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Background. Solid organ transplant recipients (SOTRs) are less likely to mount an antibody response to SARS-CoV-2 
mRNA vaccines. Understanding risk factors for impaired vaccine response can guide strategies for antibody testing and 
additional vaccine dose recommendations. Methods. Using a nationwide observational cohort of 1031 SOTRs, we cre-
ated a machine learning model to explore, identify, rank, and quantify the association of 19 clinical factors with antibody 
responses to 2 doses of SARS-CoV-2 mRNA vaccines. External validation of the model was performed using a cohort of 
512 SOTRs at Houston Methodist Hospital. Results. Mycophenolate mofetil use, a shorter time since transplant, and older 
age were the strongest predictors of a negative antibody response, collectively contributing to 76% of the model’s predic-
tion performance. Other clinical factors, including transplanted organ, vaccine type (mRNA-1273 versus BNT162b2), sex, 
race, and other immunosuppressants, showed comparatively weaker associations with an antibody response. This model 
showed moderate prediction performance, with an area under the receiver operating characteristic curve of 0.79 in our 
cohort and 0.67 in the external validation cohort. An online calculator based on our prediction model is available at http://
transplantmodels.com/covidvaccine/. Conclusions. Our machine learning model helps understand which transplant 
patients need closer follow-up and additional doses of vaccine to achieve protective immunity. The online calculator based 
on this model can be incorporated into transplant providers’ practice to facilitate patient-centric, precision risk stratification 
and inform vaccination strategies among SOTRs.
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INTRODUCTION
Approximately half of all solid organ transplant recipients 
(SOTRs) develop an antibody response after 2 doses of 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) mRNA vaccines.1,2 Additional doses may induce 
serologic responses in those who failed 2, 3, or 4 doses, but 
clinicians lack prediction models to guide personalized anti-
body testing and vaccination recommendations. Instead, 
the transplant community currently operates under a “one 
size fits all” recommendation for all SOTRs to receive at 
least 3 vaccine doses with vague guidance on timing or ideal 
platform selection for additional “booster” doses.3-5 This 
may not be the most appropriate use of limited resources, 
particularly in the developing world where vaccines and 
routine antibody testing are not widely available.

Understanding the clinical factors associated with lack of 
antibody response after mRNA vaccination of SOTRs would 
inform subsequent vaccine platform number and selection, 
the role of antibody testing, intervals for additional doses, and 
potentially identify those to prioritize in global areas of limited 
vaccine access. Machine learning (ML) is a sophisticated alter-
native to traditional regression modeling and has been utilized 
for large registry data analyses in transplantation.6,7 However, 
the utility of these methods in the prediction of SARS-CoV-2 
vaccine response in SOTRs has not been explored.

In this study, we quantify risk factors and create a predic-
tion model for positive antibody response to doses of SARS-
CoV-2 mRNA vaccine (mRNA-1273 or BNT162b2). We 
analyzed a nationwide cohort of 1037 transplant recipi-
ents who completed the 2-dose mRNA vaccine series via 
an ML algorithm that can quantify non linear associations 
and characterize the interactions between predictors in a 
robust and comprehensive manner. Our prediction models’ 
performances were evaluated using an external validation 
cohort from a tertiary transplant center.

MATERIALS AND METHODS

Study Population
SOTRs without a previously reported COVID-19 infec-

tion were recruited from across the United States to par-
ticipate in this prospective cohort through a social media 
campaign.1,2,4,5 SOTRs who reported receiving 2 doses of 
SARS-CoV-2 mRNA vaccine between December 16, 2020, 
and May 21, 2021, were followed through July 6, 2021. 
Semiquantitative anti-Spike antibody testing with the 
Roche Elecsys anti-SARS-CoV-2 S enzyme immunoassay, 
which tests for the receptor-binding domain of the SARS-
CoV-2 spike protein, or the EUROIMMUN enzyme immu-
noassay, which tests for the S1 domain of the SARS-CoV-2 
spike protein, were used. The study was approved by the 
Johns Hopkins Medical Institute (JHMI) Institutional 

Review Board (IRB), and participants provided informed 
consent electronically.

