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Abstract: Transcriptomic studies of mental disorders using the human brain tissues have been limited,
and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied
three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and
two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We
aimed to uncover biological pathways where internal correlation structure was rewired or inter-
coordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which
were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes,
which were on the center of rewired pathways, were highly mutually consistent among the five
datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their
complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network,
we found “Clostridium neurotoxicity” and “signaling events mediated by focal adhesion kinase”
had the highest interactions. We further identified disconnected gene links underlying the disrupted
pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and
GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically
identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links
in schizophrenia transcriptomes.

Keywords: differential co-expression; pathway crosstalk; schizophrenia; PSMC6

1. Introduction

Schizophrenia (SCZ) is one of the main mental disorders that disrupt both the physical
and the social welfare of the affected subjects and their families. While genome-wide
association studies have identified a good number of risk variants to SCZ, functional
characterization and neurobiological mechanisms remain to be elucidated [1,2]. For other
human diseases, transcriptome profiling of diseased subjects and healthy controls have
contributed tremendously to unravel the underlying molecular mechanisms, but such data
and corresponding analyses have substantially lagged in schizophrenia studies, mainly
because of the difficulty to collect the appropriate human brain tissue. Among the available
SCZ transcriptome data, most were tied with microarrays [3,4], a technology gradually
replaced by a more powerful approach, RNA-Seq. In recent years, a few studies conducted
thorough analyses of SCZ brain transcriptomes, including original data analyses [5–7],
meta-analyses [8,9], and re-analyses [10,11]. These works suggested probable implication
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with SCZ of individual biological processes, especially immune system [5,10,12], oxidative
stress [11], and cytoskeleton remodeling [7]. Of note, blood samples of SCZ patients have
been used to facilitate deciphering molecular neuropathology [13], but most typically, brain
transcriptomes were still needed for validating tentative findings [14,15], as SCZ has been
commonly considered a brain-related disorder. So far, SCZ and other neuropsychiatric
disorders have been considered to have shared polygenic genetic architectures and dysreg-
ulated functional modules, while each of them also has unique genetic components [7,16].

Regarding the bioinformatics analysis of such data, we noted that the majority of
these original transcriptome studies have benefited from the gene co-expression approach,
especially through the application of a popular tool, Weighted correlation network analysis
(WGCNA) [17]. By design, WGCNA seeks modules of genes showing correlated expres-
sion patterns across experimental conditions and also differential expression between
conditions. While it originally targets gene co-expression, WGCNA has been frequently
re-purposed to probe into the differential co-expression patterns of individual genes or
gene sets, particularly through its later-augmented feature, “module preservation” [18].
As reviewed lately [19], a plethora of new methods directly tackling gene differential
co-expression has emerged as additional toolkits for deciphering disease-associated dys-
regulation mechanisms. Among the numerous differential co-expression tools, a software
package “differentially co-expressed genes and links” (DCGL) [20] is capable of identifying
differentially co-expressed gene pairs (links) and differentially co-expressed genes, and
another software “gene sets net correlations analysis” (GSNCA) [21] commits to evaluating
the disruption (rewiring) of internal co-expression within a biologically relevant gene set.
Both tools have contributed to a wide range of human disease studies, including many on
cancer [22–26] and a few on mental disorders [27–29].

Under a specific experimental condition, cellular processes or pathways are coordi-
nated in a particular way to fulfill their programmed functions. Biological pathways are
never static and have no definite boundaries in between. The interrogation of context-
specific pathway interactions gives rise to pathway crosstalk networks [30,31], which are
informative for elucidating pathophysiological mechanisms [32–34] and inferring drug effi-
cacy [35–37]. We previously inferred a common pathway crosstalk circuit for both SCZ and
bipolar disorder through superimposing differentially expressed genes to a protein-protein
interaction network [7]. Inspired by the principle of differential network biology [38], we
assumed that differentially co-expressed links, such as those detected by computational tool
DCGL, may form a network scaffold from which “perturbed” pathway crosstalk circuits
can be further identified.

The successful application of differential co-expression approaches in other human dis-
ease studies, as well as the intriguing idea of combining differential co-expression networks
and pathway crosstalk, has motivated us to carry out the present work of pathway-centric
analysis of multiple SCZ transcriptome datasets. Specifically, we investigated disruption
of expression correlation within cellular pathways in three RNA-Seq and two microarray
datasets, all of which were based on SCZ-vs-control comparison. We performed pathway
crosstalk analysis in the scaffold of the gene correlation-loss network, revealing a network
of disrupted pathway connections in SCZ. With regard to the SCZ phenotype, our analysis
results shed light on internally rewired pathways, important genes as pathway hubs, and
disrupted coordination between key signaling pathways.

