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Abstract: The growth factors BDNF and GDNF are gaining more and more attention as modula-
tors of synaptic transmission in the mature central nervous system (CNS). The two molecules un-
dergo a regulated secretion in neurons and may be anterogradely transported to terminals where
they can positively or negatively modulate fast synaptic transmission. There is today a wide consen-
sus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part
in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripher-
al and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium
potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in
GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superfi-
cial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full.
This review resumes the current literature on the interplay between BDNF and GDNF in the regula-
tion of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first
discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between
the two factors in nociceptive pathways. The development of small molecules specifically targeting
BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these
neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we
will finally consider the molecules of (potential) pharmacological relevance for tackling normal

and pathological pain.
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1. INTRODUCTION

Neurotrophic factors (NFs) are a large and heteroge-
neous group of molecules supporting the growth, survival,
and differentiation of developing and mature neurons. How-
ever, besides their “classical” trophic activity, NFs also act
as neuronal modulators, affecting synaptic plasticity and neu-
ronal endeavor [1]. Several NFs have received particular at-
tention as modulators of nociception and players in the mala-
daptive changes leading to chronic pain under pathological
conditions [2, 3]. Initial studies on the intervention of NFs in
the modulation of the nerve pathways that convey pain-relat-
ed information to the brain have mainly focused on the role
of nerve growth factor (NGF) in nociception and led to the
development of novel pharmacological approaches to treat
certain altered pain conditions [4]. More recently, the brain-
derived neurotrophic factor (BDNF) [5] and the glial cell
line-derived neurotrophic factor (GDNF) [6] have gained in-
creasing attention as pain modulators. The reasons for such
an interest are that the two factors and their receptors are ex-
pressed by the nociceptors, and the former likely play a role
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in the sensitization processes leading to chronic pain. How-
ever, the anatomical localization and the effects on neuronal
activity induced by BDNF and GDNF are different, thus
suggesting a dissimilar contribution to the processing of no-
ciceptive stimuli.

In this review, we will reconsider the state of art roles
played by BDNF and GDNF in the control of nociceptive
transmission and in the maladaptive changes that occur in
pain pathological conditions. We will pay particular atten-
tion to the putative interactions and complementarities be-
tween the two molecules and, eventually, to the pharmaco-
logical strategies that may derive from this knowledge.

2. NEUROTROPHIC FACTOR FAMILIES AND
THEIR RECEPTORS: AN OVERVIEW

NFs belong to three main families: the neurotrophin
(NT) family, the GDNF ligand (GFL) family and the ciliary
neurotrophic factor (CNTF) family. Here, we will focus on
the NT and GFL families, which include BDNF and GDNF,
respectively. There are two reasons for this choice. First, dur-
ing development, NTs and GFLs promote the differentiation
and survival of the primary sensory neurons [7-11]. Second,
in adulthood, they intervene in the regulation of the function-
al properties of these neurons, particularly in the modulation
of their synaptic activity [5, 6, 12, 13].
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2.1. The Neurotrophin Family

NGF, BDNF, neurotrophin-3 (NT-3) and neu-
rotrophin-4/5 (NT-4/5) compose the NT family. NTs share
numerous commonalities: first, they all express extensive
structural homologies in both genes and proteins [14]; se-
cond, the encoding genes contain a signal sequence and a
prodomain; hence NTs are synthesized as pro-NTs, which
need to be subsequently proteolyzed to obtain the functional-
ly active mature molecules; third, NT molecules are typical-
ly released as homodimers, which is the required configura-
tion for binding to their respective receptors.

NTs activate two different families of membrane recep-
tors: a pan-NT receptor, known as p75™" ", and a group of ty-
rosine kinase receptors, collectively known as Trk receptors
[15, 16].

p75™™ is a member of the tumor necrosis factor super-
family. It consists of an extracellular domain with four cys-
teine-rich motifs and an intracellular domain (including a
“death domain”) acting on a pool of cytoplasmatic proteins.
The receptor expression level in the peripheral and central
nervous system decreases with the progression of develop-
ment, but typically increases following injury [17]. p75™"™"
lacks an intrinsic catalytic activity, however, it can interact
with other NT receptors (i.e., the Trk receptors), as well as
with sortilin and Nogo, to produce a broad spectrum of
downstream effects [17].

Both NT and pro-NT dimers activate p75""", although
with opposing effects [18]. Specifically, pro-NTs bind
p75"™ with high affinity and, in combination with the co-re-
ceptor sortilin, induce apoptosis or inhibit axonal growth
[19]. This “death pathway” is intracellularly mediated by
JNK kinases, which, in turn, cause cell death via the p53 and
Bax pro-apoptotic pathways [18]. Unlike pro-NTs, mature
NTs exhibit a low affinity for p75""" and promote neuronal
survival and differentiation [14, 20]. This “life pathway”
seems largely mediated via the interaction between p75"™~
and the Trk receptors, i.e. by increasing the affinity of the
mature NTs for the Trks [21].

Each mature member of the NT family binds with high
affinity to a specific Trk receptor: NGF preferentially acti-
vates TrkA, BDNF and NT4/5 bind TrkB, and NT3 is associ-
ated with TrkC, but it is also a low-affinity agonist for TrkA
and TrkB [22]. Trk receptors have an extracellular domain
consisting of a cysteine-rich cluster, three leucine-rich re-
peats, another cysteine-rich cluster, two immunoglobulin-
like domains, and an intracellular domain that possesses tyro-
sine kinase activity [14]. NTs binding induces Trk receptor
dimerization, followed by phosphorylation of the cytoplas-
mic tyrosine residues, which, in turn, initiates the activation
of downstream effectors [22]. Interestingly, Trk receptors
are also active in the absence of NTs. Namely, they can be
trans-activated via a signaling pathway triggered by several
G protein-coupled receptors (GPCRs [14, 23]). The adeno-
sine receptor A2, was firstly proposed to trans-activate
TrkB receptors via G protein-dependent activation of Src ki-
nases [24]. Subsequently, other GPCR neuromodulators
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were shown to induce Trk transactivation, such as the pitui-
tary adenylate cyclase-activating polypeptide receptor (PA-
CAP [23],), the angiotensin receptor type 2 [25], and the
low-density lipoprotein receptor-related protein-1 [26]. Tyro-
sine kinase activity can also be induced by mechanisms
other than those mediated by GPCRs, for instance, by the
epidermal growth factor receptor [27], or zinc, which is co-
released with glutamate at excitatory synapses [28].

Trk receptor activation is associated with three major sig-
naling pathways: the Ras/mitogen-activated protein kinase
(MAPK) pathway; the phosphatidylinositol-3-kinase
(PI3K)/Akt pathway, and the phospholipase C-y (PLCy)/dia-
cylglycerol (DAG)/protein kinase C (PKC) pathway [14,
29]. All these pathways are involved in cell survival and dif-
ferentiation, but also in the modulation of neuronal activity
(i.e., acting on ion channels and ion transporters) and in the
regulation of neuronal plasticity [14, 16, 22]. PLCy is then
thought to play a major role in synaptic plasticity through in-
ositol-3-phosphate release and Ca”" mobilization from intra-
cellular stores.

