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Abstract

Background: The emergence and spread of multidrug-resistant organisms (MDRO)

present a threat to human and animal health.

Objectives: To assess acquisition, prevalence of and risk factors for MDRO carriage

in dogs and cats presented to veterinary clinics or practices in Switzerland.

Animals: Privately owned dogs (n = 183) and cats (n = 88) presented to 4 veterinary

hospitals and 1 practice.

Methods: Prospective, longitudinal, observational study. Oronasal and rectal swabs

were collected at presentation and 69% of animals were sampled again at discharge.

Methicillin-resistant (MR) staphylococci and macrococci, cephalosporinase-, and

carbapenemase-producing (CP) Enterobacterales were isolated. Genetic relatedness

of isolates was assessed by repetitive sequence-based polymerase chain reaction and

multilocus sequence typing. Risk factors for MDRO acquisition and carriage were

analyzed based on questionnaire-derived and hospitalization data.

Results: Admission prevalence of MDRO carriage in pets was 15.5% (95% confidence

interval [CI], 11.4-20.4). The discharge prevalence and acquisition rates were 32.1%

(95% CI, 25.5-39.3) and 28.3% (95% CI, 22-35.4), respectively. Predominant hospital-

acquired isolates were extended spectrum β-lactamase-producing Escherichia coli

(ESBL-E coli; 17.3%) and β-lactamase-producing Klebsiella pneumoniae (13.7%). At 1 insti-

tution, a cluster of 24 highly genetically related CP (blaoxa181 and blaoxa48) was identified.

Multivariate analysis identified hospitalization at clinic 1 (odds ratio [OR], 5.1; 95% CI,
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1.6-16.8) and days of hospitalization (OR 3-5 days, 4.4; 95% CI, 1.8-10.9; OR > 5 days,

6.2; 95% CI, 1.3-28.8) as risk factors for MDRO acquisition in dogs.

Conclusions: Veterinary hospitals play an important role in the selection and trans-

mission of MDRO among veterinary patients.

K E YWORD S

carbapenemase-producing enterobacterales, extended-spectrum β-lactamase, risk factors,
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1 | INTRODUCTION

Emergence of multidrug-resistant organisms (MDRO) poses an impor-

tant threat to human and animal health.1 Like human hospitals, veteri-

nary hospital environments favor the selection and transmission of

MDRO because of a high density of susceptible patients and the use

of broad-spectrum antimicrobials.2 During their hospitalization, small

animals therefore may become asymptomatic carriers of MDRO or

may develop life-threatening nosocomial infections. These infections

may be difficult to treat because of resistance of MDRO to several, if

not all, commonly used classes of antimicrobials.3

Several MDRO are considered to be of particular relevance to both

human and animal health. Methicillin-resistant (MR) Staphylococcus

aureus (S aureus; MRSA) generally is isolated at low frequency from

dogs and cats,4,5 and pet owners may be the primary source.6 In con-

trast, MR Staphylococcus pseudintermedius (S pseudintermedius; MRSP)

clones are widespread in veterinary settings worldwide5,7 and show

resistance to many antibiotics licensed in veterinary medicine.5,8

Methicillin-resistant S pseudintermedius cause a wide range of infections

in dogs and cats including skin and postoperative infections.7-9 It is also

increasingly reported as cause of severe infections in humans.9 Macro-

coccus spp. (M canis; M caseolyticus) have been isolated from the skin of

healthy dogs and infection sites, and have the potential to acquire

methicillin resistance genes (mecB; mecD).10-12 Their relevance in veteri-

nary settings so far has not been evaluated in detail.

Multidrug-resistant Enterobacterales including Escherichia coli (E

coli), Klebsiella spp. and Enterobacter spp. presently are considered

highly problematic in both veterinary13,14 and human13,15 hospital set-

tings. Enterobacterales with third-generation cephalosporin resistance

(3GCR-E) are widespread16 and often display coresistance to other

classes of antibiotics including tetracyclines, sulfonamides, phenicols,

aminoglycosides, and fluoroquinolones.17,18 The use of carbapenems to

treat such infections has led to the selection of carbapenem-resistant

Enterobacterales (CRE) in human medicine,19 whereas up until very

recently, reports of carbapenem resistance have been very rare in vet-

erinary medicine.20,21 However, as molecular mechanisms of resistance

continue to evolve, the epidemiology of MDRO colonization and infec-

tion and relevant risk factors are changing.22

Our aims were to assess risk factors for prevalence and acquisi-

tion of MDRO carriage in dogs and cats presented to veterinary clinics

or practices in Switzerland and to describe relevant MDRO in veteri-

nary care settings.