2. Materials and Methods

The workflow started from integrating an SCZ transcriptome dataset with pathway
curation knowledge, entailed both intra-pathway and between-pathway differential co-
expression analyses, and finally culminated in the identification of schizophrenia-specific
pathway crosstalk disruptions and accountable gene correlation losses (Figure 1).
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sion network. On the other hand, an expression matrix was integrated with gene-to-pathway in-
formation to allow GSNCA to distinguish pathways of significant internal co-expression change, 
as well as hub genes of such pathways. Finally, the three major outputs from GSNCA and DCGL 
were input to CSPN, which returned disrupted pathway crosstalk circuit and accountable gene 
links. Five expression data sets were used, and their respective results were mutually compared or 
complemented in the workflow. SCZ, schizophrenia; DCGL, differentially co-expressed genes and 
links; CSPN, characteristic sub pathway network; GSNCA, gene sets net correlations analysis. 
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and the data were obtained from Stanley Medical Research Institute. These three RNA-
Seq datasets corresponded to the discovery and validation datasets underlying our earlier 
transcriptome study of SCZ and bipolar disorder [7], where more details on alignment 
and quantification were described. Here, to delimit a set of commonly expressed genes 
across three RNA-Seq datasets, we required the fraction of non-zero expression values 
higher than 80% across all samples, and the remaining genes must be common to all three 
RNA-Seq datasets. As a result, 12,325 genes survived the gene pre-filtering. 
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region 10) [40]. Both microarray datasets were generated from the GeneChip® Human Ge-
nome U133 Plus 2.0 array. Functions in R packages “hgu133plus2.db” and “rma” were 
used for data pre-processing. Expression values for probe sets were averaged to the gene 
level. From the whole set of genes represented on the microarray platform, we retained 
11,724 genes that overlapped with the working gene set of the three RNA-Seq datasets. 

  

Figure 1. Workflow to identify rewired pathways, disrupted pathway crosstalk circuits, and critical
genes and gene links in schizophrenia. A gene expression matrix originating from RNA-Seq or
microarray contained expression profiles for tens of thousands of genes across two contrasted pheno-
types: control (normal) and schizophrenia (SCZ). Such an expression matrix was analyzed by DCGL
to identify correlation-loss gene links, which formed a global gene differential co-expression network.
On the other hand, an expression matrix was integrated with gene-to-pathway information to allow
GSNCA to distinguish pathways of significant internal co-expression change, as well as hub genes of
such pathways. Finally, the three major outputs from GSNCA and DCGL were input to CSPN, which
returned disrupted pathway crosstalk circuit and accountable gene links. Five expression data sets
were used, and their respective results were mutually compared or complemented in the workflow.
SCZ, schizophrenia; DCGL, differentially co-expressed genes and links; CSPN, characteristic sub
pathway network; GSNCA, gene sets net correlations analysis.

2.1. SCZ and Control Transcriptome Datasets

Five RNA-Seq/microarray datasets assaying various human brain regions were in-
cluded in our study (Table 1). RNAseq1 was generated by us using an RNA-Seq experiment
of the anterior cingulated cortex (Brodmann region 24) of postmortem brain samples. This
dataset is available upon request to the authors. RNAseq2 and RNAseq3 recorded gene
expression profiles in two different brain regions of the same set of donors, and the data
were obtained from Stanley Medical Research Institute. These three RNA-Seq datasets
corresponded to the discovery and validation datasets underlying our earlier transcriptome
study of SCZ and bipolar disorder [7], where more details on alignment and quantification
were described. Here, to delimit a set of commonly expressed genes across three RNA-Seq
datasets, we required the fraction of non-zero expression values higher than 80% across all
samples, and the remaining genes must be common to all three RNA-Seq datasets. As a
result, 12,325 genes survived the gene pre-filtering.
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Table 1. Basic information of five gene expression matrices.

