view (FOV) = 256 mm × 256 mm; matrix = 256 × 256;
flip angle (FA) = 12◦; slice thickness = 1 mm; and 188
sagittal slices. The resting-state fMRI data were obtained using
single shot gradient-echo echo-planar imaging (SS-GRE-EPI):
TR = 2000 ms; TE = 30 ms; FOV = 220 mm × 220 mm;
matrix = 64× 64; FA = 90◦; slice thickness = 3 mm; gap = 1 mm;
40 axial slices; and 180 volumes. During fMRI scans, all subjects
were instructed to keep still with their eyes closed, to think of
nothing in particular, to stay as motionless as possible, and to
not fall asleep.

Functional Magnetic Resonance Imaging Data
Preprocessing
The resting-state fMRI data were preprocessed using the
Statistical Parametric Mapping (SPM121). The first five volumes
from each subject were discarded to allow signal to reach
equilibrium and ensure the subject to adapt to scanning noise.
The acquisition time delay between slices was corrected using
sinc-interpolation to make the acquisition time of all voxels
consistent within a TR. Head motion of each subject was
assessed and corrected using rigid-body transformation. All 800
subjects had acceptable head motion (translational or rotational
parameters less than 2 mm or 2◦). A unified normalization-
segmentation method was used to normalize fMRI images to

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Pipeline of data analysis. In brief, this study includes four steps: screening connectivity-related genes at individual level; constructing
gene × connection × individual tensor; identifying connectivity-related genes and gene-related connections; and uncovering network-shared and network-specific
connectivity-related genes. The s represents a connection between region i and region j. CECs, connectivity-expression coupling at connection s; CGEs, correlated
gene expression at connection s; Csa, the contribution of gene a to CECs; Eia × Eja, the contribution of gene a to the CGE between region i and region j; and FCs,
normalized functional connectivity strength of connection s.

the Montreal Neurological Institute (MNI) space. fMRI images
were coregistered to structural images, and then structural
images were segmented and coregistered to the MNI space. The
transformation parameters were used to normalize fMRI images
to the MNI space. The normalized fMRI images were resampled
into 3-mm cubic voxels and smoothed with a Gaussian kernel
of 8-mm full-width at half-maximum (FWHM). The frame-
wise displacement (FD) was also calculated and time points
with FD >0.3 mm were deleted and imputed using cubic spline
interpolation. The linear drift, 24 head motion parameters and

averaging blood oxygenation level dependent (BOLD) signals of
white matter and cerebral spinal fluid were regressed out from the
fMRI data. Finally, the fMRI images were filtered with a frequency
range of 0.01–0.08 Hz.

Constructing Functional Connectivity Matrix and
Functional Networks
For each subject, we constructed a functional connectivity
matrix (90 × 90) based on the 90 non-cerebellar regions
derived from the automatic anatomical labeling (AAL)
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(Tzourio-Mazoyer et al., 2002) using DPABI (Yan et al., 2016),
and then the obtained functional connectivity matrix was used to
form a column vector including 4005 independent connections.
The final functional connectivity matrix (4005 × 800) was
constructed by combining the column vectors of all subjects
(n = 800). Based on a canonical cortical functional network mask
(Yeo et al., 2011), cortical brain regions and their connections
were assigned to seven resting-state networks, including the
visual network (VN), somatomotor network (SMN), dorsal
attention network (DAN), ventral attention network (VAN),
fronto-parietal control network (FPN), default-mode network
(DMN), and limbic network (LN). And the rest subcortical
regions were defined as the subcortical network.

