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Alpha-Synuclein (αSyn), a protein highly enriched in neurons where it preferentially
localizes at the pre-synapse, has been in the spotlight because its intraneuronal
aggregation is a central phenomenon in Parkinson’s disease. However, the
consequences of αSyn accumulation to neuronal function are not fully understood.
Considering the crucial role of actin on synaptic function and the fact that dysregulation
of this cytoskeleton component is emerging in neurodegenerative disorders, the impact
of αSyn on actin is a critical point to be addressed. In this review we explore the link
between αSyn and actin and its significance for physiology and pathology. We discuss
the relevance of αSyn-actin interaction for synaptic function and highlight the actin-
depolymerizing protein cofilin-1 as a key player on αSyn-induced actin dysfunction in
Parkinson’s disease.
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INTRODUCTION

In the last years, a large body of evidences point to the neuronal cytoskeleton damage as a major
contributor to neurodegeneration (Eira et al., 2016). From the various cytoskeleton dysfunctions,
alterations in microtubule (MT) stability are a main causative agent in several neurodegenerative
disorders and include: (i) variations in the levels of tubulin post-translational modifications with
a consequent impact on axonal transport (Dompierre et al., 2007; d’Ydewalle et al., 2011; Zhang
et al., 2014; Qu et al., 2017; Magiera et al., 2018), and (ii) dysregulation of MT associated
proteins, such as the key example of tau hyperphosphorylation. This modification promotes
tau detachment from MTs, what either impacts on axonal transport (Alonso et al., 1997) or
leads to recruitment of MT severing enzymes causing axon degeneration (Qiang et al., 2006).
Concerning the actin cytoskeleton, dysregulation of this component causing neurodegeneration
mostly derives from actin accumulations as the case of cofilin-actin rods (Minamide et al., 2000;
Munsie and Truant, 2012).

In the case of Parkinson’s disease (PD), the most common synucleinopathy, characterized
by the intraneuronal accumulation of aggregated αSyn, several reports demonstrated αSyn-
induced alterations of the microtubule cytoskeleton dynamics and axonal transport defects
(Carnwath et al., 2018; Prots et al., 2018). As αSyn is a protein that impacts on the synapse both
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physiologically and pathologically, an association between the
protein and the actin cytoskeleton, a cell component crucial for
synaptic function, has been suggested. This review will focus on
the current knowledge on the interaction between αSyn and actin
and actin-binding proteins (ABPs) concluding with a critical
perspective of the implication of these interactions in health
and disease. Addressing this topic will certainly contribute with
new insights into αSyn-related pathology opening new lines of
research targeting neurodegeneration.

ALPHA-SYNUCLEIN: FROM
PHYSIOLOGY TO PATHOLOGY

αSyn was originally identified in the Torpedo electric organ
and is one of the most abundant proteins in the brain
(Maroteaux and Scheller, 1991). It belongs to the synuclein
family of proteins, a group of small soluble proteins that
transiently bind to neuronal membranes, which also includes
β-Synuclein and γ-Synuclein (Clayton and George, 1998).
αSyn is a 140 amino-acid protein containing three distinct
motifs (Maroteaux et al., 1988): the N-terminal contains
seven repeats of a 11-residue sequence (XKTKEGVXXXX)
responsible for αSyn interaction with vesicles containing
phospholipids, the central region contains a non-amyloid
component (NAC) sequence which is relatively hydrophobic
and prone to aggregation, and the intrinsically unstructured
C-terminus region, responsible for multiple protein interactions
(Emamzadeh, 2016). αSyn is a natively unfolded protein implying
that it lacks a secondary organized structure (Weinreb et al.,
1996), what enables the protein to adopt several conformations
comprising an unstructured soluble cytosolic form, an α-helical
membrane bound structure or a β-sheet-like prone to aggregate
conformation (Burre et al., 2013).