2 | MATERIALS AND METHODS

2.1 | ETHICS STATEMENT

Ethical approval for collection of samples and clinical data from cats and

dogs was granted by the Veterinary Office (Ref. BE 16/18). Written owner

consent for participation in the study was obtained before enrollment.

2.2 | Study Design and Setting

This prospective multicenter longitudinal observational study was part

of a large project to assess the role of small animal clinics in the dis-

semination of MDRO (Ref FSVO 1.8.10). Dogs and cats presented to

3 large referral hospitals (clinics 1-3), 1 smaller clinic (clinic 4), and a

small practice (practice 1) across Switzerland between May and

September 2018 were enrolled sequentially regardless of their clinical

focus. Clinics 1 to 3 are large referral hospitals with an annual case-

load of approximately 6000, 12 000, and 60 000 cases, respectively.

Clinic 4 is a moderately sized small animal clinic providing a large

range of services including orthopedic surgery and practice 1 a small

practice for companion animals providing predominantly outpatient

services and routine surgery. Animals were included if they were

expected to be hospitalized for at least 48 hours, except for practice

1, where hospitalizations rarely occurred and samples therefore were

collected from dogs and cats presented for outpatient care.

2.3 | Data collection

2.3.1 | Questionnaires

At presentation, owners were asked to fill out a questionnaire that

contained questions regarding the animal's origin, lifestyle, living

environment, preventative health care, diet, current or previous

medical treatments, travel history, and contact with other animals,

including farm animals. The questionnaire also contained owner-

centered questions (results not included here). The questionnaire

was available in paper format and via an online link (Supplemental

data Questionnaire). Study data were collected and managed using

the Research Electronic Data Capture system (REDCap) hosted at

the University of Bern.23,24
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2.3.2 | Animals

Demographic data including breed, age, weight, sex, neuter status, hos-

pitalizations, and treatments within the past 12 months were recorded

for all enrolled animals. Clinical diagnoses and hospitalization data

including admission ward, clinical problems or diagnoses, duration of

hospitalization, days in intensive care unit (ICU), medical interventions,

and treatments including antimicrobial treatments were extracted from

the medical records of dogs and cats hospitalized at the 2 large univer-

sity clinics only (clinics 1 and 2), where the most cases were enrolled.

2.3.3 | Sampling

Rectal and oronasal swabs were collected from dogs and cats within

the first 6 hours of admission and again on the day of discharge using

dry sterile swabs with Amies transport medium (Sarstedt AG & Co. KG,

Nümbrecht, Germany). Rectal swabs were inserted 1 to 2 cm into the

rectum and rotated gently until fecal material adhered to the swab. In

dogs, nasal swabs were gently inserted in 1 naris and rotated; the same

swab was then introduced in to the mouth lateral to the tongue. In cats,

small dogs, and uncooperative animals, the swab was only inserted

orally. Swabs were stored for a maximum of 5 days at 4�C or 2 days at

ambient temperature and then sent by batch to the laboratory.

2.3.4 | Isolation and identification of bacteria

Rectal swabs and fecal samples were tested for the presence of

Gram-negative MDRO as previously described.25,26 Swabs were

placed into 5 mL of nonselective Luria-Bertani (LB) enrichment broth

at 37�C for 24 hours. A loopful of the culture was then streaked on

ChromID extended spectrum β-lactamase (ESBL) plates to select for

3GCR-E, or ChromID OXA-48 and ChromID CARBA plates

(BioMérieux SA, Marcy-l'Étoile, France), to select for CRE. Plates were

incubated at 37�C for 24 hours under aerobic conditions. Colonies

were subcultivated onto tryptone soy agar plates containing 5% sheep

blood (TSA-S; Becton & Dickinson Company, Franklin Lakes, New Jer-

sey). Isolates were identified to the species level by using the matrix-

assisted laser desorption/ionization time-of-flight mass spectrometry

(MALDI-TOF MS; Bruker Daltonics GmbH, Bremen, Germany).

Carbapenemase production was detected using the Blue-Carba test

(BCT).27 Oronasal swabs were tested for the presence of MR staphy-

lococci and macrococci using a 2-step selective enrichment28 followed

by selection on selective agar (BBL CHROMagar MRSA II, Becton,

Dickinson and Company, New Jersey) at 37�C for 24 hours.