Gene Expression Data Processing
The normalized microarray gene expression data of two donated
brains with the whole brain coverage were obtained from the
Allen Institute for Brain Science (AIBS). Gene expression data
were processed following a newly proposed pipeline for linking
brain-wide gene expression and neuroimaging data (Arnatkevic
Iute et al., 2019). Briefly, the latest information from NCBI was
used to re-assign probes to genes, and then the noise from
gene expression signals was removed. Based on the principle
of one probe for one gene, RNA-seq information was used as
the reference to select a probe for each gene with more than
one probe. Consequently, 10,185 genes were finally selected for
1209 samples according to the pipeline (detailed procedures see
Supplementary Material). According to the distance between the
coordinate of each sample and the boundary of brain regions in
the MNI space, each sample was assigned to a specific region.

Dissecting Associations Between Gene
Expression and Functional Connectivity
Screening Connectivity-Related Genes at Individual
Level
In each subject, we calculated the CGE score for each pair of brain
regions across genes using the following equation:

CGEij = (

N∑
a=1

(
Eia × Eja

)
)/N (1)

here, N was the total number of genes (N = 10,185); i and
j represented a pair of brain regions; and Eia and Eja were the
normalized expression values (z-scores) of gene a in region i and
region j. Eia × Eja denoted the contribution of gene a to the
global gene co-expression between these two regions. CGEij was
the Pearson correlation coefficient of gene expression between
these two regions across all genes, which indicates the similarity
of global gene expression between any pair of regions.

In each subject, we could obtain the normalized functional
connectivity strength (FCij) and (Eia × Eja) for each pair of
brain regions. For a given gene (n = 10,185) of this subject,
we calculated Pearson correlation between FCij and (Eia × Eja)
across the 4005 pairs of regions. If the correlation was significant
(Bonferroni corrected, P < 4.9 × 10−6 = 0.05/10,185), this gene
was considered to be associated with functional connectivity.

These steps were independently conducted in 800 subjects,
and only genes with significant correlations with functional
connectivity in more than 80% subjects were regarded as
connectivity-related genes. The resulting 1291 connectivity-
related genes (Supplementary Table 1) were used for the
further analyses.

Identifying Genes Highly Associated With Functional
Connectivity
Two additional methods were used to further identify genes
with high and reliable associations with functional connectivity
from genes obtained by the individual-level analysis. Before these
analyses, we defined the connectivity-expression coupling (CECs)
of a connection s (i.e., a pair of brain regions i and j) as the
product (FCs × CGEs) of the normalized FCs and CGEs of
this connection in each subject. The global CEC of this subject
was defined as the Pearson correlation coefficient between the
normalized FCs and CGEs across the 4005 connections (Eq. 2).
S was the total number of connections (S = 4005 in this study).

CEC = (

S∑
s=1

(FCs × CGEs))/S (2)

We also calculated the contribution of each gene to the CEC at
each connection in each subject using the following Eq. 3:

Csa = (FCs × CGEs) × (Eia × Eja) (3)

here, s represented a pair of brain regions (i and j); FC
was the normalized functional connectivity strength; CGE was
the normalized correlated gene expression; Csa indicated the
contribution of a given gene a to CECs. Based on this equation,
a Csa matrix (1291 genes × 4005 connections) was generated for
each subject. In the following parts, the population-averaged Csa
for each gene and each connection was computed by averaging
Csa values of this gene at this connection in the 800 subjects; and
the population- and connection-averaged Csa for each gene was
computed by averaging Csa values of this gene for all included
connections (n = 4005 for whole brain connectivity analysis
and n = the number of connections within a given network for
network-level analysis) and subjects (n = 800).

A Tensor Decomposition Model
The “MultiCluster” method2 is proposed to explore three-
way interactions of genes, tissues, and individuals using semi-
nonnegative tensor decomposition (Wang et al., 2019). This
approach handles heterogeneity in each dimension and learns
the clustering patterns across different dimensions of the data
in an unsupervised manner. In this study, we replaced tissue by
functional connectivity (n = 4005) and replaced gene expression
by the Csa of each gene (n = 1291). Using the “MultiCluster”
method, we can identify genes closely associated with functional
connectivity and connections more influenced by these genes.