An external validation cohort was used to test the predic-
tion performance of our models. The Houston Methodist 
J.C. Walter Jr. Transplant Center cohort included 512 
SOTRs vaccinated between January 4, 2021, and May 31, 
2021. Patients who reported transplant after vaccination, 
had no documented vaccine type or post-dose 2 antibody 
test result, or tested positive for anti–SARS-COV-2 nucle-
ocapsid protein antigen (using the Roche Elecsys anti–
SARS-CoV-2 serological assay) or qualitative PCR (titers 
>1:50 threshold is considered positive) were excluded. 
Data were collected with a waiver of informed consent 
approved by the Houston Methodist Research Institute 
(HMRI) IRB. De-identified data from HMRI were shared 
with JHMI after approval from both IRBs.

Immunogenicity
Negative titer levels were <0.8 U/mL (Roche) and ≤1.1 

AU (EUROIMMUN), per manufacturer guidelines. We 
stratified positive antibody levels into “low” and “high” 
positive categories. Low-positive results were antibody 
titers >0.8 U/mL but ≤50 U/mL (Roche) or >1.1 AU but 
≤4 AU (EUROIMMUN). High-positive titers were >50 U/
mL (Roche) and >4 AU (EUROIMMUN). These high-pos-
itive cutoffs were based on the comprehensive analysis by 
Khoury et al, which estimated that an anti–receptor-binding 
domain titer of 54 U/mL with a 95% confidence interval 
(CI), 30–96 U/mL equated to approximately 50% protec-
tive neutralization against the ancestral variant, as well as 
the Food and Drug Administration recommended cutoffs 
of 132 U/mL (Roche) and 3.5 AU (EUROIMMUN).8,9

Prediction of Positive Versus Negative Antibody 
Response

We created a prediction model for positive versus nega-
tive antibody response using gradient boosting.10 In this 
analysis, a positive response included both low- and high-
positives. Gradient boosting is a general-purpose ML 
algorithm that generates a sequence of parsimonious pre-
diction models based on the residual error of the previous 
models. This model included 19 predictors: age, sex, race 
(White versus non-White), organ transplanted, years since 
transplant, number of transplants, immunosuppressive 
medications (mycophenolate mofetil [MMF], tacrolimus, 
corticosteroids, azathioprine, sirolimus, and everolimus), 
and vaccine type (mRNA-1273 or BNT162b2).

Characterization of the Factors Associated With 
Positive Antibody Response

To quantify the association of the predictors and positive 
antibody response in a traditional regression framework, we 
performed a logistic regression using the same predictors as 
the gradient boosting described here against positive (versus 
negative) antibody response. Akaike information criterion 
was used to select predictors for this model and determine 
the ideal functional forms of the predictors. We incorporated 
predictor–predictor interactions using their product terms.

Prediction of Antibody Titer Category
To characterize the association of the predictors with 

low- and high-positive antibody response separately, we 
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created an additional prediction model wherein the out-
come was categorized into high-positive, low-positive, or 
negative. Like the previous model, gradient boosting was 
used with the same set of 19 predictors described previ-
ously, but this model used a multiclass objective function 
as opposed to a binary format.

Statistical Analysis
Variable importance and Shapley additive explanations 

(SHAP) were used to characterize the association between 
gradient boosting predictors and antibody response. 
Variable importance represents the contribution of each 
predictor to the overall model prediction performance.11 
SHAP values represent a specific predictor’s impact on 
the predicted outcome in an individual patient.12 First, 
we randomly permuted a predictor in our dataset to ren-
der it uninformative, used the modified dataset to create 
a new prediction model, and measured the decline in the 
prediction performance in the new model compared to the 
original. A greater decline in prediction performance indi-
cates that the select predictor had a high variable impor-
tance. This procedure was repeated for every predictor in 
the original model, and the variable importance was pre-
sented in a relative scale. Second, we used SHAP values 
to visualize the predictor–outcome associations as well 
as the predictor–predictor interactions. SHAP values rep-
resent a specific predictor’s impact on the predicted out-
come in an individual participant.12 In this study, SHAP 
values can be interpreted as the log odds of the outcome. 
Additionally, we conducted a preliminary evaluation of 
the model performance by measuring the area under the 
receiver operating characteristic (AUROC) curve via a 
10-fold cross-validation.