Dataset Brain Region # SCZ Samples # Control Samples # Working Genes

RNAseq1 [7] Anterior cingulated cortex (Brodmann
region 24) 31 26

12,325RNAseq2 [7] Hippocampus 14 15
RNAseq3 [7] Prefrontal cortex 14 15

GSE1 [39] Prefrontal cortex brain tissues
(Brodmann region 46) 30 29

11,724

GSE2 [40] Prefrontal cortex brain tissues
(Brodmann region 10) 28 23

GSE1 refers to a microarray dataset GSE21138 downloaded from Gene Expression
Omnibus (GEO) for prefrontal cortex brain tissues (Brodmann region 46) [39]. GSE2 refers
to another microarray dataset, GSE17612, for prefrontal cortex brain tissues (Brodmann
region 10) [40]. Both microarray datasets were generated from the GeneChip® Human
Genome U133 Plus 2.0 array. Functions in R packages “hgu133plus2.db” and “rma” were
used for data pre-processing. Expression values for probe sets were averaged to the gene
level. From the whole set of genes represented on the microarray platform, we retained
11,724 genes that overlapped with the working gene set of the three RNA-Seq datasets.

2.2. Data Calibration with Respect to Nuisance Sample Covariates

As illustrated in previous studies [7,39,40], certain sample covariates might have
a significant influence on gene expression. To calibrate gene expression values against
relevant sample covariates, we fitted the observed expression values of each gene with a
linear model, taking into account the variable of primary interest, SCZ vs. control, as well as
five nuisance covariates: age, sex, postmortem interval, pH, and cumulative antipsychotic
use (due to lack of drug use data, only the first four nuisance covariates were considered
in GSE1 and GSE2). In the resultant linear model, when a p-value for a coefficient was
found less than 0.05, the corresponding covariate was deemed significantly influential on
gene expression and the estimated coefficient was subtracted from the gene expression
value. The numbers of genes significantly influenced by nuisance covariates were shown in
Supplemental File 1: Figure S1. Similar to our previous practice, we found a few hundred
to thousand genes being affected per covariate per dataset.

2.3. Assessing Differential Co-Expression Levels of Pathways

We downloaded pathways curated in Pathway Commons [41], which assigned 8343 genes
to 2191 pathways from four sources (Panther, Humancyc, Reactome, and PID). Of these
pathways, only ten were repetitive in more than one source, and we adopted the union of
genes across duplicate sources to abolish pathway redundancy. Next, we kept only those genes
that appeared in the expression data matrices and dropped the pathways containing four or
fewer genes. As a result, we ended up with 1564 and 1561 pathways eligible for analyzing the
RNA-Seq and microarray datasets, respectively.

The gene sets net correlations analysis (GSNCA) [21] implemented in R package GSAR
was used to assess differential co-expression levels of each candidate pathway. Phenotype
labels of samples were permuted 1000 times to obtain p-values. An analogous method,
GSCA [42], was also implemented and its results were compared to GSNCA results. Given
one p-value for each pathway out of each dataset, we performed the Fisher’s meta-test to
summarize multiple dataset-specific p-values, thus making an overall conclusion on each
pathway’s differential co-expression significance from all five datasets.

Within one pathway, GSNCA summarizes the expression correlation profile for a
gene with respect to all other peer genes, deriving a “weight” index for each gene. Briefly,
GSNCA solves the weight vector for all pathway genes under each experimental condition
separately and regards the pathways with the most remarkable weight vector changes
as the most phenotype-relevant pathways. In one experimental condition, the gene with
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the highest weight value is designated as the hub gene, around which an intra-pathway
gene co-expression network is constructed. The intra-pathway co-expression network is
depicted as a union of the first and the second minimum spanning trees, which is identified
by minimizing the total path length (sum of correlation distances). By definition, the hub
gene of a pathway may not necessarily have the highest degree (i.e., number of connected
edges) because it is identified by virtue of the quantitative regulatory importance (i.e., the
resolved weight value) rather than the degree [21].

2.4. Constructing Gene Differential Co-Expression Networks

We used our R package DCGL (v2.0, Shanghai Center for Bioinformation Technology,
Shanghai, China) [43] to identify gene pairs showing changed correlations, i.e., differentially
co-expressed links. The Pearson correlation coefficient was adopted as the metric for gene-
gene co-expression. Setting the co-expression link density (proportion of co-expressed
gene pairs over all possible gene pairs) to 0.01 and a priori differential co-expression rate
to 0.1, we obtained ~70 thousand raw differential co-expression links from each dataset,
representing an expected fraction of 0.1% for all possible gene-gene links.

Considering that the between-dataset overlapping fraction of differential co-expression
links was expected to be 0.1%, the observed overlapping fractions, 0.14% and 0.72% for
RNA-Seq datasets and microarray datasets, respectively, were significantly higher than
the expected rate (p < 0.001, binomial probability model). Microarray datasets presented a
higher link overlapping fraction than the RNA-Seq datasets, possibly because of the closer
histological relationship of microarray samples compared to the more distantly separated
brain regions of the RNA-Seq datasets (Table 1).

