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Abstract

Accurate prediction of B-cell antigenic epitopes is important for immunologic research and medical applications, but
compared with other bioinformatic problems, antigenic epitope prediction is more challenging because of the extreme
variability of antigenic epitopes, where the paratope on the antibody binds specifically to a given epitope with high
precision. In spite of the continuing efforts in the past decade, the problem remains unsolved and therefore still attracts a lot
of attention from bioinformaticists. Recently, several discontinuous epitope prediction servers became available, and it is
intriguing to review all existing methods and evaluate their performances on the same benchmark. In addition, these
methods are also compared against common binding site prediction algorithms, since they have been frequently used as
substitutes in the absence of good epitope prediction methods.
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Introduction

Antigenic epitopes are regions of the antigen protein surface

that are preferentially recognized by antibodies. Prediction of B-

cell antigenic epitopes is of direct help to the design of vaccine

components and immuno-diagnostic reagents. Usually, B-cell

antigenic epitopes are classified as either continuous or

discontinuous. The majority of available epitope prediction

methods focus on continuous epitopes

[1,2,3,4,5,6,7,8,9,10,11,12].

On the other hand, discontinuous epitopes dominate most

antigenic epitope families [13]. Unfortunately, due to compu-

tational complexity and the limited number of known antibody-

antigen complex structures, only a limited number of prediction

methods exist for discontinuous epitope prediction: CEP [14],

DiscoTope [15], BEpro(PEPITO) [16], ElliPro [17], SEPPA

[18], EPITOPIA [19,20] and EPCES [21], EPSVR [22],

EPMeta [22], and Bpredictor [23]. Since currently all discon-

tinuous epitope prediction methods require the three-dimen-

sional (3D) structures of antigenic proteins, the small number of

available antigen-antibody complex structures greatly limits the

development of reliable discontinuous epitope prediction meth-

ods. In addition, an unbiased benchmark set is very much in

demand [21,24].

Results

Performance of Structure-based Prediction Methods
In the review, we will discuss and evaluate conformational

epitope predictors of DiscoTope [15], BEpro(PEPITO) [16],

ElliPro [17], SEPPA [18], EPITOPIA [19,20] and EPCES [21],

EPSVR [22], Bpredictor [23], and EPMeta [22] for all of which

there exist web servers or free downloadable software packages.

DiscoTope [15] integrates with linear combination two scores, the

hydrophilicity scale and the epitope log-odds ratios, the latter of

which is also one kind of epitopic residue propensity score.

BEpro(PEPITO) [16] also applies linear combination to two

scores: the epitopic residue propensity and the half sphere

exposure values at multiple distances. ElliPro [17] uses only one

single score, i.e. residue protrusion index (PI). SEPPA [18]

employs the epitopic residue propensity and the compactness of

the neighboring residues around one residue (contact number or

flat surface), again using linear combination. EPITOPIA [19,20]

applies a naive Bayesian classifier to forty-four physico-chemical

and structural–geometrical attributes, including secondary struc-

ture, propensity, conservation, solvent accessible surface, and

hydrophilicity etc. EPCES [21] devises a special linear method,

using a voting mechanism for consensus, to integrate six scores,

namely propensity, amino acid side-chain energy value, secondary

structure composition, contact number, conservation score, and

surface planarity score. One step forward, EPSVR [22] uses the
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same attributes as EPCES [21] but Support Vector Regression

(SVR) to integrate all scores. Bpredictor [23] employs the random

forest classifier to adjacent residue distance score, accessible

surface area, conservation, secondary structure, and propensity

etc. EPMeta is a meta server, which combines EPSVR, EPCES,

EPITOPIA, SEPPA, PEPITO, and Discotope1.2.

In general, the features used by these predictors include

conservation score, structural features such as secondary compo-

sition, geometry characteristics such as protrusion index and

planarity score, and amino acid features such as hydrophilicity and

propensity (odd-ratios). These attributes can be integrated by

linear combination or machine-learning algorithms, such as naive

Bayesian classifiers, SVR, and random forest classifiers. Different

number of features can be used in a given predictor, from two

scores to forty-four attributes. For small numbers of attributes,

a simple linear combination can usually work well, whereas large

numbers of features often require sophisticated machine-learning

algorithms to optimally integrate the scores. Notably, some of

these features may be mutual-exclusive or overlapped. For

example, the antigenic epitope is frequently located at either

a protruding region or a flat surface. In such cases, linearly

combining two incompatible terms contradicts the physical basis

and will only degrade the performance of a predictor.