To add another level of complexity, different splicing
variants exist in each group of Trk receptors. Besides the
“classical” full-length forms, splicing generates TrkB and
TrkC isoforms that miss the tyrosine kinase domain and are
often referred to as truncated receptor variants [30]. Al-
though the role of these isoforms is still poorly understood,
yet different studies have demonstrated that they are not inac-
tive, as originally thought, but can evoke Ca’" transients and
trigger intracellular signals. Interestingly, a growing number
of evidence indicates that signals from truncated Trk iso-
forms typically counteract the function of the respective ful-
l-length receptors, for instance, by inhibiting dimerization or
by disrupting intracellular responses [31-35].

2.2. The GDNF Ligand Family

The members of the GFL family, GDNF, neurturin,
artemin and persephin, are structurally related to the trans-
forming growth factor B (TGF-p) superfamily [36, 37]. Each
member of the family is translated as a pre-pro-precursor
protein, which is subsequently cleaved to generate an active
form [38, 39]. GFLs signal through a multi-competent recep-
tor complex comprising the tyrosine kinase transmembrane
receptor Ret and a high-affinity ligand-binding glycosylphos-
phatidylinositol (GPI)-anchored co-receptor referred to as
GFRa [37]. Ret is a tyrosine kinase receptor constituted by
an extracellular domain containing several cadherin-like re-
peats, a hydrophobic transmembrane domain, and an intracel-
lular tyrosine kinase domain [40]. For the ligand to activate
RET, it must bind first to the appropriate GFRa co-receptor.
Each member of the GFL family matches with a specific
GFRa isoform characterized by a distinct structure of the
cysteine-rich repeats in the ligand-binding domains [37].
Namely, GDNF preferentially binds to GFRal, neurturin to
GFRa2, artemin to GFRa3 and persephin to GFRo4 [36].
Like NTs, also GFLs are released as homodimers, each bind-
ing two GFRa receptors that, in turn, induce Ret dimeriza-
tion, thus conserving a 2:2:2 stoichiometry [41]. Ret dimers
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activate downstream intracellular pathways through their cy-
tosolic tyrosine kinase domain. The interaction between
GFLs, GFRa and Ret is favored by glycosaminoglycans,
such as heparan sulphate, as the lack of these molecules is
sufficient to abolish the survival and axonal growth effects
of GDNF [42, 43]. Moreover, receptor/co-receptor interac-
tion mainly occurs within sphingolipid- and cholesterol-rich
membrane microdomains, known as lipid rafts, in which
GFRsa are confined [44]. Therefore, the disruption of Ret lo-
calization in lipid rafts significantly weakens the associated
intracellular signals [44]. GFRa-Ret activation mainly sig-
nals through Ras/MAPK, phosphatidylinositol-3 kinase
(PI3K)/Akt and PLCy, which play a key role in neurite out-
growth and cell survival in the nervous system [45-47].

Consistently with a broader expression of GFRa than
Ret in neurons, GFLs can also transduce through GFRa in a
Ret-independent pathway [47, 48]. This was clearly demons-
trated in Ret-deficient cell lines, in which GFRa-mediated
signals activate the Src-like kinase that phosphorylates the
cAMP response element-binding protein (CREB) and in-
duces c-fos expression and cell survival [48]. A special role
in the activation of the Ret-independent pathway is played
by the neural cell adhesion molecule (NCAM). Actually,
NCAM acts as an alternative signaling pathway for GFLs, at
the point that GFRa-NCAM, GDNF-NCAM and GDN-
F-GFRa-NCAM may differentially transduce various intra-
cellular pathways (vertical signaling) or engage other
molecules at the cell membrane (horizontal signaling) [46,
47, 49].

3. LOCALIZATION OF BDNF AND GDNF AND
THEIR RECEPTORS IN NOCICEPTIVE PATHWAYS

Spinal nociceptive pathways, in their most simple config-
uration, consist of a chain of three neurons: a primary senso-
ry neuron, or nociceptor, located in dorsal root ganglia
(DRGs), a secondary neuron in the spinal cord dorsal horn,
and a third neuron in the ventroposterolateral nucleus of the
thalamus, which eventually transmits the nociceptive infor-
mation to the somatosensory cortex. An analogue chain of
neurons conveys nociceptive stimuli from the head and the
initial part of the neck along the trigeminal pathway.

BDNF, GDNF and their receptors have been consistent-
ly described in these pathways, and particularly in DRGs
and in spinal dorsal horn neurons (see for review [5, 6] and
Fig. 1). Understanding the anatomical distribution of these
molecules into labeled nociceptive lines is the necessary
premise to get insight into their role in pain processing.

3.1. Localization of BDNF and its Preferred Receptor
TrkB in DRGs and Dorsal Horn of the Spinal Cord

Early in situ hybridisation and immunohistochemical
studies demonstrated the expression of BDNF mRNA and
protein by a subpopulation of sensory neurons in DRGs,
both in rodent and human tissues [50-52]. In mice and rats,
BDNF positive DRG neurons are mainly small-to-medium-
sized [53-55]. BDNF is localized in a population of peptider-
gic neurons expressing the calcitonin gene-related peptide
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(CGRP), which typically characterizes the nociceptors en-
coding thermal pain [56, 57]. Conversely, the neurotrophin
is not expressed by non-peptidergic sensory neurons, that
are identified by isolectin B4 (IB4), and represent a group of
nociceptors principally involved in the transduction of me-
chanical pain [56, 57]. Accordingly, BDNF-positive fibres
in the superficial dorsal horn overlap the localization of
CGRP-expressing fibres in lamina I and lamina II outer [55,
58]. Interestingly, BDNF has also been observed in sensory
neurons that express neither CGRP nor IB4 [55]. Consistent-
ly, by using a BDNF-LAcZ reporter transgenic mouse, Bas-
baum’s group has recently demonstrated a broader expres-
sion of BDNF than previously described [59]. In particular,
these authors observed expression in large myelinated pri-
mary afferents, suggesting a still poorly understood role in
the processing of non-nociceptive sensory information from
the periphery [59].

A B

Fig. (1). Localization of BDNF and GDNF in the mouse DRGs
and spinal dorsal horn. (A) Distribution of the two NFs in DRGs.
Both BDNF (red) and GDNF (green) are expressed in small-
to-medium primary sensory neurons, yet in distinct populations.
(B) Distribution of BDNF (red) and GDNF (green) in the superfi-
cial dorsal horn. BDNF immunoreactive fibers are mainly localized
in laminae I-IT outer, while GDNF immunoreactive fibers mainly
end in lamina II. Abbreviations: LI = lamina I, LII = lamina II. (4
higher resolution / colour version of this figure is available in the
electronic copy of the article).

The TrkB protein and mRNA are also expressed by
DRG neurons of variable size in both rodents and humans
[51, 52, 54, 60], with a majority of medium-to-large-sized
neurons [60]. By using transgenic TrkB™***", Li and col-
leagues [61] demonstrated a foremost expression of the BD-
NF receptor in Ad low threshold mechanoreceptors, which
heavily terminate in lamina III of the dorsal horn. On the
other hand, we have previously shown that a subset of CGR-
P-positive nociceptors also co-express BDNF and TrkB,
which suggests the existence of an autocrine activation loop
at their peptidergic terminals [54].

BDNF and TrkB are also expressed by sparse propriospi-
nal neurons. /n situ hybridization studies showed the expres-
sion of the BDNF mRNA in the deep dorsal horn of adult
rats [52, 58]. Conversely, the receptor is expressed by the
majority of neurons in the spinal cord [52, 62], including
most ascending projection neurons in lamina I and in the
deep dorsal horn laminae [62].