The raw differential co-expression links comprised three types, namely “same-signed”,
“differently signed”, and “switched”. We found that the same-signed correlation changes
were the most prevalent (average fraction was 87.9%) and that gene pairs with positive cor-
relation furthermore dominated the same-signed links (average fraction is 77.6%). Because
it was recently reported [44] that a universal pattern of expression decoherence pervades
the transcriptome responses to many genetic and environmental perturbations, we decided
to analyze only the positive-signed correlation losses, which numbered ~23,500 on average
and 117,386 in combination across five datasets. Finally, we took the union set of correlation
losses from all five datasets; the merged gene-gene links of correlation losses made up the
scaffold network for inferring pathway crosstalk network in the next step.

2.5. Inferring Disrupted Pathway Crosstalk Network

Following our previous practices [7,34], here, we employed CSPN [45] to delineate
the pathway crosstalk network. CSPN was originally devised to assess pathway-pathway
inter-connection based on the frequency of cross-pathway protein-protein interactions.
To identify SCZ-disrupted pathway connections in a more straightforward sense, we
substituted a network of correlation-loss gene links for the default protein interaction
network. Briefly, CSPN requires three major inputs: a network of entities, a subset of
entities, and a subset of connections. These three major inputs were indicated in our
workflow (Figure 1). We ran CSPN twice, tried two alternative modes separately, and
obtained the intersection of significant pathway pairs (p < 0.05). The two modes of CSPN
considered cross-pathway links in relation to a concerned gene set differently: in the “both”
mode, links connecting genes of interest on both ends were considered, while in the “or”
mode, links incident to genes of interest were considered.

2.6. Venn Diagram and Cellular Component Analysis

Venn diagrams overarching five object lists were rendered with an online tool from Dr.
Prof Van de Peer’s Bioinformatics and Evolutionary Genomics group (http://bioinformatics.
psb.ugent.be/webtools/Venn/ (accessed on 11/22/2019)). Web service ToppFun [46]
(https://toppgene.cchmc.org/enrichment.jsp (accessed on 04/12/2021)) was invoked for
examining enriched cellular components of pivotal genes.

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://toppgene.cchmc.org/enrichment.jsp
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3. Results
3.1. Neural, Immune, and Cell Adhesion Pathways Manifesting Correlation Rewiring

GSNCA [21] evaluates individual biological pathways based on the severity of rewiring
of gene co-expression network. At p < 0.05, tens or hundreds of significant pathways were
selected by GSNCA from each dataset (Table 2, Supplemental File 1: Figure S2). Based
on binomial test of overlapping pathways, RNAseq1 showed significant agreement with
RNAseq2, GSE1, and GSE2; GSE1 was significantly consistent with RNAseq3 (Table 2).

Table 2. Pairwise overlapping situation of GSNCA-identified pathways among five datasets. Cells
in the upper triangle refer to the number of overlapping pathways. Cells in the lower triangle refer
to the p-values for the corresponding overlapping quantity that was estimated from the binomial
distribution model.

RNAseq1 RNAseq2 RNAseq3 GSE1 GSE2

RNAseq1 105 * 6 12 48 7
RNAseq2 0.029 § 44 * 4 9 0
RNAseq3 0.76 0.78 224 * 114 1

GSE1 0.030 § 0.99 1.2 × 10−5,§ 58 * 6
GSE2 1.5 × 10−3,§ 1.00 0.95 0.95 32 *

* Number of significant pathways identified from each individual dataset (p < 0.05). § These nominal p-values
were less than 0.05, and the corresponding false discovery rates were below 0.067.

To further narrow down the pathways to a most relevant set, we identified 60 inter-
nally rewired pathways for SCZ (Supplemental File 2: Table S1) as those endorsed by at
least two datasets and ascertained with an aggregate p-value of less than 0.01. Of these
60 pathways, seven were accredited by three datasets (Table 3). Apart from the apparent
neural pathways “glutamate neurotransmitter release cycle” and “L1CAM interactions”,
immune, cell adhesion, and several signaling pathways are featured, consistent with inde-
pendent findings in peer researches [47–49]. Cell adhesion pathways are believed to play a
role in neurite outgrowth, growth cone adhesion, and other neural functionalities [50–52].
Immune dysregulation was frequently stressed in prior transcriptome studies of mental
disorders [8,12,53].

Table 3. Biological pathways showing significant internal correlation structure rewiring in three of the five exam-
ined datasets.