2.3.5 | Antimicrobial susceptibility testing

Minimal inhibitory concentrations (MICs) of antimicrobials were

determined by broth microdilution using Sensititre EUST, EUVSEC,

EUVSEC2, and GNX2F plates (Thermo Fisher Scientific, Waltham,

Massachusetts). For Gram-negative bacteria, 14 antibiotics were tested

(Thermo Fisher Scientific) following the guidelines of the European

Committee on Antimicrobial Susceptibility Testing (EUCAST).29 Results

were interpreted using the EUCAST criteria, except for nalidixic acid,

sulfamethoxazole, and tetracycline, for which the criteria from the Clini-

cal and Laboratory Standards Institute (CLSI) were used.30 Extended-

spectrum β-lactamase and carbapenemase genes were identified using

the CT103XL microarray (Check-Points, Wageningen, The Nether-

lands).31 Before whole genome sequencing (WGS), carbapenemase-

producing (CP) isolates were tested for the presence of blaOXA-48-like

genes by polymerase chain reaction (PCR).32 The MR genes mecA,

mecB, and mecD were identified by PCR as previously described.33-35

2.3.6 | REP-PCR and whole-genome sequencing

Genetic relationships and clonality among isolates of the same species

were determined by repetitive element palindromic polymerase chain

reaction (REP-PCR) or enterobacterial repetitive intergenic consensus-

polymerase chain reaction (ERIC-PCR)36,37 and by multilocus sequence

typing (MLST). For MRSA, MRSP, methicillin-resistant coagulase-negative

staphylococci (MRCoNS), and MR Macrococcus spp., the corresponding

schemes published in the pubMLST database (https://pubmlst.org/

databases/) were used and for colistin-resistant (COL-R), ESBL-produc-

ing, and CP Enterobacterales, the Center for Genomic Epidemiology

database was used (http://www.genomicepidemiology.org/).

Whole genome sequencing was used to confirm the identity of

selected isolates and the presence of specific resistance genes. Parts

of these analyses have been reported previously.26

2.3.7 | Data analysis and statistical methods

Statistical analysis was performed using the NCSS program (NCSS11

Statistical Software. 2016. NCSS, LLC, Kaysville, Utah. ncss.com/

software/ncss). Post hoc sample size calculations were performed

using the online calculator Epitools (https://epitools.ausvet.com.au).

The overall prevalence of MDRO carriage in dogs and cats at

admission and discharge and the rate of MDRO acquisition during

hospitalization were estimated with a 95% confidence interval (CI).

Acquisition was defined as the presence of a new or a genetically

unrelated MDRO in discharge samples. Persistence was defined as

isolation of MDRO with matching molecular profiles (REP-PCR, WGS)

using repeated samples from the same individual.

Associations between MDRO carriage at admission and

questionnaire-derived variables, as well as associations between MDRO

acquisition during hospitalization and hospitalization data, were exam-

ined using univariate and multivariate logistic regression analyses. First,

univariate analysis was performed for all independent variables to

assess suitability of inclusion into the multivariate regression model.

Variables with a P-value of <.1 were included in the full models. The

final model of each multivariate analysis was achieved by backward

stepwise elimination, including assessment of interaction and
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confounding. Variables were kept in the final model if the P-value was

<.05 or if removing the variable changed the effect of another risk fac-

tor by >20%. Odds ratios (OR) and 95% CIs were reported; values were

considered significant if the 95% CI of the OR did not include 1.

3 | RESULTS

3.1 | Study population

A total of 271 animals, including 183 (67.5%) dogs and 88 (32.5%)

cats, were sampled at presentation and 187 (69%) animals, including

124 (66.3%) dogs and 63 (33.7%) cats, were sampled again at dis-

charge. Most animals (221/271; 81.5%) were enrolled at clinics 1 and

2 (Supplemental Table 1).

The median age of dogs was 7 years (interquartile range [IQR],

3-9 years) and the median weight was 14.4 kg (IQR, 7.1-28.4 kg).

There were 86 females (28 intact/58 neutered) and 97 males

(36 intact/61 neutered). The majority of dogs (155/183, 85.7%) were

purebred of 68 different breeds, the most frequent being Labrador

Retriever (6.6%), Jack Russell Terrier (5.5%), Yorkshire Terrier (4.4%),

French Bulldog (3.9%), and Chihuahua (3.9%).

Cats had a median age of 6 years (IQR, 2-11 years) and a median

weight of 4.3 kg (IQR, 3.6-5.1). There were 39 neutered females and

49 males (5 intact/44 neutered). The most common breeds were

European Shorthair (68.2%), Maine Coon (11.4%), and Ragdoll (4.6%).

