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AJILE12: Long-term naturalistic 
human intracranial neural 
recordings and pose
Steven M. Peterson  1,2, Satpreet H. Singh  3, Benjamin Dichter4, Michael Scheid4, 
Rajesh P. N. Rao5,6 & Bingni W. Brunton1,2 ✉

Understanding the neural basis of human movement in naturalistic scenarios is critical for expanding 
neuroscience research beyond constrained laboratory paradigms. Here, we describe our Annotated 
Joints in Long-term Electrocorticography for 12 human participants (AJILE12) dataset, the largest human 
neurobehavioral dataset that is publicly available; the dataset was recorded opportunistically during 
passive clinical epilepsy monitoring. AJILE12 includes synchronized intracranial neural recordings and 
upper body pose trajectories across 55 semi-continuous days of naturalistic movements, along with 
relevant metadata, including thousands of wrist movement events and annotated behavioral states. 
Neural recordings are available at 500 Hz from at least 64 electrodes per participant, for a total of 1280 
hours. Pose trajectories at 9 upper-body keypoints were estimated from 118 million video frames. To 
facilitate data exploration and reuse, we have shared AJILE12 on The DANDI Archive in the Neurodata 
Without Borders (NWB) data standard and developed a browser-based dashboard.

Background & Summary
Natural human movements are complex and adaptable, involving highly coordinated sensorimotor process-
ing in multiple cortical and subcortical areas1–4. However, many experiments focusing on the neural basis of 
human upper-limb movements often study constrained, repetitive motions such as center-out reaching within 
a controlled laboratory setup5–9. Such studies have greatly increased our knowledge about the neural correlates 
of movement, but it remains unclear how well these findings generalize to the natural movements that we often 
make in everyday situations10,11. Human upper-limb movement studies have incorporated self-cued and less 
restrictive movements12–16, but focusing on unstructured, naturalistic movements can enhance our knowledge 
of the neural basis of motor behaviors17, help us understand the role of neurobehavioral variability18,19, and aid 
in the development of robust brain-computer interfaces for real-world use20–26.

Here, we present synchronized intracranial neural recordings and upper body pose trajectories opportunis-
tically obtained from 12 human participants while they performed unconstrained, naturalistic movements over 
3–5 recording days each (55 days total). Intracranial neural activity, recorded via electrocorticography (ECoG), 
involves placing electrodes directly on the cortical surface, beneath the skull and dura, to provide high spatial 
and temporal resolution27–29. Pose trajectories were obtained from concurrent video recordings using computer 
vision to automate the often-tedious annotation procedure that has previously precluded the creation of similar 
datasets30,31. Along with these two core datastreams, we have added extensive metadata, including thousands of 
wrist movement initiation events previously used for neural decoding32,33, 10 quantitative event-related features 
describing the type of movement performed and any relevant context18, coarse labels describing the participant’s 
behavioral state based on visual inspection of videos34, and 14 different electrode-level features18. This dataset, 
which we call AJILE12 (Annotated Joints in Long-term Electrocorticography for 12 human participants), builds on 
our previous AJILE dataset35 and is depicted in Fig. 1.

AJILE12 has high reuse value for future analyses because it is large, comprehensive, well-validated, and 
shared in the NWB data standard. We have included 55 days of semi-continuous intracranial neural recordings 

1University of Washington, Department of Biology, Seattle, 98195, USA. 2University of Washington, eScience 
Institute, Seattle, USA. 3University of Washington, Department of Electrical and Computer Engineering, Seattle, 
USA. 4CatalystNeuro, Benicia, 94510, USA. 5University of Washington, Paul G. Allen School of Computer Science 
and Engineering, Seattle, USA. 6University of Washington, Center for Neurotechnology, Seattle, USA. ✉e-mail: 
bbrunton@uw.edu