Pathway Name # Genes Fisher’s Combined
p-Value

Hub Gene(s) in
Controls * Hub Gene(s) in SCZ *

MHC class II antigen
presentation 75 7.0 × 10−5 AP1S1, CLTC, KIF3B DCTN1, KIFAP3,

SPTBN2
Synthesis of epoxy (EET) and

dihydroxyeicosatrienoic
acids (DHET)

5 4.0 × 10−4 CYP1A2, EPHX2 CYP1B1, CYP2J2,
EPHX2

Glutamate neurotransmitter
release cycle 20 0.0015 SNAP25, RAB3A, SYT1 PPFIA2, STXBP1

L1CAM interactions 75 0.0019 CHL1, DLG1, SCN8A CHL1, DLG3, MAP2K1
GPCR downstream signaling 258 0.0037 DGKI, SOS1, PRKCE PDE1A, PRKCE, RGS7

Receptor-ligand binding
initiates the second proteolytic

cleavage of Notch receptor
13 0.0037 ADAM10,

NOTCH3, NOTCH4
NOTCH1,

NOTCH3, UBC

a6b1 and a6b4
Integrin signaling 32 0.0050 PIK3CA, YWHAG PIK3CA, YWHAB,

YWHAG

G alpha (i) signaling events 97 0.0056 ADCY1, CHRM4,
GNG13 GNG11, GNG13, RGS7

FAS signaling pathway 18 0.0056 CYC1, GSN, MAP2K4 LMNB2, MAP2K4,
MAPK9

* The hub genes nominated by different datasets may not be the same, and they were all shown.
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In addition to compiling the list of co-expression-perturbed pathways for SCZ, our
results can be interpreted for subtle clues to the dysregulation mechanisms within each
plausible pathway. From control to SCZ, each pathway may bear a specific disruption
pattern of its correlation wiring structure. In “glutamate neurotransmitter release cycle”
(Figure 2A), the 20 member genes were naturally divided into two clear-cut groups of
high intra-correlations in control samples. Switching from control to SCZ, the intra-group
correlations were generally preserved, and some cross-group correlations arose. For
“L1CAM interactions” (Figure 2B), a majority of its 75 member genes were engaged in a
distinctive correlation clique in control, but this clique faded away in SCZ. For “class II
antigen presentation” (Figure 2C), transcriptome correlations were more widespread in
SCZ. In addition, visual comparison of intra-pathway co-expression wiring networks for
control and SCZ in parallel was enabled, as exemplified for “glutamate neurotransmitter
release cycle” (Figure 2D).
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Figure 2. Internal correlation rewiring of pathways perturbed in schizophrenia (SCZ). (A–C) correlation coefficient heatmaps
for three pathways: “glutamate neurotransmitter release cycle” (A), “L1CAM interactions” (B), and “MHC class II antigen
presentation” (C). The three heatmaps are derived from expression datasets GSE1, RNAseq3, and RNAseq1, respectively.
In each heatmap, the lower triangle and the upper triangle cover gene-gene co-expression level in the control and SCZ
groups, respectively. The color bar on top of the heatmap indicates two subgroups of “glutamate neurotransmitter release
cycle” genes in the normal condition. (D) Gene co-expression networks formed by 20 genes of pathway “glutamate
neurotransmitter release cycle” (data source: GSE1). Left, control; right, SCZ. Two highlighted genes (SNAP25 and PPFIA2)
are the hub gene in control and SCZ, respectively. Of note, a hub gene does not necessarily have the most connections in the
network because it is identified as having the highest regulatory impact (overall co-expression synchrony with all other
genes) rather than the highest degree. (E) Principal component analysis summarizes pathway rewiring result out of ten
separate method-dataset combinations. Uppercase, results from gene sets net correlations analysis (GSNCA); lowercase,
results from method gene set co-expression analysis (GSCA). RNAseq1, RNAseq2, RNAseq3, GSE1, and GSE2 are all gene
expression dataset names, with details given in Table 1.
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As a quality control, we applied an analogous method GSCA [42] to all five datasets
and yielded pathway-wise p-values in the same manner as GSNCA results. We performed
principal component analysis on the 10 lists of p-values, resulting from different combina-
tions of method and dataset, to examine the result consistency across datasets and between
analysis tools. A higher consistency was seen between the methods than between the
datasets (Figure 2E). Specifically, the mean correlation coefficient between the two methods
was 0.39, whereas the between-dataset correlation coefficients averaged 0.031 for GSNCA
and 0.037 for GSCA.