The above epitope predictors are trained with most or all of the

available antigen-antibody complex structures obtained from x-ray

diffraction on crystallized proteins. Therefore, the independent test

set compiled by Liang et al. [22], which contains 19 protein

monomer structures with epitope information derived from

experimental methods other than crystal structures, was applied

to all methods as an independent evaluation. Table 1 shows the

area under receiver operating characteristic curve (AUC) values of

all methods. A receiver operating characteristic (ROC) curve

represents a dependency of sensitivity and (1-specificity), which is

plotted with true positives rate versus false positive rate at various

threshold settings. To change the threshold setting, the number of

predicted residues is increased in steps of 1% of total surface

residues. The mean AUC values are calculated using the method

described by Liang et al. [22], except for Bpredictor. For

Bpredictor, the AUC value is directly obtained from the

manuscript, where the same benchmark by Liang et al. was

applied as in the current work. Among single servers, EPSVR and

Bpredictor have the best performance according to the AUC

values. Although EPSVR has the highest mean AUC value, the

differences between EPSVR and other servers are not statistically

significant (p-value .0.05), according to the pairwise t-student tests.

The meta server, EPMeta, achieves a mean AUC value of 0.638,

which is significantly higher than all single servers.

The accuracy, i.e. positive prediction rate, is useful for

experimental testing. If each server returns 10% of surface

residues as predicted epitopic residues, the accuracy is 14.3%,

15.5%, 17.0%, 17.2%, 17.8%, 18.8%, 24.7%, and 25.6% for

ElliPro [17], DiscoTope1.2 [15], BEpro (PEPITO) [16], SEPPA

[18], EPCES [21], EPITOPIA [19,20], EPSVR [22], and EPMeta

[22] respectively. The accuracy is around 24% for Bpredictor

based on Figure 4 in the Reference[23]. The rationale of selecting

10% is because the average length of antigen proteins is around

200 amino acids, and the average size of epitopic patch is about 20

amino acid residues. The current level of accuracy of all predictors

is not yet satisfactory. Even the highest accuracy, 25.6% achieved

by EPMeta, leaves room for further improvement. If 3% of surface

residues are returned as predicted epitopic residues, the accuracy

of EPMeta is 31.6%, which is the overall highest value by all

conditions and methods.

Single Chain or Multiple Chains
The recognition of antibody to antigenic epitopes has high

specificity; the epitopic surface is not as conserved as other

functional protein binding sites, which comes from the conserved

functions of protein-protein interactions during evolution. The

interfaces of regular protein-protein binding are usually more

conserved and have more hydrophobic amino acid residues than

non-binding protein surfaces. This makes the exposed protein-

Table 1. List of the conformational B-cell epitope prediction methods and their obtained AUC results.

Method URL of web server AUC
Accuracyb

(%)

DiscoTope [15] http://www.cbs.dtu.dk/services/DiscoTope/ 0.567 15.5

BEpro(PEPITO) [16] http://pepito.proteomics.ics.uci.edu/ 0.570 17.0

ElliPro [17] http://tools.immuneepitope.org/tools/ElliPro/iedb_input 0.585 14.3

SEPPA [18] http://lifecenter.sgst.cn/seppa/index.php 0.576 17.2

EPITOPIA [19,20] http://epitopia.tau.ac.il/index.html 0.579 17.8

EPCES [21] http://sysbio.unl.edu/EPCES/ 0.586 18.8

EPSVR [22] http://sysbio.unl.edu/EPSVR/ 0.597 24.7

Bpredictor [23] http://code.google.com/p/my-project-bpredictor/downloads/list 0.598a 24.0c

EPMeta [22] http://sysbio.unl.edu/EPMeta/ 0.638 25.6

aThe AUC value is obtained from the Reference [23].
b10% of surface residues are returned as predicted epitopic residues.
cEstimated based on the Figure 4 in the Reference [23].
doi:10.1371/journal.pone.0062249.t001

Table 2. List of the protein binding site prediction methods
and their obtained AUC results.