The expression of BDNF and TrkB in pain-related
supraspinal centres has received less attention. However,
few studies have demonstrated the involvement of the neu-
rotrophin in different key areas for pain encoding, including
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the thalamus [63] and the parabrachial-amygdaloid path-
ways [64]. Previously, our group, in collaboration with Pri-
estley’s group, demonstrated that BDNF is costored in indivi-
dual dense-core vesicles (DCVs) with CGRP in the
parabrachial projection to the amygdala [65].

3.2. Localization of GDNF and Its Preferred Receptor
GFRol/Ret in DRGs and the Dorsal Horn of the Spinal
Cord

As BDNF, GDNF is mainly expressed by small-to-medi-
um-sized neurons in DRGs [55, 66, 67], although in a dist-
inct and smaller population [55]. In mouse DRGs, GDNF is
localized in a specific subgroup of peptidergic neurons con-
taining CGRP and somatostatin [55]. The neurotrophic fac-
tor is anterogradely transported to the spinal dorsal horn, as
suggested by immunohistochemical studies that localized
the protein in the peptidergic afferent fibres within lamina I
and lamina II outer [55, 68-70].

The mRNA of the GFL family receptor Ret is expressed
by more than half of the lumbar DRG neurons in both the rat
[66, 71-73] and mouse [74]. Most of the RET-expressing
neurons also express the GDNF specific co-receptor
GFRal: 66% in adult rats [73] and 89% in adult mice [75].
A similar expression pattern is also detected in the thoracic
DRGs from adult humans, albeit in a sensibly lower percent-
age [51]. Interestingly, while GDNF is mainly expressed by
the peptidergic neurons, the GFRal/Ret receptor complex is
typically found in the non-peptidergic IB4-positive neurons,
as well as in a small subset of non-peptidergic IB4-negative
neurons [75, 76]. During development, Ret is up-regulated
in non-peptidergic neurons, while TrkA is depleted; thus th-
ese neurons pass from NGF- to GDNF-dependence [75]. Ret
expression in these sensory neurons is critical for their differ-
entiation and for the expression of several important
molecules that are necessary for the detection of noxious sti-
muli [76, 77].

Consistently with the expression of GFRal/Ret in non-
peptidergic primary sensory neurons, GDNF receptors have
been detected in primary afferent fibres in the dorsal horn,
and, particularly, in the inner aspect of lamina II [70, 78].
Moreover, at the ultrastructural level, GFRal receptors are
specifically expressed by IB4-positive terminals in the
mouse spinal dorsal horn and are mainly localized ventrally
to GDNF-expressing peptidergic terminals in lamina II [55,
70].

There is not compelling evidence of a propriospinal
source of GDNF. Conversely, GFRal/Ret are also ex-
pressed by some neurons in the dorsal horn, including puta-
tive projection neurons in lamina I that also express the subs-
tance P preferred receptor NK1 [78].

4. ROLE OF BDNF AND GDNF IN NOCICEPTION

Although the localization of BDNF and GDNF and their
receptors in primary sensory neurons strongly suggests an in-
tervention in nociception, yet their significance in pain physi-
ology remains elusive. The lack of specific pharmacological
tools targeting the two molecules together with the difficulty
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to generate classical knockout animals due to the require-
ment of both factors for neuronal survival have for long ham-
pered the investigation of the role of BDNF and GDNF in
nociception. In recent times, however, the development and
availability of conditional mutant mice in which the expres-
sion of specific molecules can be selectively depleted in ma-
ture neurons has opened new avenues to interrogate the con-
tribution of the two NFs to pain transmission.

Initial studies on the conditional blockade of a mutant
TrkB receptor in mice led to conclude that BDNF does not
contribute to acute heat, mechanical or chemical pain sensi-
tivity [79]. More recently, Dembo and colleagues [59] have
investigated the contribution of BDNF to nociceptive trans-
mission by using a conditional transgenic mouse model in
which BDNF can be selectively deleted in virtually all pri-
mary sensory neurons by tamoxifen injection. The ablation
of BDNF produced only minor effects, including a slight in-
crease in the heat threshold of male mice, but not females, to
the tail immersion test and no effects on mechanical or cold
sensitivity [59]. Consistently, it seems reasonable to infer
that ongoing TrkB signaling facilitates the development of
synaptic plasticity in the outer aspect of the superficial dor-
sal horn, where thermal input is mainly processed, while it
has a minor impact deeper, where mechanical input is con-
veyed, thus making the system more prone to thermal sensiti-
zation [80].

A different scenario has been described when the GDNF
receptor Ret was ablated from sensory neurons. By the con-
ditional deletion of Ret in Nav1.8 expressing nociceptors in
mice, Golden and colleagues [77] have demonstrated that
the mutants express increased sensitivity to cold and in-
creased formalin-induced pain, thus demonstrating a consti-
tutive inhibitory role of Ret signaling in modulating nocicep-
tion. These data are consistent with our findings ex vivo
[70], demonstrating that GDNF, acting on the GFRal recep-
tor complex, constitutively constrains the excitatory drive in-
duced by afferent fiber activation upon spinal dorsal horn
neurons (Fig. 2).

While the role of BDNF and GNDF in the physiology of
pain transmission is still debated, it is, on the other hand,
well established that both NFs significantly contribute to the
maladaptive changes occurring in pathological conditions,
as it will be described in the following paragraphs.

5. ROLE OF BDNF IN PATHOLOGICAL PAIN

Several lines of evidence converge to indicate that BD-
NF principally acts as a pro-nociceptive modulator in senso-
ry pathways, with a central role in the initiation and mainte-
nance of inflammatory, chronic and/or neuropathic pain
[81]. Nevertheless, a BDNF anti-nociceptive modulation has
also been occasionally described, suggesting heterogeneity
of BDNF actions that depend on the molecular pathways in-
volved, the cells affected and the type of pathological condi-
tions (for review [5, 82-85]). In this section, we review the
role of BDNF as a pain modulator emerging from different
preclinical models of pathological pain.
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Fig. (2). Effects of BDNF and GDNF on nociceptive transmis-
sion. The cartoon schematically illustrates the localization of BD-
NF (left) and GDNF (right) in spinal nociceptive pathways and
their putative role in modulating nociceptive transmission. Left:
BDNF (green dots) is synthesized by peptidergic primary sensory
neurons in dorsal root ganglia and anterogradely transported to lam-
ina I (LI) and outer lamina II (LII,) of the dorsal horn via primary
afferent C fibers (orange). BDNF acts both pre- and post-synaptical-
ly through its preferred receptor TrkB. Notably, BDNF+ peptiderg-
ic afferent fibers express pre-synaptic TrkB receptors, suggesting
an autocrine function. BDNF/TrkB activation in superficial dorsal
horn plays a major pro-nociceptive role by increasing local net-
work excitability. Right: Another sub-population of peptidergic
fibers (orange), distinct from that expressing BDNF, ends in lami-
na II, and contains GDNF (red dots). Once released, GDNF acti-
vates the Ret/GFRal complex (in the diagram, only Ret is shown
for simplicity), which is mainly expressed by non-peptidergic affer-
ent terminals (blue) ending in inner lamina II (LIIi). GDNF, acting
on pre-synaptic Ret/GFRal, reduces the glutamate release associat-
ed with the activation of non-peptidergic fibers, thus limiting their

associated excitatory drive. (4 higher resolution / colour version of

this figure is available in the electronic copy of the article).