3.2. Dynamic, Pleiotropic Pathway Hub Genes Overrepresented in Neuron Components

Based on the overall regulatory importance of a gene relative to the other genes within
the intra-pathway co-expression system, GSNCA designates one gene as the hub of a path-
way [21]. For instance, SNAP25 and PPFIA2 were hubs of the “glutamate neurotransmitter
release cycle” in control and SCZ, respectively (Figure 2D, Table 3). In control, SNAP25 was
found with the greatest co-expression synchrony with all other member genes, whereas
in SCZ, such a co-expression center was assumed by PPFIA2. The five datasets presented
120, 66, 214, 386, and 45 hub genes for their respective significant pathway lists (Table 4,
diagonal cells). Remarkably, every pair of datasets shared a significant fraction of hub
genes (all p ≤ 0.01 per binomial distribution; Table 4; Supplemental File 1: Figure S2).
Similar to our intersection rule for pathways, we took a union of pairwise joint hub genes,
leading to a consensus set of 92 genes (Supplemental File 2: Table S2). Because these 92
genes were positioned at the center of SCZ-disrupted pathways, they have termed the
pivotal genes hereafter.

Table 4. Pairwise overlapping of GSNCA-identified pathway hub genes among five datasets. Diag-
onal: number of hub genes merged from dataset-specific significant pathways. Cells in the upper
triangle denote the numbers of overlapping hub genes. Cells in the lower triangle denote the p-values
for the corresponding overlapping quantity that was estimated from the binomial distribution model.

RNAseq1 RNAseq2 RNAseq3 GSE1 GSE2

RNAseq1 120 * 7 18 25 3
RNAseq2 4.84 × 10−7 66 * 7 11 3
RNAseq3 9.24 × 10−13 2.76 × 10−5 214 * 31 4

GSE1 2.12 × 10−14 1.52 × 10−6 1.25 × 10−12 386 * 11
GSE2 1.25 × 10−3 1.29 × 10−4 1.53 × 10−3 5.24 × 10−8 45 *

* Number of hub genes of correlation-rewired pathways identified from each individual dataset.

Applying functional enrichment analysis against Cellular Components of Gene Ontol-
ogy, we found a plethora of neuron compartments (Figure 3A). For instance, 33 protein
products of pivotal genes reside in neuron projection, a significant over-representation ascer-
tained by a Benjamini-Hochberg-adjusted p-value of 1.9 × 10−11. Other significant neuron
cellular localizations included axon, synapse, dendrite, myelin sheath, etc. (Figure 3A) [7].

Despite that we did not take multi-functionality as a defining criterion, we found 45
pivotal genes (48.9%), each participating in two or more SCZ-disrupted pathways. We
further identified the respective pathways that each multi-functioning gene showed up as a
hub in the control or SCZ samples (Supplemental File 2: Table S2). The results depicted the
dynamic hub roles of the 15 most pleiotropic genes (Figure 3B). Of these 15 genes, protein
products of MAP2K1, MAP2K4, SNAP25, STX1A, and SYT1 are released to the “neuron
projection” compartment. Each of these five genes participates in at least three pathways,
and they each appeared as a hub in at least one pathway in healthy brains (Figure 3B, light
gray and dark gray bars). From control to SCZ, SNAP25 and STX1A lost their hub roles,
MAP2K1 and MAP2K4 gained additional hub roles, while SYT1 manifested the hub role in
a different pathway (Figure 3B). Other than these five neuron-located genes, PSMC6 is of
special interest as it gained 17 hub roles in SCZ (Figure 3B, Supplemental File 2: Table S2),
becoming the hub of almost all pathways it belongs to (17 out of 19). This proteasome gene
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was found down-regulated in SCZ [54,55], whereas according to our analysis it seemed to
confer an increased activity in SCZ.
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Figure 3. Cellular localization and pathway affiliation of pivotal pathway hub genes. (A) Top
20 significantly overrepresented cellular components of 92 pivotal genes. From top to bottom,
components were ordered by decreasing statistical significance. (B) Number of pathways where a
pivotal gene appeared as a hub. Genes were ordered by the number of pathways (colored bar length)
where the gene appeared as a hub in either control (CTRL) or SCZ samples. Five gene products
localized in “neuron projection” were labeled by asterisk (*).

3.3. Disrupted Pathway Crosstalks Attributed to Gene Correlation Losses

Using DCGL [43], we identified correlation-loss links from five datasets, respectively.
The overlapping fraction of raw DCLs across datasets significantly exceeded the random
expectation (p-value < 0.001, binomial probability model), though the actual number of joint
links was technically too small to allow for sizable network inference (Supplemental File
1: Figure S2). Hence, we integrated results from five datasets and constructed a network
consisting of all correlation-loss links from individual data sources.