The 400 subjects from each of the two hospitals were randomly
divided into two groups, and finally creating four independent
groups. The semi-nonnegative tensor decomposition model

2https://github.com/Miaoyanwang/MultiCluster
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was used to investigate complex interactions of 1291 genes,
4005 functional connections and 200 individuals of each group
(Supplementary Figure 1). This method decomposed tensor
into 10 components that represent major data variations in
the group. Only the first component was selected for further
analyses because this component had much greater output
score than other components (Supplementary Table 2 and
Supplementary Figure 2). Detail methods for component
selection and consistency assessment between groups are
described in Supplementary Methods. The component included
three vectors of individual, gene and connection. From each
vector, we can extract a weight score for each item to represent the
relative contribution of the item to the component. We defined
genes with high associations with functional connectivity as those
with absolute weight scores > (mean + SD) of the absolute
weight scores of the 1291 genes.

A Permutation Test
The labels of genes and connections were randomly shuffled 1000
times to generate a random distribution of the population- and
connection-averaged Csa values of each gene. The significance
of each gene was inferred by observing if the true Csa value of
this gene was greater than all permutation-derived Csa values
of this gene (P < 0.001). To further reduce false positive of
the identified connectivity-related genes, only genes identified
by both tensor decomposition and permutation test were finally
considered as genes with high and reliable associations with
functional connectivity.

Identifying Functional Connectivity Highly Associated
With Gene Expression
The functional connections with absolute population-averaged
CECs values greater than the (mean + SD) of all the 4005
connections were defined as connections associated with gene
expression. The identified gene-related functional connections
were further validated using the tensor decomposition model.
From the first component of the tensor decomposition model,
we can extract a weight score for each connection from the
connection vector to represent the relative contribution of this
connection to the component. We defined connections with high
associations with gene expression as those with absolute weight
scores greater than the (mean+ SD) of the 4005 connections.

Dissecting Connectivity-Related Genes at the
Network Level
The whole brain was divided into eight functional networks, and
then functional connections within each functional network were
extracted to identify connectivity-related genes common to all
functional networks or specific to a certain network.

Identifying Genes Shared by Brain Functional Networks
For each gene, one-way analysis of variance (ANOVA) was used
to compare the population-averaged Csa values among the eight
groups of intra-network connections from different functional
networks. Genes without significant difference (P ≥ 0.05) across
the eight groups were defined as connectivity-related genes
common to all functional networks.

Identifying Network-Specific Genes
We used conserved criteria to identify network-specific genes.
A gene was considered to be specific to a given functional network
if the gene satisfied the following four criteria.

Identifying Network-Specific Genes by Tensor Decomposition
Model. A prerequisite for a network-specific gene is that this
gene should be highly correlated with functional connections of
the network. The non-negative tensor decomposition algorithm
was applied to functional connections of each functional network
to identify genes with higher contribution to connections of
the functional network. For each network, the connectivity-
related genes were defined as those with absolute weight
scores > (mean + SD) of all the 1291 genes. The resulting 764
genes were used to further network-specific analyses.

Network-Type Specific Analysis. As commonly used in cell-type
specific analysis (Dougherty et al., 2010; Xu et al., 2014), the
specificity index (SI) was adapted to assess the specificity of a gene
to a particular functional network relative to all other networks.
Here, cells were replaced by brain functional networks, and
gene expression values were replaced by the population-averaged
Csa values of each gene for connections within a functional
network. For each gene, a P-value for SI was calculated via
the permutation testing (1000 permutations). This method was
applied to each gene identified by the network-based tensor
decomposition model, and significant genes (n = 144) (P < 0.001)
were used for further network-specific analyses.