5.1. BDNF as Pro-nociceptive Neuromodulator in Inflam-
matory Pain

BDNF expressed by the sensory neurons and released by
their primary afferent fibers is necessary for the develop-
ment of both formalin and carrageenan-induced inflammato-
ry pain [86]. The pro-nociceptive effect of BDNF in inflam-
matory pain has been typically associated with a pre- and
post-synaptic potentiation of the glutamatergic neurotrans-
mission in the spinal dorsal horn via NMDA receptor plastic-
ity. In carrageenan-treated rats, BDNF potentiates nocicep-
tive spinal reflex activity and induces c-fos expression in dor-
sal horn neurons in NMDA receptor-dependent manner [87].
The BDNF-sequestering molecule trkB-IgG has also been
observed to rescue hyperalgesic behavior and functional al-
terations [87]. Similarly, the co-administration of BDNF
with the NMDA receptor antagonist D(-)-2-amino-5-phos-
phonovaleric acid (D-APV) prevents the BDNF-induced hy-
peralgesia in mice [88]. NMDA potentiation is mediated
through the activation of PKC and PLC-dependent pathways
[89, 90].

BDNF may act pre-synaptically to induce hyperalgesic
behavior. A pre-synaptic mechanism has been described in a
rat model of inflammation based on subcutaneous injections
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of complete Freund’s adjuvant (CFA) [91]. The authors
showed that BDNF increases the presynaptic release of gluta-
mate upon lamina II neurons. The effect was associated with
an increased synaptic input from large myelinated AP affer-
ent fibers in lamina II, which typically encode light touch sti-
muli and thus may underlie allodynia in CFA rats [91].

More recently, the contribution of peripheral BDNF to in-
flammatory pain has been reconsidered in a conditional
Advilin-CreERT?2 knock-out mouse model, which lacks BD-
NF specifically in sensory neurons [59, 81]. Both studies ob-
served a reduced nocifensive response in the second phase
of the formalin test, which indicates a reduced central sensiti-
zation [59, 81], although the effect was observed only in
males [59]. Surprisingly, however, Dembo and colleagues
[59] did not detect any difference in the development of pain
hypersensitivity in the CFA model of chronic inflammatory
pain. On the other hand, Sikandar and colleagues [81] ob-
served that BDNF deletion critically affects hyperalgesic
priming, i.e. a neuroplastic mechanism producing a latent
state of hyperresponsiveness in sensory neurons, which is
thought to favor the transition from acute to chronic pain
[81]. Hyperalgesic priming was induced by intraplantar in-
jection of carrageenan and the effect was uncovered by pros-
taglandin E2 (PGE2) injection after six days. While primed
control mice expressed long-lasting hyperalgesia following
PGE2 injection, mice lacking BDNF in sensory neurons on-
ly exhibit a transient decrease of nociceptive thresholds [81].

5.2. BDNF as Pro-nociceptive Neuromodulator in Neuro-
pathic Pain

BDNF also underlies the maladaptive plasticity occur-
ring in neuropathic pain. Early studies in rats and mice with
partial sciatic nerve lesion demonstrated that spinal BDNF
contributes to the alterations resulting from the nerve dam-
age in nociceptive pathways [92-95]. Systemic administra-
tion of either anti-BDNF or anti-TrkB neutralizing anti-
bodies, Trk inhibitors or the BDNF scavenger TrkB/Fc abol-
ishes behavioral pain hypersensitivity [92-94]. Up-regula-
tion of BDNF in sensory neurons and its central release up-
on spinal dorsal horn neurons have been observed in differ-
ent nerve-injury models, including sciatic nerve transection,
chronic constriction injury and nerve ligation [96-102].

A significant leap forward in understanding the role of
BDNF in neuropathic pain was achieved with the study by
Coull and colleagues [103]. The authors identified the spinal
microglia as the main source of BDNF in nerve-injured rats.
In this model, the purinergic P2X4 receptors activate spinal
microglia to trigger the release of BDNF, which, in turn, de-
creases KCC2 function, the main CI" extruder in lamina I
projection neurons. The subsequent accumulation of Cl in
these neurons reduces the strength of GABA/glycine
ionotropic transmission, hence leading to hyperexcitability
and pain hypersensitivity. These effects are recapitulated by
intrathecal transfer of ATP-stimulated microglia or by BD-
NF administration [103, 104], and are prevented by either de-
pleting BDNF in microglia [103, 105], blocking TrkB [103,
105], or knocking out P2X4 expression [105, 106].



1230 Current Neuropharmacology, 2021, Vol. 19, No. 8

BDNF also causes hyperexcitability of spinal neurons by
increasing the NMDA receptor function, as reported in in-
flammatory pain. Indeed, in rats with spinal nerve ligation,
intrathecal injection of BDNF induces mechanical allodynia
and long-term potentiation (LTP) via a mechanism involv-
ing the activation of NR2B-containing NMDA receptors
[96, 107].

The concomitant alterations of inhibitory and excitatory
transmission likely interact to sensitize central sensory neu-
rons. Recent studies have specifically addressed this ques-
tion. In particular, Hildebrand and colleagues [108] have re-
ported that the downregulation of KCC2 induced by BDNF
is both sufficient and necessary to promote NR2B-NMDA
phosphorylation and LTP induction in lamina I neurons of
nerve-injured rats. A key role in the signaling between BDN-
F-dependent CI dysregulation and NMDA phosphorylation
is played by STEP61 phosphatase, whose down-regulation
is coupled with KCC2 depletion and is sufficient to drive the
potentiation of excitation [109]. Importantly, these mech-
anisms were also recapitulated in an ex-vivo spinal cord pre-
paration obtained from human tissue, thus shortening the dis-
tance to clinical interventions [109].

Although the above-described mechanisms are based on
post-synaptic alterations, pre-synaptic effects have also been
reported. In mice with chronic constriction injury, BDNF in-
creased the expression of the CI transporter NKCCI1 in
DRGs, thus causing an increase of intracellular CI', leading
to transient presynaptic disinhibition and hypersensitivity
[110]. The presynaptic effects are also likely mediated by mi-
croglial BDNF, which has been shown to act on afferent ter-
minals for potentiating the NMDA-mediated responses
[111]. Altogether, these data confirm the existence of cou-
pling mechanisms involving Cl” dysregulation and NMDA
potentiation at both pre- and post-synaptic levels, which
may be affected by BDNF.

5.3. BDNF Involvement in other Forms of Chronic Pain

Besides inflammatory and neuropathic pain, BDNF is in-
volved in several other forms of chronic pain, including pain
following spinal cord injury [34], trigeminal pain and mi-
graine [112-114], opioid-and nicotine-induced hyperalgesia
[105, 115], painful diabetic neuropathy [116, 117] and can-
cer pain [118-122]. Although these different models of
pathological pain are based on distinct etiological grounds,
yet pain hypersensitivity gated by BDNF is associated with
the recurrent involvement of a restricted number of molecu-
lar actors, including P2X4 receptors, KCC2/NKCCI trans-
porters and NMDA receptors. Such commonality of mech-
anisms has important implications in conceiving new treat-
ments for future therapeutic approaches, as later discussed in
this review.

5.4. BDNF as an Anti-nociceptive Neuromodulator

While most published data indicate BDNF as a pain am-
plifier, yet other lines of evidence suggest that it may also ex-
ert anti-nociceptive effects. Early studies in the field showed
that the central administration of BDNF may produce anal-
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gesic behavior. For instance, injections of BDNF into the rat
midbrain caused thermal analgesia, likely acting on endoge-
nous opioidergic/serotoninergic system [123]. Similarly, in-
tracerebroventricular injections of BDNF in rats increased
the latency of hind paw licking in the hot-plate test [124].