Using the external validation cohort, we evaluated the 
prediction performance of the models in discrimination 
and calibration. Discrimination represents the model’s abil-
ity to accurately assign higher predicted risk to those who 
had developed the outcome, and calibration represents the 
alignment between the predicted risk and the true risk.13 
Discrimination was measured using AUROC. Calibration 
was assessed using locally estimated scatterplot smoothing 
between the predicted log odds of the outcome and the 
observed outcome.14

Tuning parameters for the gradient boosting algorithm 
were selected via 10-fold cross-validations. Missing values 
were handled via multiple imputations during the gradi-
ent boosting procedure; for each iteration, the effect of the 
missing variable was predicted based on nonmissing parts 
of the data and the model. All analyses were performed 
using R version 4.0.4. Observational study data were col-
lected and managed using REDCap electronic data capture 
tools hosted at JHMI.15

RESULTS

Population Characteristics
This study included 1031 participants who reported 2 

doses of an mRNA vaccine and were tested for antibody 
response 1 mo after dose 2 (D2). Of these participants, 
432 (42.1%) had negative, 223 (21.7%) had low-positive, 
and 372 (36.2%) had high-positive titers. Four partici-
pants reported positive serologic testing results, but their 
exact titers were unavailable. Compared with participants 

with negative titers, those with positive titers were more 
frequently liver transplant recipients (33.6% versus 9.0%), 
had a longer time since transplant (median; 9 versus 5 y), 
and less frequently reported MMF as a part of their immu-
nosuppressive regimen (43.2% versus 86.1%) (Table 1).

Post-dose 1 (D1) antibody titer data were available for 
918 (89.4%) participants; 752 (81.9%) had negative, 129 
(14.1%) had low-positive, and 37 (4.0%) had high-posi-
tive titers. Among the 752 participants with negative titers 
post-D1, 386 (51.3%) remained negative, 191 (25.4%) 
developed low-positive, and 175 (23.3%) developed high-
positive titers post-D2. Among the 129 participants with 
low-positive titers post-D1, 1 (0.8%) decreased to nega-
tive, 7 (5.4%) maintained low-positive, and 121 (93.8%) 
developed high-positive titers post-D2. Among the 37 
participants with high-positive titers post-D1, 1 (2.7%) 
decreased to negative and 38 (97.3%) maintained high-
positive titers post-D2.

The external validation cohort included 512 partici-
pants. Of those participants, 220 (43.0%) had a positive 
antibody response after 2 mRNA vaccine doses (Table 
S1, SDC, http://links.lww.com/TP/C491). In the positive 
and negative subgroups, the external validation cohort 
included a higher proportion of male (64.1% and 56.8% 
versus 43.6% and 41.1%, respectively) and non-White 
recipients (24.5% and 25.0% versus 10.0% and 10.0%, 
respectively), as well as patients with less time since trans-
plant (median, 3 and 2 y versus 9 and 5 y, respectively) 
than the primary cohort. Other characteristics were rela-
tively similar between the primary and external validation 
cohorts.

Prediction of Any Positive Versus Negative Antibody 
Response

Among 19 predictors supplied to the ML algorithm, 16 
were included in the final model, and 3 were eliminated. 
MMF (39.5%), time since transplant (23.6%), and age 
(13.1%) showed the highest variable importance, followed 
by liver transplant status (6.4%) and type of vaccine prod-
uct (4.1%) (Table 2, left column).