DATA DEScRIPToR

oPEN

https://doi.org/10.1038/s41597-022-01280-y
http://orcid.org/0000-0003-0782-5788
http://orcid.org/0000-0003-1867-4401
mailto:bbrunton@uw.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01280-y&domain=pdf


2Scientific Data |           (2022) 9:184  | https://doi.org/10.1038/s41597-022-01280-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

along with thousands of verified wrist movement events, which both greatly exceed the size of typical ECoG 
datasets from controlled experiments36 as well as other long-term naturalistic ECoG datasets34,35,37,38. Such a 
wealth of data improves statistical power and enables large-scale exploration of more complex behaviors than 
previously possible, especially with modern machine learning techniques such as deep learning32,39–42. In addi-
tion, AJILE12 contains comprehensive metadata, including coarse behavior labels, quantitative event features, 
and localized electrode positions in group-level coordinates that enable cross-participant comparisons of neural 
activity. We have also pre-processed the neural data and visually validated all 6931 wrist movement events to 
ensure high-quality data, which have been already used in multiple studies18,32,33. In addition, we have released 
AJILE12 in the NWB data standard (Table 1)43 to adhere to the FAIR data principles of findability, accessibility, 
interoperability, and reusability44. Unified, open-source data formats such as NWB enable researchers to easily 
access the data and apply preexisting, reusable workflows instead of starting from scratch. Furthermore, we have 
developed an accessible and interactive browser-based dashboard that visualizes neural and pose activity, along 
with relevant metadata. This dashboard can access AJILE12 remotely to visualize the data without requiring 
local data file downloads, improving AJILE12’s accessibility.

Fig. 1 Schematic overview of our Annotated Joints in Long-term Electrocorticography for 12 human participants 
(AJILE12) dataset. AJILE12 includes ECoG recordings and upper body pose trajectories for 12 participants 
across 55 total recordings days, along with a variety of behavioral, movement event-related, and electrode-level 
metadata. All data is stored on The DANDI Archive in the NWB data standard, and we have created a custom 
browser-based dashboard in Jupyter Python to facilitate data exploration without locally downloading the data 
files.

Data file variable Description

\acquisition\ElectricalSeries ECoG recordings

\processing\behavior\data_interfaces\Position Upper body poses

\processing\behavior\data_interfaces\ReachEvents Wrist move events

\intervals\reaches Quantitative event features

\intervals\epochs Coarse behavior labels

\electrodes Electrode features

Table 1. The main variables contained in each data file. Files are named sub-##_ses-#_behavior+ecephys.nwb, 
with ## indicating the participant and # denoting the day of recording.
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Methods
Participants. We collected data from 12 human participants (8 males, 4 females; 29.4 ± 7.6 years old 
[mean ± SD]) during their clinical epilepsy monitoring at Harborview Medical Center (Seattle, USA). See Table 2 
for individual participant details. Each participant had been implanted with electrocorticography (ECoG) elec-
trodes placed based on clinical need. We selected these participants because they were generally active during 
their monitoring and had ECoG electrodes located near motor cortex. All participants provided written informed 
consent. Our protocol was approved by the University of Washington Institutional Review Board.

Data collection. Semi-continuous ECoG and video were passively recorded from participants during 
24-hour clinical monitoring for epileptic seizures. Recordings lasted 7.4 ± 2.2 days (mean ± SD) for each par-
ticipant with sporadic breaks in monitoring (on average, 8.3 ± 2.2 breaks per participant each lasting 1.9 ± 2.4 
hours). For all participants, we only included recordings during days 3–7 following the electrode implanta-
tion surgery to avoid potentially anomalous neural and behavioral activity immediately after the surgery. We 
excluded recording days with corrupted or missing data files, as noted in Table 2, and stripped all recording dates 
to de-identify participant data. These long-term, clinical recordings include various everyday activities, such as 
eating, sleeping, watching television, and talking while confined to a hospital bed. ECoG and video sampling rates 
were 1 kHz and 30 FPS (frames per second), respectively.