Questionnaire-derived lifestyle data and hospitalization and treat-

ment details of cats and dogs included in the study are shown in Sup-

plemental Tables 2 to 5. For organizational reasons, most dogs and cats

were recruited from the emergency services of the participating hospi-

tals. In dogs, the most common disease groups were neurologic, gastro-

intestinal, orthopedic, and neoplastic, whereas in cats gastrointestinal,

orthopedic, and urinary tract disease groups were most common.

Although 154 (82.4%) animals had been hospitalized ≥48 hours

according to inclusion criteria, 33 (17.6%) were in the hospital between

7 and 47 hours only, resulting in a median duration of hospitalization of

2 days (IQR, 2; range, 0-14 days). This diversion from initial inclusion

criteria resulted from unexpected early discharges or death and a loos-

ening of inclusion criteria to increase enrollment numbers. It led to the

observation that some animals seemingly acquired MDRO as early as

24 hours after admission (2 cases). The majority of dogs (78/152,

51.3%) and cats (42/77, 54.6%) were treated with antimicrobials during

their hospitalization, but none of them received carbapenems.

3.2 | Prevalence of MDRO carriage at presentation

The overall estimated admission prevalence of MDRO carriage was

15.5% (95% CI, 11.4-20.4) with 18% (33/183; 95% CI, 12.8-24.4) of

sampled dogs and 10.2% (9/88; 95% CI, 4.8-18.5) of sampled cats car-

rying MDRO. The prevalence varied among the 5 veterinary care facili-

ties and was estimated at 14% (95% CI, 8.9-20.6) in clinic 1, 9.9% (95%

CI, 4.1-19.3) in clinic 2, 7.7% (95% CI, 0.2-36) in clinic 3, 0% (95% CI,

0-41) in clinic 4, and 43.3% (95% Cl, 25.5-62.6) in the outpatient popu-

lation at practice 1. The numbers of patients enrolled in each clinic and

the proportions of MDRO-positive cases are shown in Figure 1.

Of the 271 animals, 1 variety of MDRO strain was isolated in

42 animals and 1 cat and 1 dog carried an ESBL-producing E coli

(ESBL-E coli) in addition to a MR Staphylococcus warneri (S warneri) or

a MR Staphylococcus haemolyticus (S haemolyticus).

The numbers of MDRO isolated in each clinic or practice at

admission are shown in Supplemental Table 1. Third-generation

cephalosporin-resistant E coli predominated, accounting for 33.3% of

all isolates. Methicillin-resistant Staphylococcus aureus only was iso-

lated in 1 cat, and MRSP in none of the animals. Methicillin-resistant

coagulase-negative staphylococci were isolated from 9.6% of the ani-

mals and were predominately found in 1 practice, where MR S warneri

was isolated from nearly one-third (9/30) of the sampled animals. At

presentation, MR macrococci were isolated only in 1.1% of cases. The

numbers of MDRO isolated at presentation are shown in Figure 2.

F IGURE 1 Total number of animals
tested at presentation to (P) and
discharge from (D) participating clinics/
practice. Proportions of MDRO-positive
animals are indicated above the columns.
MDRO, multidrug-resistant organisms
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3.3 | Prevalence MDRO carriage at discharge and
acquisition rate

The overall numbers of MDRO isolated at discharge are shown in

Figure 2. The numbers of MDRO isolated in each clinic are shown in

Supplemental Table 1. Sixty animals (26.7% cats; 73.3% dogs) carried

MDRO at discharge, corresponding to an overall discharge prevalence

of 32.1% (95% CI, 25.5-39.3). The MDRO discharge prevalence for cats

was 25.4% (95% CI, 15.3-38) and for dogs 35.5% (95% CI, 27.1-44.6).

Of the 42 animals that carried MDRO at admission, 11.9% (5/42;

95% CI, 4-25.5) carried a genetically related strain and 16.7% (7/42;

95% CI, 7-31.4) a genetically unrelated strain at discharge. In 19% of

animals (8/42; 95% CI, 8.6-34.1), no MDRO was isolated at discharge,

and 52.4% (22/42; 95% CI, 36.4-68) either were outpatients (practice

1; n = 15) or could not be resampled at discharge because of unex-

pected early discharge, death, or withdrawal from the study.

The overall rate of MDRO acquisition was 28.3% (95% CI, 22-35.4):

20.6% (95% CI, 11.5-33) for cats and 32.3% (95% CI, 24.1-41.2) for

dogs. Discharge prevalence and acquisition rates varied considerably

among care facilities with clinic 1 showing a particularly high rate of

MDRO acquisition (39.1%; 95% CI, 29.9-48.9) compared with clinic

2 (12.1%; 95% CI, 5-23.3), clinic 3 (25%; 95% CI, 5.48-57.2), and clinic

4 (0%; 95% CI, 0-41).