Through appreciating significantly frequent cross-pathway links connecting or inci-
dent to pivotal genes (two analysis modes: “both” and “or”), CSPN repeatedly revealed
12 disrupted pathway connections revolving around “Clostridium neurotoxicity” and
“signaling events mediated by focal adhesion kinase” (Figure 4A). For verification pur-
poses, we also ran CSPN multiple times on dataset-specific input sets (gene links, hub
genes, and correlation-rewired pathways). Of the total 10 trials of different dataset/mode
combinations, only three returned sizable result sets (i.e., at least 10 pathway connections),
two of which recovered eight and 10 of the 12 formal crosstalk connections, respectively.

The pathway crosstalk disruptions implicated many neuropsychiatric pathways, in-
cluding neurotransmitter release cycle, clostridium neurotoxicity, L1CAM interactions,
among others. Additionally, the network involved focal adhesion and immune pathways,
themes of high relevance with SCZ per multiple lines of evidence [8,12,50,51,56,57].

In companion with the disrupted crosstalk of pathway entities (Figure 4A), we
presented the disconnected gene links (Figure 4B) underpinning the revealed pathway
crosstalk disruptions. We showed 21 correlation-loss gene links covering 14 pivotal hub
genes, where four links connected pivotal genes on both ends. According to the reference
correlation database CoXpressDB [58], gene pairs PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A,
and GRIA1:MAP2K4 are universally highly correlated (correlation coefficients close to or
above 0.30). However, these pivotal inter-connections broke apart in SCZ transcriptomes,
accounting for the observed pathway crosstalk disruptions to a large extent.
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Figure 4. Schizophrenia-specific disrupted pathway crosstalk network (A) and accountable
correlation-loss gene links (B). In (A), node size is proportional to the differential co-expression
p-value (aggregated from five datasets), and edge width is proportional to (disrupted) pathway con-
nection p-value. In (B), node size is proportional to the multiplicity of genes’ pathway membership;
black and gray nodes denote differentiate pivotal genes and other genes, respectively; dashed lines
connect pivotal genes on both ends, and dotted lines connect pivotal genes on single ends.

4. Discussion

Due to the ethical standard for the collection of human brain tissue in research,
transcriptome data have been very limited for schizophrenia (SCZ), and gene expres-
sion dysregulation mechanisms underlying SCZ remain elusive. Here we applied three
established differential co-expression methods to analyze three RNA-Seq and two mi-
croarray datasets derived from schizophrenia and matched normal samples, representing
one of the major efforts to integrate multiple transcriptome data using different compu-
tational approaches. In total, we sorted out 60 pathways of internal correlation rewiring
(Supplemental File 2: Table S1) by summarizing across five datasets, which encompassed
glutamate neurotransmitter release cycle, L1CAM interactions, immune, cell adhesion,
and several signaling pathways (FAS, Notch, and GPCR). Joint nomination by multiple
datasets resulted in a list of 92 pivotal genes (Supplemental File 2: Table S2) underlying
pathway internal rewiring. Finally, we uncovered an SCZ-specific disrupted pathway
crosstalk network centered around “Clostridium neurotoxicity” and “signaling events
mediated by focal adhesion kinase”, largely attributed to disconnection of four universally
correlated gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4). Put
together, we reported SCZ-specific, internally rewired pathways, dynamic pathway hub
genes, and disrupted pathway crosstalk connections. These results provide insights into a
deep understanding of SCZ pathophysiological mechanisms.