EcoG data processing. We used custom MNE-Python scripts to process the raw ECoG data45. First, we 
removed DC drift by subtracting out the median voltage at each electrode. We then identified high-amplitude 
data discontinuities, based on abnormally high electrode-averaged absolute voltage (>50 interquartile ranges 
[IQRs]), and set all data within 2 seconds of each discontinuity to 0.

With data discontinuities removed, we then band-pass filtered the data (1–200 Hz), notch filtered to mini-
mize line noise at 60 Hz and its harmonics, downsampled to 500 Hz, and re-referenced to the common median 
for each grid, strip, or depth electrode group. For each recording day, noisy electrodes were identified based 
on abnormal standard deviation (>5 IQRs) or kurtosis (>10 IQRs) compared to the median value across elec-
trodes. Using this procedure, we marked on average 7.3 ± 5.6 ECoG electrodes as bad during each participant’s 
first available day of recording (Table 2).

Electrode positions were localized using the Fieldtrip toolbox in MATLAB. This process involved 
co-registering preoperative MRI and postoperative CT scans, manually selecting electrodes in 3D space, and 
warping electrode positions into MNI space (see Stolk et al.46 for further details).

Markerless pose estimation. We performed markerless pose estimation on the raw video footage using 
separate DeepLabCut models for each participant31. First, one researcher manually annotated the 2D positions 
of 9 upper-body keypoints (nose, ears, wrists, elbows, and shoulders) during 1000 random video frames for each 
participant (https://tinyurl.com/human-annotation-tool). Frames were randomly selected across all recording 
days, with preference towards frames during active, daytime periods. These 1000 frames correspond to ∼0.006% 
of the total frames from each participant’s video recordings. These manually annotated frames were used to train 
a separate DeepLabCut neural network model for each participant (950 frames for training, 50 frames for valida-
tion). The model architecture was a convolutional neural network that was 50 layers deep (ResNet-50). We then 
applied the trained model to every video frame for that participant to generate estimated pose trajectories.

We synchronized ECoG data and pose trajectories using video timestamps and combined multiple record-
ing sessions so that each file contained data from one entire 24-hour recording day that started and ended at 
midnight47.

Participant Gender
Age 
(years)

Recording 
days used

Hemisphere 
implanted

Surface electrodes: 
# good/total

Depth electrodes: 
# good/total

P01 M 44 4 L 79/86 6/8

P02 M 20 4 R 69/70 16/16

P03 M 33 4 L 79/80 0/16

P04 F 19 5 R 67/84 0/0

P05 F 31 3 R 104/106 0/0

P06 M 37 5 L 70/80 0/0

P07 M 26 5 R 63/64 0/0

P08 F 33 5 R 83/92 0/0

P09 M 20 5 L 96/98 28/28

P10 M 34 5 L 82/86 39/40

P11 F 34 5 L 103/106 0/0

P12 M 22 5 L 88/92 24/32

Table 2. Individual participant characteristics. Gender is denoted as male (M) or female (F), and implantation 
hemisphere is either left (L) or right (R). Surface electrodes denote grid and strip electrodes placed on the 
cortical surface, while depth electrodes reach deep cortical and subcortical areas. We identified bad/noisy 
electrodes based on high standard deviation or kurtosis values relative to that participant’s other electrodes. 
Good electrode counts are shown for each participant’s first available day of recording.
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Wrist movement event identification. We used the estimated pose trajectories in order to identify 
unstructured movement initiation events of the wrist contralateral to the implanted hemisphere. To identify 
movement events, a first-order autoregressive hidden semi-Markov model was applied to the pose trajectory of 
the contralateral wrist. This model segmented the contralateral wrist trajectory into discrete move or rest states. 
Movement initiation events were identified as state transitions where 0.5 seconds of rest was followed by 0.5 sec-
onds of wrist movement (see Singh et al.33 for further details).