The most common hospital-acquired isolates were 3GCR-E coli and

3GCR-K pneumoniae (KP) isolated from 15% (29/187) and 12.3%

(23/187) of animals. One dog (0.5%) acquired MRSP and 8% of the ani-

mals (15/187) MRCoNS. In clinic 1, in-hospital acquisition of 3GCR-E

coli, 3GCR-KP, and MRCoNS was particularly frequent.

3.4 | Antimicrobial resistance profiles

Resistance profiles of all isolates are shown in Supplemental Tables 6

to 9. Third-generation cephalosporin-resistant-E coli producing either

ESBL (CTX-M-1/−3/−15, CTX-M-9/−14, CTX-M-1) or plasmid-

encoded AmpC (pAmpC; CMY-42; CMY-2-like) predominated, making

up 84% of all E coli isolates (Supplemental Table 6).

Twenty-two E coli isolates from clinic 1 displayed similar antimi-

crobial resistance patterns and a common blaOXA-181 carbapenemase

gene. One further E. coli isolate (101.2) from clinic 1 carried a blaOXA-

48 carbapenemase gene. This isolate had MICs below the resistance

breakpoint set by EUCAST for meropenem, but was resistant to

ertapenem. Two E. coli isolates producing NDM-5 carbapenemase

were isolated at clinic 2. These isolates were broadly resistant includ-

ing resistance to meropenem. All isolates were sensitive to colistin.

The numbers and proportions of E coli isolates resistant to the tested

antimicrobials are shown in Table 1.

The majority of KP were of the CTX-M-1/-3/-15 ESBL and

DHA-1 pAmpC subtypes and 1 isolate from clinic 1 (142.2) pos-

sessed the blaOXA-48 carbapenemase gene (Supplemental Table 7).

Enterobacter cloacae (E cloacae) isolates were resistant to several

classes of antimicrobials (Table 1; Supplemental Table 8).

The resistance profiles of MR Gram-positive isolates are shown in

Supplemental Table 9. The 2 MRSA isolates (carried at admission and dis-

charge by the same animal) carried the mecA gene and showed resistance

to penicillin, cefotaxime, and ciprofloxacin. One M caseolyticus isolate

(31.2) contained the mecD gene and showed resistance to 5 different clas-

ses of antimicrobials.

3.5 | Molecular relatedness of MDRO

The clonality of all isolates is listed in Supplemental Tables 6 to 9. Overall,

3GCR-E coli isolates were diverse, belonging to 24 different phylogenetic

groups, with the exception of a cluster of 24 ST410 CMY-42 isolates

from clinic 1, which displayed similar antimicrobial resistance patterns

and a common blaOXA-181 carbapenemase. The detailed molecular char-

acterization of this cluster of isolates has been reported recently.26

Two carbapenem-resistant ST167 E coli isolates were obtained

from clinic 2. The two isolates shared the blaNDM-5 gene and were

F IGURE 2 Number of
multidrug-resistant organisms
isolated from dogs and cats at
presentation to and discharge
from 3 veterinary clinics and
1 practice. MRSA, methicillin-
resistant Staphylococcus aureus;
MRSP, methicillin-resistant
Staphylococcus pseudintermedius;

S, Staphylococcus; M,
Macrococcus; E, Enterococcus; E
coli, Escherichia coli; K
pneumoniae, Klebsiella pneumoniae
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highly genetically related. The detailed molecular characterization of

these strains has been reported.26

Of the 26 3GCR-KP isolates, 20 expressed CTX-M-1/-3/-15 and

7 DHA-1 ß-lactamases. All isolates showed close genetic relatedness

belonging to REP-PCR group A. Among animals hospitalized in clinic

1, a cluster of 10 isolates (CTX-M-1/-3/-15) with similar antimicrobial

resistance pattern was identified. Three K pneumoniae isolates from

clinic 2 resembled each other in terms of ESBL resistance type and anti-

microbial resistance pattern. One single KP isolated at discharge from a

dog from clinic 1 carried a carbapenemase-encoding gene (blaOXA48).

The MDR E. cloacae isolates belonged to REP-PCR group C, with

the exception of 1 isolate from clinic 2, that was typed as REP-PCR

group E. Two isolates from clinic 1 (REP-group C) shared a similar anti-

biotic resistance profile and were found in 2 dogs, which had been

admitted to clinic 1 by the emergency service on 2 consecutive days.