Comparing Contributions of Genes to Different Networks. For
each of the identified candidate genes (n = 144), ANOVA
was performed to compared the difference in the population-
averaged Csa values among the eight groups of intra-network
connections from different functional networks. Genes
(n = 144) with significant difference (Bonferroni corrected,
P < 3.47 × 10−4 = 0.05/144) among the eight groups
were selected for further post hoc analysis. According to the
population- and connection-averaged Csa value of each gene of
each network, we can identify the first two functional networks
with the greatest contribution from this gene. Two strategies
were then used to assess the specificity of this gene to the first
functional network. First, the gene was considered to be specific
to the first network if its population- and connection-averaged
Csa of the first network was at least twice greater than that of the
second network. To further assess the significance, a two sample
t-test was conducted to compare the population-averaged Csa
differences (P < 0.05) between the two networks. Only genes
satisfied the two criteria (twice greater and significant) were
considered as genes specific to the first functional network.

Gene Enrichment Analysis
With regards to functions of our main gene clusters, Toppogene
(Chen et al., 2009) was used in gene enrichment analysis,3

which calculates the functional similarity to training gene list
to prioritize candidate genes. Moreover, associations between
connectivity-related genes and common brain disorders

3https://toppgene.cchmc.org/
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were identified by MAGMA (de Leeuw et al., 2015), which
provides gene-set analysis based on GWAS data. Among the
common neuropsychiatric disorders, autistic spectrum disorder
(ASD), attention-deficit/hyperactivity disorder (ADHD),
bipolar disorder (BP), major depression disorder (MDD),
and schizophrenia (SCZ) were included in our analyses. The
GWAS summary statistic results of the five neuropsychiatric
disorders were collected from previous studies (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014;
Autism Spectrum Disorders Working Group of The Psychiatric
Genomics Consortium, 2017; Wray et al., 2018; Demontis
et al., 2019; Stahl et al., 2019; Supplementary Table 3). For all
enrichment analyses, multiple comparisons were corrected d
by the Benjamini and Hochberg method of false discovery rate
(FDR-BH correction, P < 0.05).

RESULTS

Genes Associated With Connectivity in
Most Individuals
In each subject, connectivity-related genes were identified by
detecting significant correlations between FCij and (Eia × Eja)
of each gene across the 4005 pairs of brain regions (Bonferroni
corrected P < 4.9 × 10−6 = 0.05/10,185). Correlation maps
between FCij and (Eia × Eja) of two representative genes (VAV3
and MAGEL2) in two individuals are shown in Figures 2A,B. By
calculating the ratio of a gene present in the significant gene list in
the 800 subjects, 1291 connectivity-related genes were identified
in at least 80% of these subjects (Supplementary Table 1).

Two sample t-test demonstrated that the mean contributions
of the 1291 genes were greater (t = 6.57, P = 5.3 × 10−11)
than those of the rest 8894 genes (Figure 2C) and the
1291 genes had much stronger population-averaged correlations
(t = 81.08, P < 10−300) than the rest 8894 genes (Figure 2D and
Supplementary Figure 3).

Moreover, in the 800 subjects, two sample t-test demonstrated
that the global CEC values calculated based on the 1291 genes
were greater (t = 11.00, P < 10−300) than those derived from the
10,185 genes (Figure 2E) and the population- and connection-
averaged Csa values of the 1291 genes were also much stronger
(t = 20.13; P < 10−300) than those of the 10,185 genes (Figure 2F).

Genes Highly and Reliably Associated
With Functional Connectivity
Selecting Connectivity-Related Genes With Tensor
Decomposition Model
From the 10 components derived from the tensor decomposition
of each group (n = 200), the first component with the largest
weight was selected for further analyses (Supplementary Table 2
and Supplementary Figure 2), and this component showed
low mismatch rate (0.077) and high component correspondence
(mean correlation = 0.998) among the four groups. For each
group, we defined connectivity-related genes as those with
absolute weight scores > (mean + SD) of the scores of the
1291 genes. With the criterion of the 100% repeated rate among

the four groups, we selected 185 candidate connectivity-related
genes. In the 1291 genes, two sample t-test demonstrated that the
population- and connection-averaged Csa values of the 185 genes
were much greater (t = 34.07; P < 10−300) than those of the rest
1106 genes (Figures 3A,B).