Next, we selected the movement initiation events that most likely corresponded to actual reaching move-
ments. We excluded arm movements during sleep, unrelated experiments, and private times based on coarse 
behavioral labels, which are described in the next section. In addition, we only retained movement events that 
(1) lasted between 0.5–4 seconds, (2) had DeepLabCut confidence scores >0.4, indicating minimal marker 
occlusion, and (3) had parabolic wrist trajectories, as determined by a quadratic fit to the wrist’s radial move-
ment ( > .R 0 62 ). We used this quadratic fit criterion to eliminate outliers with complex movement trajectories. 
For each recording day, we selected up to 200 movement events with the highest wrist speeds during movement 
onset. Finally, we visually inspected all selected movement events and removed those with occlusions or false 
positive movements (17.8% ± 9.9% of events [meanSD]).

For each movement event, we also extracted multiple, quantitative behavioral and environmental features. To 
quantify movement trajectories, we defined a reach as the maximum radial displacement of the wrist during the 
identified movement event, as compared to wrist position at movement onset. Movement features include reach 
magnitude, reach duration, 2D vertical reach angle (90 for upward reaches, −90 for downward reaches), and 
radial speed during movement onset. We also include the recording day and time of day when each movement 
event occurred, as well as an estimate of speech presence during each movement using audio recordings.

In addition, we quantified the amount of bimanual movement for event based on ipsilateral wrist move-
ment. These features include a binary classification of bimanual/unimanual based on temporal lag between wrist 
movement onsets, the ratio of ipsilateral to contralateral reach magnitude, and the amount of each contralateral 
move state that temporally overlapped with an ipsilateral move state. The binary feature was bimanual if at least 4 
frames (0.13 seconds) of continuous ipsilateral wrist movement began either 1 second before contralateral wrist 
movement initiation or anytime during the contralateral wrist move state. Please see Peterson et al.18 for further 
methodological details.

coarse behavioral labels. To improve wrist movement event identification, we performed coarse anno-
tation of the video recordings every ∼3 minutes. These behavioral labels were either part of a blocklist to avoid 
during event detection or general activities/states that the participant was engaged in at the time. Identified 
activities include sleep/rest, inactive, and active behaviors, which were further subdivided into activities such as 
talking, watching TV, and using a computer or phone (Fig. 2). Blocklist labels include times where event detec-
tion would likely be inaccurate, such as camera movement and occlusion, as well as private times and unrelated 
research experiments. Some participants also have clinical procedure labels, indicating times when the clinical 
staff responded to abnormal participant behavior. We upsampled all labels to match the 30 Hz sampling rate of 
the pose data. Tables 3 and 4 show the duration of each label across participants for activity and blocklist labels, 
respectively.

Data Records
The data files are available on The DANDI Archive (https://doi.org/10.48324/dandi.000055/0.220127.0436)47, in 
the Neurodata Without Borders: Neurophysiology 2.0 (NWB:N) format43. All datastreams and metadata have 
been combined into a single file for each participant and day of recording, as indicated by the file name. For 
example, sub-01_ses-3_behavior+ecephys.nwb contains data from participant P01 on recording day 3. We used 
PyNWB 1.4.0 to load and interact with these data files. Table 1 shows the location of all main variables within 
each data file.

Fig. 2 Coarse behavior labelling. (a) We annotated participant behavior in the video recordings using 
hierarchical labels to detail common awake and active behaviors. These annotations also include blocklist labels, 
which indicate times to potentially avoid during data exploration. (b) We show an example of the behavior 
labels for participant P01 during the entirety of recording day 4. Sleep/rest occurs in the morning and night 
times, as expected, with predominantly active periods during the day (8:00–20:00). Bottom row shows detailed 
active labels during a 4-hour active period that is dominated mostly by talk and TV behaviors. Note that these 
detailed active labels can overlap in time.
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Each file contains continuous ECoG and pose data over a 24-hour period, with units of and pixels, respec-
tively. ECoG data is located under\acquisition\ElectricalSeries as a pynwb.ecephys.ElectricalSeries variable. Pose 
data can be found under\processing\behavior\data_interfaces\Position as an pynwb.behavior.Position variable. 
Pose data is provided for the left/right ear (L_Ear, R_Ear), shoulder (L_Shoulder, R_Shoulder), elbow (L_Elbow, 
R_Elbow), and wrist (L_Wrist, R_Wrist), as well as the nose (Nose).