3.6 | Risk factors for MDRO carriage in dogs
and cats

The questionnaire-derived variables included in the risk factor analysis

for MDRO carriage at admission for dogs and cats are shown in

Supplemental Tables 2 and 3. Univariate analysis identified antimicro-

bial treatment before admission as a significant risk factor for MDRO

carriage in dogs (OR, 2.7; 95% CI, 1.2-5.9; P = .01), but not in cats. Of

the 7 cats fed a so-called Bones and Raw Food (BARF) diet, 3 were

carrying MDRO at presentation and this association was significant in

the univariate analysis (OR, 7.3; 95% CI, 1.2-45; P = .04).

The variables included in the risk factor analysis for in-hospital

MDRO acquisition in dogs and cats are shown in Supplemental

Tables 4 and 5. Univariate analysis showed the following significant

associations for MDRO acquisition during hospitalization: hospitaliza-

tion at clinic 1 (dogs OR, 4.4; 95% CI, 1.4-13.8; cats OR, 5.1; 95% CI,

1.2-21.7), esophageal feeding tube (esophagostomy or

nasoesophageal) placement in cats (OR, 8; 95% CI, 1.3-50.8), days of

hospitalization in dogs (OR 3-5 days, 3.7; 95% CI, 1.6-8.6;

OR > 5 days, 5.3; 95% CI, 1.2-22.5), and administration of

buprenorphine in dogs (OR, 4.2; 95% CI, 1.8-10.1). The administration

of antimicrobials during hospitalization did not increase the odds of

becoming MDRO carriers in the population of cats but increased it in

the population of dogs (OR, 2.5; 95% CI, 1.1-5.7).

Multivariate analysis confirmed hospitalization at clinic 1 (OR, 5.1;

95% CI, 1.6-16.8) and days of hospitalization (OR 3-5 days, 4.4; 95%

CI, 1.8-10.9; OR > 5 days, 6.2; 95% CI, 1.3-28.8) as risk factors for

MDRO acquisition in dogs.

4 | DISCUSSION

Our results identified acquisition of MDRO in approximately one-third of

cats and dogs treated at veterinary referral hospitals. Although 1 clinic

showed a particularly high acquisition rate, MDRO acquisition was docu-

mented in all but 1 of the participating clinics. Of 180 animals hospitalized

at referral clinics, 49 (27.2%) were discharged carrying at least 1 MDR

Enterobacterales, nearly half of which expressed carbapenemases. This

finding represents a very worrisome development, because ongoing colo-

nization of these animals likely contributes to the dissemination of MDRO

in the community.

The overall admission prevalence of 15.5% was calculated including

all dogs and cats that carried Gram-positive MR, Gram-negative 3GCR

isolates, or both across all 5 participating clinics and practices. In most

studies, prevalence in healthy dogs and cats or veterinary-visiting animals

is limited to MDR E coli or MDR Enterobacterales with admission preva-

lence of 10.7% to 24.8% for dogs,13,38-40 1.4% to 15% for cats,38,40 and

7% to 8.6% for both.41,42 Studies that examined colonization with MR

Gram-positives5,41 often exclude MRCoNS because of their questionable

clinical relevance as pathogens.43 Considering the methodical differences

across different studies, the admission prevalence found in our cohort

was similar to what has been reported previously.

Third-generation cephalosporin-resistant E coli were the most

common isolates found at presentation (34% of all MDRO isolates),

suggesting that these bacteria may already be part of the gut flora of a

large proportion of the small animal referral population in Switzerland.

The 3GCR-E coli isolated at admission were diverse, including pAmpC

(CMY-42, CMY-2-like) and ESBL (CTX-M-1/-3/-15, CTX-M-9/-14, and

TABLE 1 Resistance of third-generation cephalosporin-resistant E
coli, K pneumoniae, and Enterobacter spp. isolated from admission and
discharge samples of 271 dogs and cats

Antimicrobial
type

E

coli,
n = 50

K

pneumoniae,
n = 26

Enterobacter
spp, n=8

Ampicillin 50 (100) 26 (100) 8 (100)

Cefotaxime 49 (98) 25 (96.2) 7 (87.5)

Ceftazidime 41 (82) 23 (88.5) 8 (100)

Meropenem 2 (4) 0 (0) 0 (0)

Sulfamethoxazole 24 (48) 24 (92) 7 (87.5)

Trimetoprim 24 (48) 22 (84.6) 5 (62.5)

Ciprofloxacin 32 (64) 24 (92) 4 (50)

Tetracyclin 22 (44) 16 (61.5) 5 (62.5)

Azitromycin 3 (6) 6 (23.1) NI

Nalidixic acid NI 26 (100) NI

Chloramphenicol 11 (22) 7 (26.9) 6 (75)

Gentamycin 13 (26) 18 (69.2) 5 (62.5)

Colistin 0 (0) 0 (0) 0 (0)

Tigecycline 0 (0) 0 (0) 0 (0)

Note: Minimal inhibitory concentrations (MIC) were interpreted using the

criteria of the European Committee on Antimicrobial Susceptibility

Testing27 except for nalidixic acid, sulfamethoxazole, and tetracycline, for

which the criteria from the Clinical and Laboratory Standards Institute

were used.28 No MIC was available for azithromycin; therefore, an MIC of

>64 mg/L was tentatively used. Data are reported as No. (%) of isolates.