Selecting Connectivity-Related Genes With
Permutation Test
A permutation test showed that the population- and connection-
averaged Csa values of 143 genes were significantly greater than
all permutation-derived Csa values of this gene (P < 0.001)
(Supplementary Table 4). Two sample t-test demonstrated that
the population- and connection-averaged Csa values of the 143
genes were much greater (t = 34.86; P < 10−300) than those of
the rest 1148 genes (Figures 3C,D).

Genes With High and Reliable Association With
Functional Connectivity
The 125 genes identified by both tensor decomposition (n = 185)
and permutation test (n = 143) were considered as genes
with high and reliable association with functional connectivity
(Supplementary Table 4 and Figure 3E). Among the 125
connectivity-related genes, 105 genes have been previously
reported as connectivity-related genes (Richiardi et al., 2015;
Krienen et al., 2016; Anderson et al., 2018) and 20 genes were
novel (Supplementary Table 4). The 125 genes were mainly
enriched for the regulation of dendrite extension, response to
external stimulus, and G protein-coupled receptor signaling
pathway, protein secretion and transport, calcium ion binding
(FDR-BH corrected, P < 0.05) (Supplementary Table 5 and
Figure 3F). Moreover, these genes showed significant association
with schizophrenia (FDR-BH corrected, P = 0.017).

Functional Connections Highly
Associated With Gene Expression
Firstly, the absolute value of the population-averaged CECs
score was used to identify functional connections associated
with gene expression with a threshold of greater than the
(mean+ SD) of all the 4005 connections. This method generated
255 gene-related functional connections (Supplementary Table 6
and Supplementary Figure 4). Then we used the tensor
decomposition model to independently identify gene-related
connections. From the first component of the model, gene-
related connections were defined as those with absolute
weight scores greater than the (mean + SD) of the 4005
connections, resulting in 180 gene-related connections. Among
those connections, the 179 gene-related connections identified
by tensor decomposition model were completely included in
the 255 gene-related connections identified based on the mean
CECs score. Therefore, the 179 connections were considered as
functional connections highly associated with gene expression
(Figure 4A and Supplementary Table 6).

In the 179 connections, 140 connections (78.2%) were
intra-network connections and 39 (21.8%) were inter-network
connections (Figure 4B). In the total of 45 homologous
connections between the two hemispheres, 41 homologous
connections (91.1%) were identified as gene-related connections
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FIGURE 2 | The analysis of the connectivity-related genes. (A,B) Are representative correlation maps between functional connectivity and gene contribution to
co-expression of VAV3 in the 308th subject and MAGEL2 in the 327th subject. (C) Shows the mean contributions of 1291 genes to gene co-expression greater
(t = 6.57, P = 5.3 × 10−11) than those of the rest 8894 genes. (D) Demonstrates the population-averaged correlations between connectivity and the contribution of
1291 genes to gene co-expression stronger (t = 81.08 and P < 10−300) than those of the rest 8894 genes. (E) Shows the global CEC values calculated based on
the 1291 genes greater (t = 11.00, P < 10−300) than those derived from the 10,185 genes. (F) Demonstrates the population- and connection-averaged Csa values
of the 1291 genes stronger (t = 20.13; P < 10−300) than those of the 10,185 genes. Mean + SEM for all graphs. The significant difference between two groups was
showed as *. CEC, connectivity-expression coupling; Csa, the contribution of each gene (a) to the CEC at each connection (s); FC, functional connectivity.
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FIGURE 3 | Reliable connectivity-related genes. (A) Is the population- and connection-averaged Csa values of the 1291 genes, and the 185 connectivity-related
genes identified by tensor decomposition model are marked in dark orange. (B) Shows that the 185 genes demonstrate stronger population- and
connection-averaged Csa values (t = 34.07; P < 10−300) than the rest 1106 genes. (C) Shows the population- and connection-averaged Csa values of the 1291
genes, and the 143 connectivity-related genes identified by the permutation test are marked in dark blue. (D) Shows the population- and connection-averaged Csa

values of the 143 genes greater (t = 34.86; P < 10−300) than those of the rest 1148 genes. (E) Is word-cloud representation of the 125 reliable connectivity-related
genes identified by both methods. (F) Shows enrichments of the 125 reliable connectivity-related genes. Mean + SEM for all graphs. The significant difference
between two groups was showed as *. Csa, the contribution of each gene (a) to the connectivity-expression coupling at each connection (s).