A longer time since transplant was associated with 
higher odds of a positive antibody response; this associa-
tion was stronger during the first several years post-trans-
plant (Figure 1A). Time since transplant also showed some 
predictor–predictor interactions, specifically in liver trans-
plant recipients and participants taking MMF. Although 
a longer time since transplant was associated with higher 
odds of a positive antibody response in both liver and non-
liver transplant recipients, this association was less pro-
nounced in liver transplant recipients (Figure 2A; shown in 
red). Additionally, beyond the 5th year post-transplant, the 
association of time since transplant with a positive anti-
body response was stronger among those using MMF than 
it was among those who were not (Figure 2B).

Older age was associated with lower odds of a positive 
antibody response, especially among those under 65 y of 
age (Figure 1B). MMF use was associated with lower odds 
of a positive antibody response (Figure 1C), whereas liver 
transplant status (versus non-liver transplant) was asso-
ciated with higher odds of a positive antibody response 
(Figure 1D).

This model showed moderate prediction performance. In 
the primary cohort, this model showed a cross-validation 
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TABLE 1.

Cohort characteristics by antibody titer after 2-dose mRNA vaccine series

  
Negative (n = 432) 

Positive (n = 599)

All positives (n = 599) Low-positive (n = 223a) High-positive (n = 372 a) 

Age (y) 62 (47–68) 59 (45–68) 63 (50–70) 58 (43–66)
Male sex 175 (41.0) 261 (43.9) 98 (45.0) 161 (43.3)
Non-White race 42 (9.8) 59 (9.9) 22 (10.1) 36 (9.7)
Transplanted organ (multiple-response allowed)
 Kidney 273 (63.2) 281 (46.9) 125 (56.1) 154 (41.4)
 Liver 39 (9.0) 201 (33.6) 44 (19.7) 156 (41.9)
 Pancreas 25 (5.8) 17 (2.8) 9 (4.0) 7 (1.9)
 Heart 56 (13.0) 98 (16.4) 42 (18.8) 55 (14.8)
 Lung 70 (16.2) 38 (6.3) 20 (9.0) 18 (4.8)
 Intestine 2 (0.5) 2 (0.3) 0 (0.0) 2 (0.5)
 Other 4 (0.9) 1 (0.2) 0 (0.0) 1 (0.3)
Time since transplant (y) 5 (2–11) 9 (4–16) 7 (3–15) 9 (5–16)
Immunosuppressive agents (multiple-response allowed)
 MMF 372 (86.1) 259 (43.2) 147 (65.9) 110 (29.6)
 Tacrolimus 380 (88.0) 468 (78.1) 173 (77.6) 292 (78.5)
 Corticosteroids 278 (64.4) 281 (46.9) 117 (52.5) 162 (43.5)
 Azathioprine 11 (2.5) 63 (10.5) 16 (7.2) 47 (12.6)
 Sirolimus 37 (8.6) 72 (12.0) 20 (9.0) 51 (13.7)
 Everolimus 11 (2.5) 33 (5.5) 9 (4.0) 23 (6.2)
Vaccine product: MRNA-1273 (vs BNT162b2) 166 (38.4) 308 (51.4) 90 (40.4) 217 (58.3)
Total number of transplants
 1 395 (91.4) 566 (94.5) 208 (93.3) 355 (95.4)
 2 37 (8.6) 28 (4.7) 13 (5.8) 14 (3.8)
 3+ 0 (0.0) 5 (0.8) 2 (0.9) 3 (0.8)

Continuous variables are shown in median (IQR) and categorical variables in N (%).
aFour recipients whose antibody response data were available only in a qualitative format were excluded from this stratified analysis.
MMF, mycophenolate mofetil.

TABLE 2.