NI indicates the minimum inhibitory concentrations of the antimicrobials

that were not interpreted. Numbers are given in bold when ≥50% of

isolates showed resistance.

Abbreviations: E coli, Escherichia coli; K pneumoniae, Klebsiella pneumoniae.
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CTX-M-1) genotypes. These genotypes are found in up to 10% of the

Swiss human population44 and also have been isolated from urban birds

(CTX-M-1, CTX-M-15),45 chicken meat (CMY-2, CTX-M-1),46 and pet

food (CTX-M-1, CTX-M-3, and CTX-M-15).47 A large percentage of

3GCR-E coli isolates displayed additional resistance to other classes of

antimicrobials; notably, two-thirds of the isolates were resistant to tri-

methoprim/sulfamethoxazole (TMP-S), 53.3% to tetracyclines and 26.7%

to fluoroquinolones, aminoglycosides, or both. Carbapenem resistance at

admission only was detected in 1 E. coli strain isolated from a dog. This

dog had not been treated with antimicrobials before presentation and

had never been presented at the clinic before the admission date.26

At admission, carriage of MRSA, MRSP, or macrococci was very

rare in this cohort of cats and dogs, which is in agreement with

some41,48 but not all recent studies.7,49 In contrast, there was a high

rate of isolation of MRCoNS (S warneri; S haemolyticus; ERIC-PCR group

D) in the outpatient population of practice 1. As previously reported,

sampling of the practice environment and staff in this practice identi-

fied contamination of 3/37 sampling sites with S haemolyticus (ST49;

mecA).25 Based on these results, it cannot be excluded that MRCoNS

were acquired in the practice. However, a high prevalence of carriage

of MRCoNS also has been documented in a population of healthy

nonveterinary-visiting Labrador retrievers in the United Kingdom,

which had no contact with veterinary practice environments and had

not received antimicrobial treatments,50 thus suggesting sources of

acquisition outside of veterinary care. Beyond their role as opportunis-

tic pathogens, MRCoNS can act as reservoirs for resistance genes and a

source of infection or colonization of in-contact humans.43

Dogs having received systemic antimicrobial treatments before

presentation had increased odds of carrying MDRO upon admission.

This finding is in agreement with other studies in pets,51 farm

animals,52 and humans,53,54 suggesting that systemic antimicrobial

treatments select for MDR bacteria within the host microbiome. The

fact most animals presented at referral institutions already have been

treated with antimicrobials puts these institutions at increased risk of

continuously having MDRO introduced into their hospital environ-

ments.2 Screening of patients with risk factors for MDRO carriage in

large referral institutions therefore should be considered part of

routine animal admission procedures.

An additional risk factor for MDRO carriage at presentation in

cats was a BARF diet. Extended spectrum β-lactamase-producing E

coli and other MDRO have been isolated from farm animals at

slaughter,55 as well as from fresh meat56 and milk,57 and the associa-

tion between BARF and MDRO colonization, in particular by MDR

Enterobacterales, previously has been described in both cats58,59and

dogs.38,59 The feeding of a BARF diet to dogs and cats therefore

should be discouraged.

Acquisition of MDRO was common in referral hospitals in our

study and still amounted to 12.1% in the institution with the lowest

acquisition rate among all 3 institutions. In a previous study, the hos-

pital acquisition rate for MDR E coli was reported at 6.8%.41 In com-

parison, the acquisition rate of MDR E coli in this set of hospitals

ranged between 6.9% and 20.9% and thus was markedly higher in

some of the hospitals than previously reported.

In clinic 1, the MDRO acquisition rate was strikingly high (39.1%),

predominantly because of the acquisition of 3GCR-E coli and 3GCR-KP.

More than half of E coli isolates (26/50) and 1/26 K pneumoniae isolates

carried carbapenemase-encoding genes (blaoxa-181, blaoxa-48, blaNDM5).