In addition to these core datastreams, each file contains relevant metadata. Contralateral wrist movement 
events are located in\processing\behavior\data_interfaces\ReachEvents as an ndx_events.events.Events variable. 
Quantitative neural and behavioral features for each event can be found in\intervals\reaches as a pynwb.epoch.
TimeIntervals table with columns for each feature. Coarse behavioral labels are included in\intervals\epochs as 
a pynwb.epoch.TimeIntervals table. Each row contains the label along with the start and stop time in seconds.

We also include electrode-specific metadata in\electrodes as a hdmf.common.table.DynamicTable. Columns 
contain different metadata features, such as Montreal Neurological Institute (MNI) x, y, z coordinates and elec-
trode group names. Electrode groups were named by clinicians based on their location in the brain. This table 
also contains the standard deviation, kurtosis, and median absolute deviation for each electrode computed over 
the entire recording file (excluding non-numeric values). Electrodes that we identified as noisy based on abnor-
mal standard deviation and kurtosis are marked as False under the ‘good’ column. Table 2 shows the number of 
good electrodes that remain for each participant during the first available day of recording. We have also 
included the R2 scores obtained from regressing ECoG spectral power on the 10 quantitative event features for 
each participant’s wrist movement events18. Low-frequency power (used for low_freq_R2) indicates power 
between 8–32 Hz, while high-frequency power (used for high_freq_R2) denotes power between 76–100 Hz.

Participant Sleep/rest Inactive Talk TV Computer/phone Eat
Other 
activity Total

P01 29.2 1.9 15.6 22.0 7.8 2.6 0.8 75.7

P02 53.2 2.1 9.2 7.7 2.9 2.1 4.8 79.8

P03 11.9 0.3 21.8 1.9 19.8 3.5 0.9 51.1

P04 34.0 3.1 28.3 11.0 8.2 2.0 1.2 78.9

P05 35.4 2.8 8.9 12.1 5.8 1.0 1.2 62.5

P06 37.8 0.1 2.8 5.7 2.6 0.3 0.2 45.3

P07 46.8 0.3 5.0 0.3 1.9 0.4 0.2 53.6

P08 47.8 0.8 6.8 5.3 1.3 0.6 2.2 61.8

P09 87.3 8.1 3.8 0.0 0.0 0.6 1.9 100.6

P10 67.5 2.1 5.8 0.1 5.6 0.0 1.8 81.4

P11 36.0 1.4 6.6 0.0 0.1 0.0 0.8 44.9

P12 32.4 0.3 1.5 0.1 0.5 0.0 0.6 35.4

Table 3. Coarse activity label durations (in hours) for each participant. These labels describe various participant 
behaviors such as talking, eating, and watching television. Labels were generated by manual reviewing videos 
every ~3 minutes. While sleep is by far the most common, several activity labels appear over multiple hours for 
each participant. Note that multiple activity labels can co-occur (ex. eating while watching television). 
Therefore, the total duration of any activity label (last column) may be less than the sum of individual label 
durations for each participant.