Variable importance

Rank 

Model 1 (positive vs negative) Model 2 (antibody titer category)

Predictor Importance Predictor Importance 

1 MMF use 39.5% MMF use 42.1%
2 Time since transplant 23.6% Time since transplant 20.3%
3 Age 13.1% Age 13.3%
4 Liver transplant 6.4% Liver transplant 7.4%
5 Vaccine product (MRNA-1273 vs BNT162b2) 4.1% Vaccine product (MRNA-1273 vs BNT162b2) 5.5%
6 Lung transplant 3.7% Lung transplant 3.0%
7 Male sex 2.8% Male sex 2.9%
8 Corticosteroids 1.6% Sirolimus 1.4%
9 Kidney transplant 1.4% Corticosteroids 1.2%
10 Tacrolimus 1.3% Heart transplant 1.1%
11 Sirolimus 1.1% Tacrolimus 0.6%
12 Pancreas transplant 0.5% Kidney transplant 0.5%
13 Heart transplant 0.4% Number of transplants 0.3%
14 Non-White race 0.3% Pancreas transplant 0.2%
15 Everolimus 0.2% Non-White race 0.1%
16 Number of transplants 0.1% Everolimus 0.0%

The outcome (antibody response after vaccine dose 2) was processed as binary (positive vs negative) in model 1 and as categorical (high-positive vs low-positive vs negative) in model 2. Importance 
values were assessed via the permutation method and are shown in a relative scale across the predictors chosen in the final model.
MMF, mycophenolate mofetil.
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AUROC of 0.79. In the external validation cohort, the 
AUROC was 0.67 (95% CI, 0.62-0.72), and the calibra-
tion curve was relatively well aligned with the ideal line  
(y = x) (Figure 3).

Characterization of Factors Associated With 
Positive Antibody Response

The key results from our gradient boosting model were 
reproduced in our logistic regression. Specifically, predic-
tors with higher variable importance in the gradient boost-
ing model showed statistically significant associations 
with a positive antibody response in our logistic regression 
model (Table S2, SDC, http://links.lww.com/TP/C491). 
Each 1-y increase in time since transplant was associated 
with 1.27-fold odds (95% CI, 1.16-1.38) of a positive 
antibody response, up until 7 y since transplant, when the 
association became attenuated and was no longer statisti-
cally significant (adjusted odds ratio [aOR], 1.01; 95% CI, 

0.98-1.05). Older age was associated with lower odds of 
positive antibody response (per 10 y increase; aOR, 0.89; 
95% CI, 0.80-0.99). MMF use was associated with sig-
nificantly lower odds of positive antibody response (aOR, 
0.14; 95% CI, 0.10-0.20) and male sex (aOR, 1.38; 95% 
CI, 1.02-1.89) and receiving a liver transplant (aOR, 
11.43; 95% CI, 4.70-29.17) with higher odds of positive 
antibody response. In addition, the statistically significant 
interaction between liver transplant and time since trans-
plant (between 0 and 7 y since transplant) (p for interac-
tion = 0.004), indicated that the association of time since 
transplant with positive antibody response was weaker 
among liver transplant recipients than it was among other 
organ transplant recipients.

Prediction of Antibody Titer Category
In our secondary gradient boosting model for predic-

tion of category of antibody response (high-positive versus 

FIGURE 1. Association of key predictors with positive (vs negative) antibody response in a machine learning framework. For (A) and (B), 
markers indicate the impact of the predictor on the predicted log odds of the outcome in individual participants. For (C) and (D), the width of 
the plots represents the frequency of the data at the level, and the box and the white dot represent the interquartile range and the median 
value, respectively. A, Age. B, Time since transplant. C, MMF. D, Liver transplant (vs non-liver transplant). MMF, mycophenolate mofetil.
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low-positive versus negative), MMF use (42.1%), time 
since transplant (20.3%), and age (13.3%) showed the 
highest variable importance, followed by liver transplant 
(7.4%) and vaccine type (5.5%) (Table 2, right column).

Of note, older age was associated with decreased odds of 
having a high-positive antibody response (Figure 4A), indi-
cating that older recipients may remain at risk of COVID-
19 due to having a suboptimal protection against infection 
even if they become seropositive after vaccination. In con-
trast, these trends were not observed in other key risk fac-
tors such as longer time since transplant (Figure 4B) and 
MMF use (Figure 4C); these risk factors were associated 

with decreased odds of having a high-positive antibody 
response to vaccination but showed no meaningful asso-
ciation with having a low-positive response.