Method URL of web server AUC

ProMate [26] http://bioinfo.weizmann.ac.il/promate/ 0.530

ConSurf [27] http://consurf.tau.ac.il/index_proteins.php 0.460a

PINUP [28] http://sysbio.unl.edu/services/PINUP 0.562

PIER [29] http://abagyan.ucsd.edu/PIER/pier.cgi?act = dataset 0.537

aConserved residues are selected as for common binding site prediction.
doi:10.1371/journal.pone.0062249.t002
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protein interfaces relatively easy to distinguish from both the

antigenic epitopes and non-binding protein surfaces. In other

words, the prediction task for a single chain protein that has both

protein-protein binding interfaces and an antigenic epitope is

easier than that of a complete protein complex.

In the benchmark, six of the proteins (PDB IDs: 1eku, 1av1,

1al2, 1jeq, 2gib, and 1qgt) possess multiple chains. Therefore, in

the evaluation all methods are tested with two different scenarios

for these six proteins: prediction on a single chain, where the

experimental antigenic epitope is located, and prediction on the

whole protein, including all chains. When using multiple chains,

all chains are considered, and the total number of surface residues

is counted for the intact complex structure. As a result, some

methods, such as EPSVR, show dampened performances if the

whole protein is used for prediction, resulting in lower mean AUC

values for the 6 proteins as compared with predicting based on the

single chain containing the antigenic epitope. Therefore, in the

future, if sufficient data exist, variant test datasets shall be

compiled for different cases, i.e. single chain antigens, single

chains from antigen complexes, and antigen complexes. A good

antigenic epitope predictor shall have satisfying performance on all

types of benchmarks.

Protein Binding Site Prediction Methods
Protein binding site prediction methods are frequently bor-

rowed for conformational epitope prediction [24,25], since

epitopic patches can be considered as one kind of protein binding

sites, and due to the lack of many epitope prediction methods for

analysis and comparison. The methodologies used by protein

binding site prediction and epitope prediction are similar; both

integrate some amino acid scoring functions with a machine

learning algorithm or other platform to train a prediction model

on known data. The major difference is their distinct training sets;

while protein binding site prediction uses all known protein-

protein binding complexes, an epitope prediction method is

trained with antibody-antigen complexes only. Therefore, we also

applied the independent benchmark of epitopes to some binding

site prediction methods. For this we selected binding site

prediction methods that have both demonstrated good perfor-

mance and convenient web servers for public use. The AUCs

achieved by these methods for the epitope benchmark are shown

in Table 2. One can see that the performances of the binding site

prediction methods to predict B-cell epitopes are significantly

lower than all conformational epitope prediction methods. This is

not surprising, because all binding site prediction methods are

designed based on the conservation and hydrophobicity of binding

patches, but B-cell epitopic patches are neither conserved nor

more hydrophobic compared with other protein-protein binding

surfaces. Instead, the residues on the antigenic epitopes are more

diverse than regular surface residues due to the evolution pressure

from the host immune system. Therefore, we conclude that the

general binding site prediction methods are not suitable for

antigenic epitope prediction. Any future developed epitope

prediction method is not recommended to claim performance

improvement by comparing with binding site prediction methods.

Discussion

Currently, various sets of attributes and classifiers have been

applied by different existing epitope prediction algorithms, which

naturally leads to one question: Which combination of attributes is

optimal for the prediction? To answer this question, one may

systematically evaluate different machine-learning algorithms on

all non-redundant attributes and allocate the optimal set among

them. Also of great importance to the epitope prediction research

is the growth of the training data, especially the antigens that have

both bounded and unbounded structures. In addition, it is also

important to collect high quality independent testing data, such as

the ones compiled by Liang et al. [22] that contain experimentally

measured epitopic residues but no complex structures. We also

recommend that all future researchers implement their developed

algorithms as free accessible web servers or downloadable software

packages, because B-cell epitope prediction algorithms will likely

become more and more complicated and meta-methods usually

have better prediction accuracy than any of the single algorithms

(Table 1).

Conclusions
In recent years, there have been developed a number of new

conformational B-cell epitope prediction algorithms. While the

prediction performance has accumulated some improvement, it is

still far from satisfactory. Compared with other bioinformatic

problems, antigenic epitope prediction is especially difficult due to

the lack of properties that are universally observed for the

antigenic epitopes but not for other protein surfaces. Additionally,

common binding site prediction methods are not suitable for

antigenic epitope prediction because they focus on the conserva-

tion of surface residues.
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