Participant
Data 
break

Camera 
move/zoom

Camera 
occluded Experiment

Private 
time

Tether/ 
bandage

Hands under 
blanket

Clinical 
procedure Total

P01 8.8 0.5 0.0 6.7 2.8 1.3 0.0 0.1 20.3

P02 0.8 1.2 0.0 3.6 7.0 3.7 0.0 0.0 16.2

P03 24.4 0.7 0.0 18.1 1.1 0.6 0.0 0.0 44.9

P04 27.9 1.4 0.0 7.2 2.8 1.7 0.0 0.0 41.1

P05 0.6 0.8 0.3 3.4 2.4 2.0 0.0 0.0 9.5

P06 0.7 0.3 0.0 7.0 1.1 0.8 0.0 0.0 9.9

P07 7.8 1.4 0.2 4.4 2.6 0.6 0.0 0.1 17.0

P08 0.9 0.4 0.2 6.2 2.6 0.6 0.0 0.0 10.8

P09 0.8 1.3 0.0 5.5 1.9 0.9 0.3 0.6 11.2

P10 1.2 1.0 0.0 2.1 3.5 2.9 0.0 0.0 10.7

P11 0.7 1.7 5.1 2.5 4.8 1.4 0.0 0.0 16.2

P12 0.6 1.0 0.1 3.6 3.3 0.7 0.0 0.0 9.3

Table 4. Coarse blocklist label durations (in hours) for each participant. These labels indicate times to avoid 
when extracting wrist movement events due to camera movements, unrelated experiments, and private times. 
Labels were generated by manual review of videos with ~3 minute resolution.
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Technical Validation
In this section, we assess the technical quality of AJILE12 by validating our two core datastreams: intracranial 
neural recordings and pose trajectories. In addition to this assessment, we have previously validated the quality 
and reliability of AJILE12 in multiple published studies18,32,33. We validated ECoG data quality by assessing spec-
tral power projected into common brain regions48. This projection procedure enables multi-participant com-
parisons despite heterogeneous electrode coverage and reduces the dimensionality of the ECoG data from 64 or 
more electrodes (Fig. 3(a)) to a few brain regions of interest18,32. For this analysis, we focused on 4 sensorimotor 
and temporal regions in the left hemisphere defined using the AAL2 brain atlas48,49: precentral gyrus, post-
central gyrus, middle temporal gyrus, and inferior temporal gyrus. For participants with electrodes implanted 
primarily in the right hemisphere, we mirrored electrode positions into the left hemisphere. We divided the 
neural data into 30-minute windows and applied Welch’s method to compute the median spectral power over 
non-overlapping 30-second sub-windows50. We excluded 30-minute windows with non-numeric data values, 

Fig. 3 Validation of intracranial neural signal quality. (a) Electrocorticography (ECoG) electrode positions are 
shown in MNI coordinates for each participant. ECoG power spectra is shown for (b) all 12 participants 
(shading denotes standard deviation) and (c) participant P01 over all available half-hour time windows. We 
projected spectral power into sensorimotor and temporal brain regions, excluding time windows with non-
numeric values that likely indicated a data break. Lines for participant P01 denote power in each window 
(n 130=  total, or 65 hours). The power spectra shape (exponential decrease for increasing frequencies) and 
consistency over time demonstrate the cleanliness and stability of our neural recordings across multiple 
recording days.

https://doi.org/10.1038/s41597-022-01280-y
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Participant
Train set error 
(pixels)

Holdout set error 
(pixels)

P01 1.45 4.27

P02 1.44 3.58

P03 1.58 6.95

P04 1.63 6.02

P05 1.43 3.42

P06 1.43 6.63

P07 1.51 5.45

P08 1.84 10.35

P09 1.40 4.05

P10 1.48 7.59

P11 1.51 5.45

P12 1.52 4.73

Table 5. Pose estimation model errors. Root-mean-square reconstruction errors of our automated markerless 
pose models are shown for each participant’s train (950 frames) and holdout (50 frames) sets. We used manual 
annotations as ground truth when computing the error, which was averaged across all 9 upper-body keypoints. 
For reference3,pixels are approximately equal to 1 cm.