Compared to the conventional differential expression approach, differential co-expression
analysis represents a different yet complementary perspective on diseased transcriptomes.
Methods purported to identify differentially co-expressed genes, gene connections, and gene
sets have been released and improved during the past 15 years [19,59,60]. Nevertheless,
differential co-expression analysis methods have not been applied as widely as differential
expression analysis methods, and hence they are undergoing rapid developmental advance-
ment. With a rigorous and cautious standard, we imposed analogous methods, tried various
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parameters, and tested alternative input sets in our workflow. To reassure the findings, robust
results were obtained in these repetitive trials, evidence including the significantly high portion
of overlapping hub genes and the recurrence of most pathway crosstalk connections from
individual datasets. Of note, result consistency across the five datasets was not always as
high as expected, especially with regards to the lists of internally rewired pathways. We have
applied both GSNCA and GSCA to assess pathway co-expression rewiring, and principal
component analysis of the various sets of results supported more evident concordance between
the two methods than among the datasets. On the one hand, this result indicated that method-
ological variants were not a major concern in mining differential co-expression patterns; on
the other hand, we were reminded of the heterogeneity arising from different sample sources.
In a technical survey of co-expression changes across human tissues, 3–32% of co-expression
links were found tissue-specific [61]. It would be ideal if the multiple datasets included in
the workflow had originated from the same brain region, but unfortunately, this is very hard
to achieve, especially given inadequate data accumulation concerning brain tissues. In our
prior transcriptomic study for SCZ and bipolar disorder [7], we recruited data of hippocam-
pus and prefrontal cortex tissues to validate our discoveries out of anterior cingulated cortex
samples. In the recent integrative study of five psychiatric disorders [16], microarray datasets
originating from diverse brain regions were combined to represent each psychiatric disorder.
The authors examined if some results would vary across tissue origins and concluded that the
signatures or patterns they discovered were consistent across the four major cortical lobules. In
the future, as more postmortem brain transcriptome data are being generated and single-cell
RNA-Seq is emerging as a more powerful technology, we expect such data will be used to
further interrogate tissue discrepancy across multiple datasets.

Compared with the pathway rewiring results, pathway hub genes manifested a
much higher level of consistency across datasets, where every pair of datasets shared
a significantly high portion of pathway hubs (Table 4). This could partly be due to the
functional multiplicity of many SCZ hub genes; presumably, a small set of pleiotropic
genes dictated a great number of pathways, and they might be switching their proprietary
pathways across different brain regions or temporal phases. This presumption could
explain the low consistency within pathways yet high consistency in hub genes across
pathways, and it happens to be an implicit premise underlying most pathway crosstalk
analysis strategies [30].

Aggregating numerous gene expression signals to biological processes or functional
modules is a common and powerful approach to disease transcriptomes. Analyzing co-
expression or differential co-expression of functional gene modules has been a popular
approach to dissecting psychiatric disorder’s transcriptomes, which features frequent ap-
plications of the well-known software WGCNA or rWGCNA [62]. However, WGCNA is
heavily rooted in searching for co-expression modules [19] and neglects certain subtleties
of gene correlation [63], and thus, it does not fit well in the framework of differential
network biology [38]. In many cases, however, the identified functional modules comprise
a large number of constituent genes, presenting a need to further refine the functionally
relevant genes to a manageable set. This gap can be filled by the increasing application of
pathway crosstalk analysis. Through delineating the significant inter-connections among
pathways, this approach highlights the central pathways and their immediate neighbors
and characterizes the context-specific inter-coordinates among theme-relevant pathways.
Such pathway crosstalk analyses have helped to propose novel pivotal genes for a variety
of human diseases [32,33,45]. For example, in an early methodological innovation [64],
researchers integrated the differential expression attribute of genes with information on
pathway member sharing and showed that groups at the pathway interfaces were more
relevant to leukemia subtype distinction. In another example of bioinformatics analysis of
hypertensive nephropathy [65], the authors used a functionality through GOSemSim [66]
to sketch a function term connection network, whereby they focused attention to genes
associated with the bridging terms (terms forming the boundaries of network modules). In
the present study, we laid out a differential-network-assisted pathway crosstalk analysis
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workflow (Figure 1), demonstrating its validity in mining SCZ-relevant rewired pathways,
disrupted pathway crosstalk circuits, and critical genes and gene links. This approach with
innovative integration of multiple differential co-expression methods proved successful
not only in the present SCZ study, but also in a parallel research on chronic kidney dis-
ease [67]. Applied on five representative SCZ transcriptome datasets across microarray
and RNA-Seq platforms, our analytical framework culminated in a network of pathway
crosstalk disrupted in SCZ (Figure 4A), where the pathway dis-coordination is attributed
to correlation losses of specific gene-gene pairs (Figure 4B). While the results generated
in the present study are modest and are far from a mechanistic demonstration, we hope
the pivotal hub genes (Table S2) and the disrupted gene links and pathway connections
(Figure 4) would help with generation of biological hypotheses for further validation in
future. We are actively refining the proposed analytical framework and also developing a
convenient tool to extend the methodological impact to broad fields. In the SCZ domain,
new datasets from various sample sources and better qualify data are expected, which will
help us improve our analytical framework.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12050665/s1, Figure S1: Numbers of genes whose expression values were significantly
influenced by nuisance covariates, Figure S2: Venn diagrams show overlapping of significant path-
ways (A), hub genes (B), and correlation-loss links (C) among five expression datasets, Table S1: Sixty
co-expression-perturbed pathways for SCZ, Table S2: Ninety-two pivotal genes.
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