(Figure 4C). The 140 intra-network connections were assigned
to the eight functional networks, and the number and the
percentage of gene-related connections in each network are listed
in Table 1.

Connectivity-Related Genes Shared by
Brain Functional Networks
In the 1291 genes, 51 genes without significant difference
(P≥ 0.05) in the population-averaged Csa values among the eight
groups were considered as connectivity-related genes common
to all functional networks (Figure 5A). These genes were
enriched for the positive regulation of neuronal action potential
(Supplementary Table 5 and Figure 5B). Moreover, these
network-shared connectivity-related genes were also enriched for
schizophrenia (FDR-BH corrected, P = 0.017).

Network-Specific Genes
The tensor decomposition model was applied to each functional
network to identify 764 genes with higher Csa with the threshold
of absolute weight scores > (mean + SD) of all the 1291 genes.
The SI was then used to assess the specificity of each of the 764

genes to each network relative to other networks. We found that
144 genes were significantly enriched for a certain functional
network (P < 0.001). All the 144 genes showed significant
difference (Bonferroni corrected, P < 3.47 × 10−4 = 0.05/144)
among the eight groups by ANOVA. To further identify genes
specific to each functional network, we assessed the contributions
of each gene (n = 144) to its first two most associated functional
networks with two criteria. Only 51 genes satisfied the two
criteria (twice greater and significant) were considered as genes
specific to the first functional network (Table 2, Figure 5A,
and Supplementary Figure 5). These network-specific genes
were mainly enriched for the regulation of ion transport and
transmembrane transport, and ion homeostasis (Supplementary
Table 5 and Figure 5B).

DISCUSSION

In this study, we performed a comprehensive analysis on
associations between functional connectivity and gene co-
expression in the human brain. We identified 125 connectivity-
related genes (20 novel genes), which are linked to dendrite
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FIGURE 4 | Functional connections associated with gene expression. (A) Shows gene-related functional connections with a circle map. The eight functional
networks are represented by different colors. The blue lines represent the intra-network functional connections, and the orange lines denote the inter-network
functional connections. The thickness of a line indicates the mean strength of the connectivity-expression coupling at each connection. (B) Demonstrates the
proportions of intra- and inter-network connections in all gene-related connections (n = 179). (C) Shows that 91% homologous connections are gene-related
connections.

extension and signaling pathway. Moreover, we identified
179 gene-related connections that are influenced more by
gene expression than other connections. Most of gene-
related connections were intra-network connections, especially
homologous connections. Finally, we identified 51 network-
shared genes and 51 network-specific genes, which were involved
in different molecular processes (action potential for the former
and ion transportation for the latter). These findings may
improve our understanding of the molecular mechanisms of
functional connectivity in the human brain.

In previously conducted transcription-neuroimaging
association studies (Fornito et al., 2011; Oh et al., 2015;
Richiardi et al., 2015; Krienen et al., 2016; Vertes et al., 2016;
Anderson et al., 2018; Zhang et al., 2021; Zhu et al., 2021),
spatial correlations are performed between gene expression
and group-averaged neuroimaging maps or inter-group
difference maps, which neglect inter-individual variations in
neuroimaging measures. In this study, individual variations of
functional connections were considered with two strategies:
(1) connectivity-expression correlations were conducted at an
individual level and only genes with significant correlations
in most individuals (>80%) were considered as connectivity-
related genes; and (2) a tensor decomposition algorithm
was used to simultaneously consider interactions among
genes, connections and individuals. To further control false
positive results, a permutation test was used to test the
significance of each gene derived from both strategies in
the connectivity-expression associations. The resulting 125