DISCUSSION
Using a nationwide observational study of 1031 COVID-

19–naive SOTRs, we created and externally validated a 
sophisticated ML model to predict post-vaccine antibody 
response and the strength of that response. Among the 19 
predictors investigated, MMF use, a shorter time since 
transplant, and older age were key risk factors that col-
lectively contributed to 76% of the model’s ability to pre-
dict failure to generate a positive antibody response. Our 
model showed a moderate prediction performance, with 
an AUROC of 0.79 in our primary cohort and 0.67 in an 
external validation cohort of 512 SOTRs from HM. An 
online risk calculator based on our model is publicly avail-
able at http://www.transplantmodels.com/covidvaccine/.

The key clinical factors identified by the ML model are 
congruent with findings from other studies. For example, 
the ML model identified a nonlinear association between 
the odds of a positive antibody response and time since 
transplant, with an initial rapid increase in the odds that 
gradually attenuated (Figure  1A). In addition, the ML 
model suggested that the impact of time since transplant 
varied with the use of MMF, especially after 5 y since 
transplant (Figure 2B). These associations have been previ-
ously reported (MMF use, age, time since transplant) to 
correlate with antibody response rates, but our ML model 
provides a more nuanced description of these associations, 
adding clinical relevance with the easy-to-use online clini-
cal calculator.2,16-20

In addition to identifying key clinical factors associ-
ated with antibody responses, the ML model allows us to 
precisely predict the post-vaccine antibody response, iden-
tifying factors associated with the different categories of 
antibody response (negative, low-positive, and high-posi-
tive). An example of this was a longer time since transplant, 

FIGURE 2. Notable predictor–predictor interactions in the prediction of positive (vs negative) antibody response. A, The increase in 
positive antibody response associated with time since transplant was more pronounced in non-liver recipients than it was in liver recipients. 
B, The increase in positive antibody response associated with time since transplant was more pronounced in MMF users than it was in 
MMF non-users. A, Time since transplant × liver (vs non-liver) transplant. B, Time since transplant × MMF. MMF, mycophenolate mofetil.

FIGURE 3. Calibration curves of the prediction model in the 
external validation set. The x-axis indicates the probability of a 
positive antibody response as predicted by our model. The y-axis 
indicates the actual proportion of a positive antibody response as 
observed in the external validation set. The calibration curve for a 
perfect model will overlap the identity line (y = x).
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which was associated with higher odds of a high-positive 
response, and has been previously described but until now 
not quantified using a large, diverse SOTR population.20 Age 
had an inverse relationship with antibody response; older 
participants had higher odds of a low-positive antibody 

response. This suggests that the attenuation of the associa-
tion between age and positive antibody response among 
older recipients, shown in our binary analysis (Figure 2B), 
might be a result of increasing low-positivity and decreasing 
high-positivity in this age group. The association between 

FIGURE 4. Odds of high- and low-positive antibody response by predictor levels. A, Longer time since transplant was associated with 
increasing odds of high-positive (dark orange) and decreasing odds of negative (light purple) antibody response over time. B, Older age 
was associated with increased odds of negative (light purple) or low-positive (light orange) but with decreasing odds of high-positive (dark 
orange) antibody response. C, MMF was associated with higher odds of negative antibody response (left panel) but with lower odds of 
high-positive (right panel) antibody response. A, Time since transplant. B, Age. C, Mycophenolate mofetil. MMF, mycophenolate mofetil.
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younger age and positive antibody response was more pro-
nounced in patients under 65 y of age, corroborating pre-
vious preliminary findings of an association between older 
age and shorter time since transplant with seronegativity.2,20 
Interestingly, male sex was found to have a small association 
(<3% in variable importance) with a positive seroresponse 
in this study. Although sex differences in vaccine-induced 
humoral responses have been described with other vaccines, 
there is a paucity of evidence to suggest any sex-based dif-
ferences in COVID-19 vaccine immunogenicity.21 Reporting 
of sex/gendered disaggregated data is an underdeveloped 
area of research within the scope of COVID-19 vaccine 
safety and efficacy. Further exploration of sex/gender differ-
ences in vaccine efficacy may be helpful in further clarifying 
mechanisms for vaccine responses, but this should not be 
specific to transplant patients.