Fig. 4 Browser-based Jupyter Python dashboard for dataset exploration. We designed a browser-based 
dashboard, available at https://github.com/BruntonUWBio/ajile12-nwb-data, to facilitate exploration of 
AJILE12 without needing to download any data files locally. (a) Participant keypoint positions are displayed for 
the first sample of a user-defined time window, with the option to animate keypoint positions across the entire 
window. We included a virtual neck marker for this visualization at the midpoint between the left and right 
shoulders. (b) Time-series traces of horizontal (x) and vertical (y) wrist positions are displayed over the same 
selected time window. (c) Electrode coverage is shown in MNI coordinates on a standardized brain model. This 
visualization is interactive, allowing three-dimensional rotations, alterations of hemisphere opacity to inspect 
depth electrodes, and the ability to visualize various electrode-level metadata such as electrode groups and 
identified bad electrodes. (d) Raw ECoG signals are visualized over the same user-selected time window, color-
coded by electrode group.

https://doi.org/10.1038/s41597-022-01280-y
https://github.com/BruntonUWBio/ajile12-nwb-data


8Scientific Data |           (2022) 9:184  | https://doi.org/10.1038/s41597-022-01280-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

likely due to data breaks. On average, we used 160.4 ± 30.6 windows per participant (80.2 ± 15.3 hours) across 
all recording days. Spectral power was interpolated to integer frequencies and projected into the 4 predefined 
brain regions (see Peterson et al.18 for further methodological details).

Figure 3(b) shows the average spectral power across time windows, separated by participant. In general, 
power spectra remain quite consistent across participants with tight standard deviations across time windows, 
indicating that much of the ECoG data is good to use51,52. We also plotted the power spectra of each individual 
window for participant P01, as shown in Fig. 3(c). Again, the variation among time windows appears small, and 
we see clear differences in spectral power between sensorimotor (pre/postcentral gyri) and temporal areas, as 
expected. Additionally, we retained 92.3% ± 6.3% ECoG electrodes per participant (Table 2), further demon-
strating the quality of our neural data53,54.

We validated pose trajectories by comparing each pose estimation model’s output to our manual annotations 
of each participant’s pose (Table 5). While manual annotations are susceptible to human error55, they are often 
used to evaluate markerless pose estimation performance when marker-based motion capture is not possible30,56. 
We used root-mean-square (RMS) error averaged across all keypoints to evaluate model performance for the 
950 frames used to train the model as well as 50 annotated frames that were withheld from training. RMS 
errors for the holdout set (5.71 ± 1.90 pixels) are notably larger than the train set errors (1.52 ± 0.12 pixels), as 
expected, but are still within an acceptable tolerance given that 3 pixels are approximately equal to just 1 cm33.

Usage Notes
We have developed a Jupyter Python dashboard that can be run online to facilitate data exploration without 
locally downloading the data files (https://github.com/BruntonUWBio/ajile12-nwb-data). Our dashboard 
includes visualizations of electrode locations, along with ECoG and wrist pose traces for a user-selected time 
window (Fig. 4). Users can also visualize the average contralateral wrist trajectory during identified movement 
events for each file. The dashboard streams from The DANDI Archive only the data needed for visualization, 
enabling efficient renderings of time segments from the large, 24-hour data files. Our code repository also 
includes all scripts necessary to create Figs. 2, 3 and Tables 2–4. In addition, we have previously used AJILE12 to 
decode and analyze the neurobehavioral variability of naturalistic wrist movements and have publicly released 
multiple workflows that can be modified for use on this dataset18,32,33.

code availability
Code to run our Jupyter Python dashboard and recreate all results in this paper can be found at https://github.
com/BruntonUWBio/ajile12-nwb-data. We used Python 3.8.5 and PyNWB 1.4.0. A requirements file listing the 
Python packages and versions necessary to run the code is provided in our code repository. Our code is publicly 
available without restriction other than attribution.
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