genes were defined as reliable connectivity-related genes and
the correctness and reliability of this finding are supported
by the fact that 105 out of 125 (84%) genes have been
reported in previous connectivity-expression association
studies (Richiardi et al., 2015; Krienen et al., 2016; Anderson
et al., 2018). More importantly, 20 novel connectivity-related
genes were identified in this study, which may provide

TABLE 1 | Intra-network functional connections associated with gene expression.

Functional networks Numbers of
intra-network
connections

Numbers of
gene-related
connections

A (%) B (%)

Visual network 91 44 31.4 48.4

Somatomotor network 91 23 16.4 25.3

Dorsal attention network 6 3 2.1 50.0

Ventral attention network 6 2 1.4 33.3

Limbic network 153 25 17.9 16.3

Frontoparietal network 45 8 5.7 17.8

Default mode network 153 29 20.7 19.0

Subcortical network 28 6 4.3 21.4

Sum 573 140 100 24.4

A (%) refers to the ratio of the number (44) of gene-related connections in a given
network (such as the visual network) to the total number (140) of gene-related
connections in all networks; B (%) refers to the ratio of the number (44) of gene-
related connections in a given network (such as the visual network) to the total
number (91) of connections in the network.
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TABLE 2 | Numbers of network-specific connectivity-related genes identified by
different combinations of criteria.

Functional networks Criterion 1
only

Criteria
1 + 2

Criteria
1 + 2 + 3

+ 4

Visual network 198 7 5

Somatomotor network 106 41 3

Dorsal attention
network

150 37 11

Ventral attention
network

119 28 23

Limbic network 157 2 0

Frontoparietal network 173 27 0

Default mode network 176 4 0

Subcortical network 133 13 9

Criterion 1: the gene should have higher Csa in the tensor decomposition model of
the functional network; Criterion 2: the gene should show significant enrichment for
the functional network in network-type specific analysis; Criterion 3: the population-
averaged Csa values of the functional network were significantly greater than
those of any other networks; and Criterion 4: the population- and connection-
averaged Csa value of the functional network was twice greater than those of
any other networks.

new insight or evidence on the molecular mechanisms of
functional connectivity.

In consistent with prior studies linking connectivity-
related genes to signal transmission processes (Richiardi et al.,
2015; Anderson et al., 2018), the identified 125 connectivity-
related genes in this study were also enriched for various
biological processes associated with signal transmission.
Six connectivity-related genes are directly related to G

protein-coupled receptor signaling pathway, and many other
genes involve in signal transmission by regulating protein
secretion and transport, and dendrite extension. Fourteen
genes including two novel ones (MCUB and DOC2B) are
associated with Ca2+ binding and Ca2+-mediated biological
processes. As an important second messenger, these Ca2+-
related biological processes are critical for signal transmission
(Bando et al., 2016; Toth et al., 2016). Twenty-five genes
including four novel ones (RIPOR2, ADTRP, IFNLR1,
and PMEPA1) are related to the regulation of response to
stimulus, including the immune response. These findings
indicate that a series of complex biological processes are
involved in the formation, development, and plasticity of
functional connectivity.

The identified 125 reliable connectivity-related genes
and the 51 network-shared connectivity-related genes were
significantly enriched for schizophrenia (34/125 reliable
genes and 17/51 network-shared genes) rather than other
common psychiatric disorders (ASD, ADHD, BP, and MDD),
which is well consistent with the notion that the functional
disconnection is the most prominent neuroimaging feature
in schizophrenia (van den Heuvel and Fornito, 2014; Dong
et al., 2018). These findings indicate that connectivity-
related genes identified in healthy subjects may be also
related to functional disconnection in schizophrenia. The
resulting 51 (34 + 17) connectivity- and schizophrenia-
related genes are the potential candidates for investigating the
molecular mechanisms underlying the functional disconnection
in schizophrenia.