ML has been used to predict vaccine immunogenicity 
and reactogenicity against other pathogens, but has not to 
our knowledge been applied to understand SARS-CoV-2 
vaccine responses in SOTRs.7 ML is particularly useful 
within the scope of vaccine development in instances where 
the pathogen displays genetic diversity, as SARS-CoV-2 
has. Within the context of the SARS-CoV-2 pandemic, ML 
has the potential to augment predictions and our under-
standing of antibody response to current or future vari-
ant-specific vaccine formulations, patient-level risk factors 
(eg, medications and comorbidities), and identify high-risk 
individuals who may need more frequent, higher, or lower 
booster dosages to elicit an antibody response. Given that 
ML proved a useful tool to predict antibody response 
to 2 mRNA vaccines, further exploration into applying 
this method to predict third- and fourth-dose responses, 
including heterologous dosing strategies, is warranted.

Despite the strengths of our study, with internal pre-
diction performance and external validity, there remain 
inherent limitations to consider. First, because of the 
observational design of our study, the associations and 
interactions characterized in our analyses may not neces-
sarily represent causality between the predictors and the 
outcome. Second, the predictors included in this analysis 
were ascertained via self-report. However, we assess that 
the risk of information bias is relatively low, because this 
analysis only included basic clinical factors that were likely 
well-understood by the study participants. It is also impor-
tant to remember that variable importance to the model 
does not equate to significance of certain clinical charac-
teristics to the outcome. In addition, the C-statistic for our 
models was 0.79 in our cohort and 0.67 for the validation 
cohorts, indicating that they equally, if not out-performed, 
most conventional regression models that we use to pre-
dict other outcomes in transplantation.22 Furthermore, 
these models analyze only responses to 2 mRNA vaccines 
in use in the United States (BNT162b2 and mRNA-1273) 
and may not directly translate to third doses, or those 
receiving non-mRNA vaccines, or heterologous vaccine 
combinations (though these were not recommended and 
should be limited for the first and second vaccine doses). 
Therefore, given the numerous additional vaccine plat-
forms available internationally, the global applicability of 
our model is limited. Although all SOTRs are now rec-
ommended to undergo supplemental vaccination, these 
recommendations are blanket policies largely reflective of 
a lack of large-scale supportive data. Current US policy 

now recommends all SOTRs obtain 3 primary vaccine 
doses plus a first booster (fourth dose) with provisions for 
a second booster (fifth dose).23 There is some encouraging 
evidence to support heterologous vaccination as a strategy 
to improve immune response rates among poor responders 
to the initial series, but further exploration of this strategy 
is needed.24

With this novel approach to predicting antibody response 
to mRNA SARS-CoV-2 vaccination in SOTRs, MMF use, 
older age, and a shorter time since transplant were the 
strongest factors associated with failure to generate an 
antibody response. In an era where universal antibody test-
ing among transplant recipients has not yet been adopted, 
this model provides guidance for risk-based antibody test-
ing. Given that a threshold for protective immunity has 
not yet been established, patients who exhibited a posi-
tive response may remain at risk for breakthrough SARS-
CoV-2 infections. Patients and providers must remember 
that having an antibody response measuring “high” on a 
given immunoassay should not be equated with having 
strong protection against COVID-19 infection. Indeed, 
vaccination of SOTRs results in poorer protection against 
SARS-CoV-2 infection and mortality compared with the 
general population.25 The antibody titers above which 
transplant patients would need to be protected from death 
due to SARS-CoV-2 still need to be identified. Further 
investigation into sequential dosing, immunosuppression 
modulation, and breakthrough infections in vaccinated 
SOTRs can guide vaccination policies in this at-risk popu-
lation. This model both presents a mechanistic framework 
for evaluating, understanding, and better predicting future 
mRNA vaccine-induced immune responses in transplant 
patients and brings this model to the bedside via our online 
calculator, providing an opportunity for more precise vac-
cination strategies in this population.
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