BDNF has also been reported to reverse established allo-
dynic/hyperalgesic behaviors in animals with neuropathic
pain clinical signs. Indeed, the administration of BDNF in-
trathecally [125] or through viral vectors [126] reverses ther-
mal and/or mechanical hypersensitivity following nerve in-
jury. These anti-nociceptive effects of BDNF consistently re-
ly on specific interactions between the trophic factor and sy-
naptic inhibition mechanisms at both pre-and post-synaptic
level. Pre-synaptically, TrkB activation stimulates the re-
lease of GABA from dorsal horn neurons upon primary affer-
ent terminals [125, 127], while post-synaptically, it en-
hances the spontaneous release of GABA and glycine upon
lamina II neurons [128]. However, it should be stressed out
that the comprehension of the mechanisms of action of BD-
NF (and other modulators) in the superficial dorsal horn is
made difficult by the still disguised circuitry of this area of
CNS. As an example, the observations by Bardoni and col-
leagues [128] regarding the enhancement of inhibitory neuro-
transmission in lamina II have been recently correlated with
a polysynaptic chain consisting of a C peptidergic nocicep-
tor, two islet cells in sequence, a central cell, a large vertical
cell, and, eventually, a lamina I excitatory projection neuron
[129]. As the first islet cell inhibits the second islet cell that,
in sequence, is inhibitory to the central cell, the circuit is exc-
itatory onto the large vertical cell. Thus, this type of configu-
ration can explain why BDNF was shown to produce ex vivo
a depression of the evoked IPSCs as well as an increase of
mIPSCs at synapses in the superficial dorsal horn [128].

Yet, the apparently contradictory co-existence of pro-no-
ciceptive and anti-nociceptive effects is not surprising, as it
belongs to the pleomorphic nature of BDNF. Recently, in
fact, Huang and colleagues demonstrated that while the in-
trathecal administration of BDNF to the spinal cord of unin-
jured rats decreases KCC2, thus promoting disinhibition and
hypersensitivity, nonetheless after spinal cord injury, the
same BDNF treatment increases KCC2 and restores synaptic
inhibition [130]. Such dual behavior likely depends on the
activation of specific intracellular pathways, as well as on
the involvement of different cell types, thus highlighting that
it is not possible to achieve efficacious BDNF-targeted phar-
macological solutions without an accurate understanding of
the cellular and molecular actors and circuitries involved.

6. ROLE OF GDNF IN PATHOLOGICAL PAIN

GDNF displays both pro-nociceptive and anti-nocicep-
tive functions in the sensory system, depending on the site
of action and on the type of pain. While GDNF principally
acts as an anti-nociceptive modulator in neuropathic pain,
pro-nociceptive effects are often reported at the peripheral
level and in experimental models of inflammatory pain (see
for review [6, 12]).
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6.1. GDNF as an Anti-nociceptive Neuromodulator

GDNF anti-nociceptive effects have been well estab-
lished in different models of neuropathic pain, including
nerve-injury and diabetic neuropathy [131, 132].

In rats with sciatic nerve partial ligation or L5 spinal
nerve ligation, intrathecal infusion of GDNF reverses me-
chanical and thermal hyperalgesia and GDNF pre-treatment
avoids the insurgence of these neuropathic pain signs by pre-
venting the alterations induced by nerve-injury on peripheral
sodium channel subunits [12, 131]. Similarly, injections of
viral vectors inducing the expression of GNDF [133-135] or
of mesenchymal stem cells over-expressing the trophic fac-
tor [136] alleviate the allodynic and hyperalgesic signs asso-
ciated with a nerve injury in rodents. Specifically, intraspi-
nal delivery of GDNF-expressing lentiviral vectors in rats
prevented the up-regulation of the activating transcription
factor 3 (ATF-3), a marker of nerve injury, as well as the
down-regulation of the phenotypic marker of non-peptiderg-
ic nociceptors IB4 [134]. Injection of adenovirus vectors en-
coding GDNF attenuated allodynia and thermal hyperalge-
sia, reduced chronic constriction injury-induced neuronal
apoptosis, inhibited microglia activation and cytokine pro-
duction, indicating a neuroprotective action of the NF [133].
Similar effects have also been reported in mice [135]. Impor-
tantly, also human patients with neuropathic pain symptoms
exhibit decreased levels of GDNF in their cerebrospinal
fluid, thus reinforcing the clinical significance of the obser-
vations in animal models [137].

Different mechanisms have been proposed to underlie
the anti-hyperalgesic effects of GDNF. GDNF released from
peptidergic nociceptors may exert an inhibitory control on
the glutamate excitatory drive from non-peptidergic fibres,
with a subsequent reduction in neuronal activity [70]. Alter-
natively, GDNF may act on other targets, such as NCAM
and other adhesion molecules, which concur to GDNF anal-
gesic effects at the spinal level in a Ret-independent manner
[138-140]. In addition, GDNF and its receptors may alter
pre-synaptically the neuronal excitability by directly acting
on voltage-dependent channels. Indeed, a potentiation of the
Kv4.1 potassium channel in the sensory neurons of nerve-in-
jured animals has been recently described [141]. These inter-
actions may also require the modulation of other transmit-
ters activating GPCRs that, in turn, reduce neuronal excita-
bility and promote analgesia. In particular, intrathecal appli-
cation of GDNF enhances the expression and the central re-
lease of the analgesic peptide somatostatin, suggesting a GD-
NF anti-allodynic effect via somatostatinergic mechanisms
[142, 143].

Monoamines are another group of analgesic transmitters
that have been associated with the GDNF analgesic effects.
Indeed, injection of GDNF into the locus coeruleus of
nerve-injured rats exerted prolonged analgesia by enhancing
the descending noradrenergic inhibition to spinal dorsal horn
neurons via a2-adrenoceptor [144].

Little is known, however, regarding the signaling path-
ways through which GDNF and its receptors produce analge-
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sia. In spinal dorsal horn neurons, GDNF administration to
nerve-injured rodents leads to the down-regulation of differ-
ent intracellular pathways associated with pain hypersensitiv-
ity, such as nectin-1/c-Src [138] and integrin f1/FAK [145],
or the up-regulation of anti-nociceptive pathways, such as E-
cadherin/p120 catenin [146].

6.2. GDNF as a Pro-nociceptive Neuromodulator

While GDNF is frankly anti-nociceptive in neuropathic
pain, it has more prominent pro-nociceptive functions in in-
flammatory pain. Ogun-Muyiwa and colleagues [147] ob-
served that exogenous GDNF up-regulates pro-nociceptive
mediators, such as substance P, in adult rat DRG cultures.
The pronociceptive role was subsequently confirmed by di-
rect intraplantar injection of GDNF, which enhances both
thermal sensitivity mediated by the thermal transducer TR-
PV1 [148] and mechanical sensitivity associated with IB4-
positive nociceptors [149, 150]. As IB4-positive neurons are
known to express GFRa/Ret receptor complex, these senso-
ry neurons are the more obvious target for GDNF-dependent
sensitization. Indeed, ablating IB4-positive nociceptors pre-
vent GDNF-induced mechanical hyperalgesia [149]. In the
same study, Bogen and colleagues were able to reverse the
GDNF-dependent hyperalgesia by interfering with several ki-
nases downstream to GFRa/Ret, including PLCy, MAP-
K/ERK, PI3K, CDKS5 and Src family kinase.