It is well known that functional connectivity is influenced
by both genetic and environmental factors (Ge et al., 2017;

FIGURE 5 | Network-shared and network-specific genes. (A) Shows network-shared genes (inner circle) and network-specific genes (outer circle). The eight
functional networks are represented by different colors. (B) Demonstrates the results of enrichment analyses of the 51 network-shared genes and the 51
network-specific genes.
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Teeuw et al., 2019). However, we barely know which kinds
of functional connections are prone to be regulated by
gene expression. In this study, we identified 179 functional
connections that were highly associated with gene expression.
Most of the gene-related functional connections (78.2%) were
located in the same functional network, which is consistent
with the higher correlations between gene expression and
functional connectivity within functional networks than
between networks (Richiardi et al., 2015; Zhu et al., 2021).
Notably, 41/45 (91.1%) homologous connections were identified
as gene-related connections, indicating that homologous
connections are prone to be regulated by gene expression. This
result is also consistent with the knowledge that homologous
regions between the bilateral hemispheres have both higher
genetic correlations and stronger anatomical connections
(Stark et al., 2008; Eyler et al., 2014; Shen et al., 2015;
Elliott et al., 2018).

In this study, we identified 51 network-shared genes
associated with functional connectivity, which were enriched
for positive regulation of neuronal action potential, which
is the core biological process in brain activity throughout
the brain. Specifically, CTNND1 is related to adhesion
between cells and signal transduction, and is involved
in the regulation of protein kinase and signaling receptor
binding, WNT signaling pathway, and postsynaptic membrane
neurotransmitter receptor levels (Tang et al., 2016). GABRA2
plays a role in the regulation of GABA-gated chloride
ion channel activity and chemical synaptic transmission
(Lengeling et al., 1999).

We also identified 51 network-specific connectivity-related
genes, which were mainly enriched for the regulation of ion
transport and ion homeostasis. Several network-specific genes
are involved in various signaling pathways, such as EDNRA
and KNG1 are related to the G protein-coupled receptor
signaling pathway (Horstmeyer et al., 1996; Sato et al., 2008),
HTR2A is involved in the CREB and ELK-SRF/GATA4 signaling
pathways, and NR4A2 is associated with canonical WNT
signaling pathway (Zagani et al., 2009). Several network-specific
genes (COX7A1, SLN, GBP2, BACE2, PRKG1, SYTL2, ABCC12,
and RGS6) are related to energy metabolism, such as ATP
synthesis and GTPase activity. Several network-specific genes
(PIK3CD, AIRE, PEA15, C1QB, and CHI3L1) play a role in
immune response.

Two limitations should be mentioned when one
interprets the results of this study. First, brain imaging
data and gene expression data were obtained from
different subjects and these two groups of subjects
differ in age and race. Thus, the spatial correlation
analyses between gene co-expression and functional
connectivity may be confounded by inter-individual
conservation of brain gene expression and inter-group
differences in these demographic data. Second, we still
do not know if gene–gene spatial autocorrelation is a
meaningful biological phenomenon or a meaningless
confounding factor, and thus we did not correct for gene–
gene spatial autocorrelation in this study, which may
bias our findings.

In conclusion, this study provides new knowledge for
the relationship between gene expression and functional
connectivity in the human brain. Firstly, we confirmed
that most of the previously identified connectivity-related
genes can be detected in individual-level transcription-
neuroimaging association analysis. Secondly, we found unequal
influences of gene expression on functional connections
and identified 179 functional connections linking more
closely to gene expression than other connections. Thirdly,
we identified network-shared genes and network-specific
genes for the first time, which are involved in different
molecular processes. These findings may improve our
understanding of the relationship between gene expression
and functional connectivity.
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