The closely related blaoxa-181, blaoxa-48 genes have been associated with

low-level resistance to carbapenems and may go undetected during

routine diagnostic testing if the EUCAST screening breakpoints for

meropenem or imipenem are not used.60 As carbapenemase producers

regrettably may become more widespread in veterinary medicine, it is

important that veterinary bacteriology laboratories extend their routine

diagnostic testing to the identification of these isolates, in particular in

view of their public health relevance.32

The molecular relatedness and mobile genetic elements of a clus-

ter of 21 E. coli isolates (ST410; blaOXA-181) from clinic 1 subsequently

were analyzed further using WGS and shown to be clonal, displaying

shared plasmidic resistance genes.26 The same E coli strain could be

linked to the transitory colonization of 1 staff member,61 and a closely

related E coli strain (ST410, blaCMY-42, blaOXA-181) was found in 1 envi-

ronmental sample from clinic 1.25 Overall, these findings are indicative

of nosocomial spread.

Interestingly, in this clinic, the environment was also shown to be

extensively contaminated with K pneumoniae (ST11; blaOXA-48, blaDHA-1)

and MRSP (ST551; mecA).25 A closely related KP strain (ST11; blaOXA-48)

was isolated only from 1 cat. The MRSP was only acquired by 1 dog dur-

ing hospitalization and was unrelated (ST1337;mecA).

As a consequence of the high acquisition rate, hospitalization at

clinic 1 represented a substantial risk factor for MDRO acquisition. In

this institution, 30% of environmental sampling sites were positive for

MDRO, the infrastructure for hand hygiene was outdated, cleaning

and disinfection protocols had not been updated for some time, and

the wearing of gloves had largely replaced standard hand disinfec-

tion.25 These factors likely contributed to the spread of MDRO in this

institution and have since been addressed.

In clinic 2, acquisition of CP E coli (ST167; blaNDM-5) also occurred,

and closely genetically related strains were carried by staff members,61

but the MDRO acquisition rate (12.1%) was markedly lower than in

clinic 1. In clinic 2, stringent infection prevention and control (IPC)

blaNDM-5 standards, reflected by a high IPC score, were in place and only

8% of environmental sampling sites identified MDRO colonization.25

Additional risk factors for MDRO acquisition from the univariate

analysis were days of hospitalization, administration of buprenorphine,

and use of antimicrobials during hospitalization in dogs. Of these, only

days of hospitalization remained significant in the multivariate model.

This finding concurs with what has been reported previously in pets41,62

and humans.62,63

The high rate of isolation of CP organisms was unexpected,

because carbapenems are not used in clinics 1 and 2.64,65 However,

the restricted use of a specific class of antimicrobials itself is not suffi-

cient to avoid emergence of relative resistance, because the selection

pressure exerted by the use of any broad-spectrum antimicrobial may

co-select for carbapenem resistance.66 Antimicrobial prescriptions for

selected conditions in dogs and cats in 2016 recently have been

reported, and these studies included prescription data from clinics
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1 and 2.64,65 Comparison of the data subsets from these 2 clinics did

not identify any substantial differences in the frequency or appropri-

ateness of antimicrobial prescriptions (data not shown). Therefore, dif-

ferences in IPC standards are more likely the driving force behind the

differences in environmental colonization25 and MDRO acquisition

between the 2 clinics. Nonetheless, besides active surveillance of

resistance and implementation of stringent environmental and hand

hygiene protocols, antimicrobial stewardship plays an important role

in limiting the emergence and spread of MDRO in referral hospitals.

Limitations of our study include the limited number of animals

enrolled, which might have led to a failure to detect significant risk

factors for MDRO carriage because of type II error. Furthermore, the

statistical power of the comparison of acquisition rates among clinics

was limited because of unequal sample sizes.

Differences in sample storage conditions (4�C vs room temper-

ature) and duration (1-5 days) may have influenced the likelihood

of MDRO recovery. Although some investigators have found that

samples could be stored at room temperature or at 4�C for up to

14 days without a decrease in recovery,67 others have described

decreased recovery of bacteria after storage at 4�C for 1 or

4 weeks using direct plating without prior enrichment.68 We are

confident however that the short storage times and use of enrich-

ment culture in our study would have minimized any potential

effect of storage at 4�C.

In conclusion, screening of dogs and cats presented to veterinary

clinics in Switzerland identified an unexpectedly high rate of acquisi-

tion of 3GCR-Enterobacterales, including strains with carbapenemase

resistance. These findings emphasize that small animal veterinary

clinics may contribute to the selection and spread of MDRO. Active

surveillance of resistance, stringent IPC, and antimicrobial stewardship

are key elements to ensure patient safety and decrease the public

health risk.
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