The effect of GDNF on IB4-positive neurons is not only
limited to nociceptor sensitization but also extends to hyper-
algesic priming [151, 152]. GDNF induces priming in IB4-
positive neurons via PKCe signaling pathway [151] and
priming is directly associated with a reduction in the levels
of the GPCR kinase 2 (GRK2) [152].

The involvement of GDNF in the development of inflam-
matory pain has been described in different chronic pain
models, such as CFA-induced inflammation [153, 154]. In
rats with CFA-induced arthritis, GDNF stored in DRGs is de-
pleted and the intrathecal injection of a function-blocking
antibody against GDNF decreases the inflammatory hyperal-
gesia [153]. GDNF, as well as other related GFLs (in particu-
lar artemin), have also been involved in several other mod-
els of inflammatory pain, including bone inflammation
[155] and cystitis [156, 157].

7. INTERPLAY BETWEEN GDNF AND BDNF IN NO-
CICEPTIVE PATHWAYS

In the previous sections, we have explored in-depth the
current knowledge on the role of BDNF and GDNF in the
control of nociceptive neurotransmission under normal and
pathological conditions. Interestingly, several distinctive and
somehow complementary features characterized the localiza-
tion of these two NFs in nociceptive pathways (Fig. 2). Spe-
cifically: 1- BDNF and GDNF are basically expressed by
two distinct populations of peptidergic nociceptors [55]; 2-
in DRGs, BDNF is mainly expressed by the same neurons
expressing its cognate receptor TrkB, suggesting an au-
tocrine function [5, 54], while the GDNF receptor complex
(GFRo-Ret) is expressed by the non-peptidergic sensory ne-
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Table 1. BDNF and GDNF levels in neurological disorders.
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Disease Model

BDNF GDNF

Spinal cord ischemia Rat model of transient ischemia [158]

1 in spinal neurons 1in spinal neurons and astrocytes

Parkinson’s disease

Lesion of the rat nigrostriatal pathway by 6-hydroxy-

1 in striatum and midbrain of 1 in striatum and <> in midbrain of

dopamine [159] young rats young rats
| in striatum and 1 in midbrain of | <« in striatum and midbrain of old
old rats rats
Alzheimer’s disease B6C3-Tg transgenic mouse [160] lin cortex 1in cortex

Learning and memory im-
pairment

Pneumococcal meningitis in rat [161]

lin hippocampus lin hippocampus

Alcohol spectrum disorder Ethanol administration to postnatal rats [162]

1 in amygdala and < in pyriform
cortex in P7 rats
| in amygdala and |in pyriform cor-

tin amygdala and 1 in pyriform cor-
tex in P7 rats
1 amygdala and |pyriform cortex in

tex in P15 rats P15 rats
Hyperoxia Exposure of P7-12 rats to the hyperoxic condition | |[mRNA in prefrontal cortex and 1 [t mRNA in prefrontal cortex and 1 in
[163] in isocortex isocortex

urons [66, 70]; 3- while clearly, pro-nociceptive and anti-no-
ciceptive effects cannot be univocally associated to one
trophic factor or the other, yet a general consensus supports
the concept that in neuropathic pain, BDNF is pro-nocicep-
tive, while GDNF is anti-nociceptive [5, 6, 129].

Several works in the last years have explored how patho-
logical conditions affect BDNF and GDNF expression in
CNS, thus demonstrating the implications of both factors in
the shift from normality to an altered neurological situation
Table (1). In several cases, the levels of the two NFs are reg-
ulated in an opposing direction, reinforcing the hypothesis
that they play alternative/complementary roles.

However, only a few studies have properly addressed
whether BDNF and GDNF directly interact in modulating
the function of central neurons. For instance, Giehl and col-
leagues [164] showed that GDNF prevents the degeneration
of lesioned corticospinal neurons via BDNF signaling. Simi-
larly, combined administration of GDNF and BDNF, but not
each factor individually, favors motor neuron differentiation
in vitro [165] and improves motor dysfunction in a rat mod-
el of spinal cord injury [166]. An interaction between GDNF
and BDNF was also observed in the hippocampus in 3xT-
g-AD mice that modeled Alzheimer’s disease [167]. Here,
the over-expression of GDNF improved cognition perfor-
mances and increased BDNF expression.

Importantly, imbalances in the expression of BDNF and
GDNF are associated with several neurological alterations in
humans. Aged subjects exhibiting cognitive decline or with
mild Alzheimer’s disease display decreased BDNF and GD-
NF serum levels when compared with healthy subjects
[168]. A significant decrease in both NFs has also been re-
ported in patients with schizophrenia [169]. Conversely, in
patients diagnosed with bipolar disorder where only BDNF
was decreased, lithium-based therapy inverted the ratio of
circulating BDNF/GDNF, suggesting that the reciprocal lev-
els determine the overall effect on the nervous system [170].

8. THERAPEUTIC PERSPECTIVES

Given the part played by BDNF and GDNF in pain mod-
ulation preclinically, the two molecules certainly represent

an attractive target for the development of novel therapeutic
strategies. Several approaches have been proposed in animal
studies, particularly for the treatment of neuropathic pain in
which, as highlighted above, BDNF and GDNF have oppo-
site effects.

8.1. Targeting BDNF/TrkB

The main approaches derived from preclinical studies to
treat pain by blocking BDNF/TrkB signaling can be distinct
in: 1) scavenging BDNF, ii) targeting the extracellular TrkB
domain, iii) interfering with the intracellular kinase domain.

8.1.1. Scavenging BDNF

Scavenging BDNF can be achieved in vivo by delivering
a TrkB-Fc fusion protein, obtained from the extracellular do-
main of TrkB and the Fc domain of human IgGs [171]. This
approach has been extensively used to probe the role of en-
dogenous BDNF in pain models, including nerve injury
[103], diabetic neuropathy [172], and pain incision model
[173]. Although highly specific, the method is poorly trans-
latable in clinical settings since the scavenger needs to be ap-
plied intrathecally or locally at the central sites where BDNF
is released.

8.1.2. Targeting the Extracellular TrkB Domain

Targeting the extracellular domain, thus reducing the
probability of ligand binding, can be achieved either through
TrkB blocking antibodies [174] or by developing new recep-
tor antagonists [175]. Monoclonal function-blocking anti-
bodies against TrkB receptors have been successfully em-
ployed in preclinical investigations (i.e., mouse clone 47
[176]), and proved to be effective in blocking the effects of
BDNF on neuronal activity in acute spinal cord slices [177],
as well as in reversing neuropathic [103] and other forms of
pathological [105] pain in rodents. Similarly to TrkB-Fc, sys-
temically administered anti-trkB blocking antibodies do not
reach the CNS, which, together with the relatively low sensi-
tivity [176], makes them poor candidates for clinical treat-
ments. In the last decade, the identification of novel small
molecules acting as negative allosteric modulators of TrkB
receptors has brought important advances in pharmacokinet-
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ics and drug bioavailability. By using a peptidomimetic ap-
proach, Cazorla and colleagues identified a small BDNF
fragment, cyclotraxin-B, which allosterically alters the con-
formation of TrkB [178]. Cyclotraxin-B was thereafter
proved to have clear antinociceptive effects in different pain
models, including post-stroke pain [63], nerve ligation in-
jury [113], and inflammatory pain [179]. On the other hand,
cyclotraxin-B does not only act on the BDNF dependent
mechanisms but also ont the BDNF independent forms of
TrkB activation, which raises the issue of the specificity of
the effect. Moreover, the peptide is effective if delivered in-
travenously, but not orally. These limitations have been over-
come by the same group through the identification of
ANA-12, a non-peptidic small molecule [175]. ANA-12 al-
losterically prevents BDNF from binding TrkB with nanomo-
lar potency [175] and, unlike cyclotraxin-B, can be deliv-
ered orally, thus representing a promising and specific ap-
proach for clinical trials. Very promising, an increasing num-
ber of preclinical studies have confirmed the antinociceptive
efficacy of ANA-12 in different pain models, including
nerve injury [111], inflammatory pain [180], trigeminal pain
[114] and migraine [112, 181]. Recently, ANA-12 has also
been documented to counteract chronic hypersensitivity due
to visceral pain in cyclophosphamide-induced cystitis [182]
and in a model of irritable bowel syndrome induced by ma-
ternal separation in rats [183].

8.1.3. Interfering with the Itracellular Kinase Domain

The main approach to intracellularly block tyrosine ki-
nases activity is to interfere with the ATP binding site of the
enzymes [184, 185]. The indolocarbazole K252a is one of
the first used compounds acting as a competitive inhibitor of
the ATP site, thus blocking Trk catalytic activity [186, 187].
K252a administration effectively blocks the rise of intracellu-
lar Ca®* promoted by BDNF in acute slices of the rat superfi-
cial dorsal horn [177] and, in vivo, it reduces hypersensitivi-
ty in visceral [188, 189], neuropathic [103, 190], inflammato-
ry [191], and skeletal pain [192].

Encouraged by preclinical studies, different pharmaceuti-
cal companies have invested considerable resources in im-
proving kinases inhibitors, some of which are currently un-
der clinical trials or investigations for a broad range of dis-
eases, including oncological disorders and pain (for review
[184, 193-196]). Although most of them exhibit high poten-
cy in vitro, yet the development of a TrkB inhibitor as a mar-
keted product has not been successful at present. Unfortu-
nately, developing tyrosine kinase antagonists for specific
Trk receptors is challenging since ATP competitive Trk in-
hibitors are at best Trk specific (pan-Trk inhibitors) but can
hardly discriminate between Trk subtypes [184]. Therefore,
a major limitation concerning the use of these molecules is
the risk to develop central side effects. To limit adverse ef-
fects, several attempts have been made to develop molecules
that do not cross the blood-brain barrier (BBB) but mainly
act at the periphery. Some of these molecules, e.g., AR-
RY-470 [197] or PF-06273340A [198], exhibit antinocicep-
tive effects in animal models of chronic pain. In a recent ran-
domized, double-blinded clinical trial, the pan-Trk inhibitor
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ONO-4474 was proved to be analgesic in patients with mod-
erate to severe osteoarthritis [199]. Yet, it is likely that all th-
ese molecules also target peripheral Trk receptors other than
TrkB (e.g., TrkA).

8.2. Alternative Targets to Counteract BDNF Pronocicep-
tive Effects

Due to the above-described limitations, to date, there are
no effective pain treatments based on BDNF/TrkB. The criti-
cal role played by BDNF and TrkB receptors in the survival
of central neurons further limits the use of TrkB antagonists
as a safe therapeutic approach. Moreover, the complexity
and plurality of the intracellular signaling pathways activat-
ed by tyrosine kinase receptors make it difficult to develop
selective pharmacological treatments. Targeting BDN-
F/TrkB can lead to both on-target side effects, due to the in-
activation of BDNF-dependent pathways important for the
normal functioning of the healthy nervous system, and off-
target side effects, due to the lack of specificity and the inter-
action with relevant non-BDNF pathways [200].

Other viable therapeutic options to counteract TrkB-de-
pendent pathological alterations can be achieved by target-
ing upstream or downstream effectors.

Upstream targeting of microglia can effectively reduce
the BDNF-dependent alterations in neuropathic pain [201].
In this respect, microglial P2X4 receptors, whose activation
is necessary for the subsequent release of BDNF, are viable
targets for clinical interventions [202]. Alternatively, several
GPCR receptors, such as dopamine receptor 1 (D1R [203]),
PACAP receptor [23], adenosine A2 receptor [204] and the
cannabinoid receptor 1 [205], can transactivate TrkB, thus
representing alternative targets to reduce TrkB signaling.

Among downstream signaling pathways, a key mech-
anism underlying TrkB-dependent pain hypersensitivity,
acts through the downregulation of KCC2, which causes an
imbalance between excitatory and inhibitory neurotransmis-
sion [103]. KCC2 itself represents a putative pharmacologi-
cal target [206]. Therefore, the development of KCC2 en-
hancers is a promising therapeutic avenue to restore inhibi-
tion and counteract the symptoms associated with the BDN-
F-TrkB-KCC2 cascade [207].

8.3. Targeting GDNF/GFRal/Ret

Although GDNF and its receptor, as well as other GFLs,
have been shown to either increase or decrease sensitivity in
different preclinical models of pain, the antinociceptive role
of GDNF in neuropathic pain has been consistently reported
(for review, see [6]). Thus, potentiating the GDNF system
is, theoretically, a viable strategy to counteract neuropathic
pain symptoms. To achieve this goal, the following strate-
gies have been explored: 1) direct administration of GDNF;
ii) synthesis and delivery of small molecule agonists; iii) al-
ternative druggable targets to potentiate GDNF/GFRal/Ret
pathways.
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8.3.1. )- Administration of GDNF

In different experimental neuropathic pain models, the
antinociceptive effects of GDNF have been demonstrated by
the direct administration of GDNF, mostly intrathecally
[131, 142, 143, 208]. In terms of translatability into clinical
settings, however, intrathecal administration of GDNF is
hampered by the invasiveness of the procedure and potential
side effects [209]. On the other hand, the poor CNS bioavail-
ability of proteinaceous molecules with high molecular
weight, such as the NFs, strongly limits the use of systemic
administration in clinical interventions [210, 211]. Many ef-
forts have been made to overcome the BBB obstacle and im-
prove GDNF availability to the nervous tissue, for instance,
by intranasal administration using cationic liposomes [212,
213] or by encapsulating GDNF in microspheres, allowing a
slower release when centrally injected [214-216].

Gene-transfer approaches represent a more effective way
to deliver GDNF in the CNS. These approaches can be ei-
ther implemented by trojan horses, such as liposomes, that
carry GDNF-encoding plasmids across the BBB to the cen-
tral neurons [217], or by gene transfer with recombinant vi-
ral vectors locally infecting the target neurons [210]. A num-
ber of viral vectors carrying the gdnf gene have been devel-
oped, in particular, for rescuing motor performance in ani-
mal models of Parkinson’s disease [210]. These include the
herpes simplex virus (HSV [218]), lentiviruses [219], aden-
oviruses [220] and adeno-associated viruses (AVV
[221-223]). Vector-mediated GDNF delivery has also been
proposed to reverse neuropathic pain symptoms after nerve
injury, either by spinal injection of lentiviral vectors [134,
135], intracutaneous inoculation of engineered herpes sim-
plex virus [224] or intramuscular injection of recombinant
adenovirus [133, 225].

Eventually, cell therapy represents another putative strat-
egy to deliver GDNF to central neurons. Administration of
astrocytes, macrophages and neural stem cells engineered to
express GDNF, or carotid bulb cells, an endogenous source
of GDNF, have been successfully employed to prevent cell
loss in certain neurodegenerative diseases [226-228]. The
use of GDNF-based cell therapy has also been successfully
adopted for the treatment of pain hypersensitivity in nerve-
injured rats [229].

Clinical trials to test the effectiveness of GDNF-based
therapies in humans have so far largely failed, and more im-
portantly, have unveiled the main limitations of this ap-
proach: first, the onset of unwanted side effects, such as nau-
sea, weight loss, anorexia; second, the inadequate concentra-
tion reached by GDNF in target tissues; and third, the pro-
duction of neutralizing anti-GDNF antibodies in a number
of patients [230, 231]. Gene therapy may represent an im-
provement as compared to the direct administration of the
NF, as demonstrated in preclinical investigations. A large
clinical trial is currently ongoing to address the effectiveness
of AAV-gdnf administration in the putamen of patients with
Parkinson’s disease [232], which may subsequently open the
avenue for similar approaches for the treatment of neuropath-
ic pain. Indeed, GDNF has not yet been employed to treat
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neuropathic pain in humans. Artemin, instead, has already
been tested in two clinical studies in patients with sciatica,
with the main purpose to verify the safety, tolerability, and
pharmacokinetics of the NF [233, 234].

8.3.2. Small Molecule Agonists

To overcome the BBB, another viable strategy is the syn-
thesis of non-peptidyl small molecule agonists activating
GDNF receptors complex GFRal/Ret. The first described
agonist of GFRal was XIB4035 [235]. Local XIB4035 ad-
ministration was shown to alleviate the symptoms of diabet-
ic neuropathy [132]. More recently, Sidorova and colleagues
[236] identified by high-throughput screening, a novel Ret
agonist, named BT13. This molecule directly modulates
RET and its downstream intracellular signaling cascades.
BT13 systemic administration reverses nerve injury-induced
alterations in sensory neurons [236].

8.3.3. Alternative Druggable Targets to Potentiate GDN-
F/GFRal/Ret Pathways

Emerging evidence suggests that the activation of the in-
tracellular Ret signaling cascade is the endpoint of a com-
plex and multifaceted ensemble of interacting factors,
among which GFLs and GFRs likely represent a necessary
but not sufficient component. Understanding the specific rel-
evance and involvement of these interacting factors may pro-
vide novel approaches to restore pharmacologically Ret sig-
naling in pathological settings.

The molecular composition of the membrane microdo-
mains (lipid rafts) in which the GFRs are anchored repre-
sents a key factor influencing intracellular Ret signaling
pathways [44]. Indeed, GDNF-mediated activation of
GFRal fosters the recruitment of Ret to lipid rafts, thus fa-
voring Ret/Src kinases coupling [44]. The interaction of
GFRal and Ret outside lipid rafts microdomains does not
preclude Ret activation but attenuates downstream function-
al effects [237]. GM1 ganglioside is an important compo-
nent of lipid rafts and displays neurotrophic actions in vitro
and in vivo [238, 239]. A recent study showed that the ad-
ministration of GM1 promotes Ret phosphorylation by en-
hancing the interaction between GDNF and GFRal [239].
Interestingly, the administration of GM1 to patients with
post-herpetic neuralgia or spinal cord injury was found to
sensibly reduce pain severity [240].

Transcription factors represent other alternative targets
for indirectly manipulating the Ret function. Specifically,
the transcription factor nurrl has been shown to stimulate
Ret tyrosine kinase activity in animal models of Parkinson’s
disease [241, 242]. Pharmacologically, nurrl can be targeted
by delivering bexarotene, an agonist of retinoic X receptors,
which in turn forms heterodimers with the transcription fac-
tor [242]. Interestingly, bexarotene also exerts antinocicep-
tive effects in neuropathic pain by counteracting certain spi-
nal neuroinflammatory processes [243], thus leaving open
the possibility that nurrl-Ret pathways may also be targeted
in the spinal cord.

Eventually, as reported earlier, GDNF may exert antino-
ciceptive effects, also acting upon receptors other than Ret.
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In particular, adhesion molecules such as NCAM, E-cad-
herin and nectin-1 have been implicated in GDNF antinoci-
ceptive signaling pathways [49, 138, 140]. Importantly,
C3D, a NCAM mimetic peptide, recapitulates the analgesic
effects of GDNF in the model of nerve injury [49], thus rep-
resenting another alternative strategy for pain treatment.

CONCLUSION

While pre-clinical studies in the last 20 years have con-
sistently reported that BDNF and GDNF play a significant
role in the development of pain hypersensitivity, no novel
pharmacological strategies have been successfully devel-
oped based on this knowledge. The reasons are multiple (see
for review [244, 245]), and include the difficulty to correctly
dose and deliver the treatments, as well as the necessity to
deal with advanced stages of the pathology in humans. On
the mechanistic side, however, one major obstacle is the tre-
mendous fluidity of NFs activity. As discussed in this re-
view, the same NFs can generate opposite effects by activat-
ing different intracellular pathways or different receptors;
not to say that the same molecules have short- and medi-
um-term effects on neuronal function, but also long term
trophic effects on neuronal survival and differentiation.
Therefore, the identification of specific downstream targets
in Ret- and TrkB- dependent pathways involved in the onset
of pain symptoms (or in their reduction) is probably a more
viable and safer strategy rather than directly tackling NF's re-
ceptors. In this respect, defining the mechanistic ground
through which NFs promote sensitization in pathological
pain is necessary to refine pharmacological interventions, re-
duce side effects and increase effectiveness. Additionally,
more efforts are needed to be made not only in the analysis
of the effects of individual relevant factors but also in their
reciprocal interactions. In this review, we showed that BD-
NF and GDNF exert distinct complementary effects in pain
processing. Their reciprocal contribution appears particular-
ly evident in neuropathic pain, where BDNF/TrkB signaling
plays a dominant pro-nociceptive role, while GDN-
F/GFRal/Ret signaling mainly exerts anti-nociceptive ef-
fects. Any imbalance in their contribution to the modulation
of pain processing may concur with the development of
pathological conditions. Although we are still far from under-
standing properly the circuitry that triggers the opposing ef-
fects of BDNF and GDNF in the initial process of nocicep-
tive stimuli [129], this dual mechanism of action provides, at
least theoretically, the possibility to pharmacologically mod-
ulate its final outcome by the combinatory use of agonist
(mimetic) and antagonist (lytic) drugs to each NF in a
fashion similar to that currently in use in the pharmacologi-
cal control of sympathetic and parasympathetic visceral neu-
rotransmission. It is at present difficult to foresee which
could be the advantages or disadvantages of such an ap-
proach. If indeed, it will be possible to develop adequate
pharmacological tools that overcome the limitations de-
scribed in the previous section of this paper, however, one
has to keep in mind that any drug acting on either of the two
NFs will influence their relative functional balance. Thus, it
might be speculated that, for e.g., the development of a GD-
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NF agonist would be equally effective than that of a BDNF
antagonist in the control of pathological pain. In the transi-
tion from preclinical studies to therapeutic intervention, the
interactions between the two NFs should be taken into con-
sideration. Most of the clinical trials in the past were fo-
cused on single targets, with the idea that a single molecule
or receptor can effectively restore a pathological condition.
The interactions of BDNF and GDNF in nociceptive path-
ways impose a change of approach toward combinational
therapies [246], including the delivery of both trophic fac-
tors and/or small molecules acting on downstream targets,
aiming to restore an altered balance. On the other hand, the
successful development of combinational therapies based on
a homeostatic approach implies the availability of diagnostic
tools to non-invasively explore the neurotrophic content at
both central and peripheral levels in different types of pain-
ful neuropathies [247-249].
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