αSyn is ubiquitously expressed but highly enriched in the
nervous systems (Lavedan, 1998). In neurons, αSyn is enriched
in the pre-synaptic terminals where it interacts with synaptic
vesicles and participates in several steps of the vesicle cycle
comprising trafficking, docking, fusion, and recycling after
exocytosis, therefore playing a central role in the regulation of
the synaptic transmission (Scott and Roy, 2012; Diao et al., 2013;
Wang et al., 2014). Notably, synuclein proteins were proposed
to have a major impact in the long-term function of synaptic
transmission, as αβγ-Syn triple-knockout mice showed reduced
SNARE (SNAP REceptor)-complex assembly, and presented
neuropathological signs and shortened lifespan (Burre et al.,
2010). Interestingly, although αSyn plays an important role at
the pre-synapse, it is one of the last proteins to be targeted to
the synapse during development, suggesting that its physiologic
function is not focused on the synapse formation but more
directed to its maintenance (Cheng et al., 2011). Although αSyn
role at the synapse is the most well studied physiological function,
a number of additional cellular localizations have been described,
including mitochondria, nucleus, endoplasmic reticulum, Golgi
complex, and cytoskeleton components, suggesting that the
protein contributes to the regulation of innumerous cellular
processes (Burre et al., 2018).

αSyn is a protein deeply associated with disease since it was
described as the main component of Lewy Bodies (LBs), the
pathological hallmark of synucleinopathies (Spillantini et al.,
1997), a group of diseases caused by αSyn aggregation and
pathology from which PD is the most common one. Although
being a cytosolic protein, and its intra-neuronal accumulation
resulting in neurodegeneration, it is now known that cell-to-cell
transmission of αSyn aggregates also occurs contributing to the
progression and propagation of the disease (Karpowicz et al.,
2019). Further supporting αSyn link with pathology, familial
forms of PD are related with duplication, triplications and point
mutations (mainly A30P and A53T mutations) in the SNCA gene,
encoding for αSyn, which increase the aggregation potential of
the protein (Burre et al., 2018).

αSyn aggregated species were shown to induce
neurotoxicity through several processes: (i) affecting membrane
permeabilization of several cell components, including plasma
membrane and endoplasmic reticulum (Colla et al., 2012),
mitochondria (Parihar et al., 2009), and vesicle membranes
(Volles and Lansbury, 2002; Burre et al., 2018); (ii) increasing
reactive oxygen species (ROS) production (Parihar et al., 2009)
and Ca2+ influx (Danzer et al., 2007); and (iii) disrupting
protein synthesis machinery and degradation systems, namely
the autophagy-lysosomal and the ubiquitin-proteasomal systems
(Lindersson et al., 2004; Garcia-Esparcia et al., 2015). αSyn
accumulation was also shown to negatively affect SNARE-
complex assembly and disassembly impairing neurotransmitter
release and leading to decreased neuronal excitability and
synaptic firing, what culminates in synaptotoxicity (Vekrellis
et al., 2011). In the same line, αSyn overexpression in neurons
decreased spine density and impaired spine dynamics
(Blumenstock et al., 2017). Interestingly, synaptic structure
and function is highly dependent on actin dynamics, suggesting
an impact of αSyn on that cytoskeleton component.

ACTIN CYTOSKELETON: A CRITICAL
COMPONENT FOR NEURONAL
FUNCTION

The integrity of the cytoskeleton is crucial for neuronal
maintenance and function and depends on a critical regulation of
its components: actin filaments, microtubules and intermediate
filaments. The actin cytoskeleton, the component of interest
in this review, is composed of actin filaments (F-actin) that
are formed by the association of globular actin (G-actin)
to a growing polymer (Mitchison and Cramer, 1996). Actin
monomers polymerize/depolymerize from the actin filament
constituting the fundamental process driving actin dynamics
(Carlier, 1998). There is a considerable number of ABPs
regulating actin dynamics among which are: (i) nucleation factors
(formins and Arp2/3) that promote the assembly of G-actin
into filaments and the development of branched networks
(Bugyi et al., 2006; Korobova and Svitkina, 2008); (ii) actin-
monomer binding proteins (profilin) that provide new subunits
to the filament enhancing the assembly of G-actin into F-actin
(Mockrin and Korn, 1980); (iii) proteins that bundle (fascin)
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or crosslink (α-actinins and filamins) the actin filaments (Tseng
et al., 2004); (iv) tropomyosins which are able to regulate
actin dynamics through binding along F-actin and interaction
with other ABPs or by direct contact of F-actin with different
tropomyosin isoforms (Gunning et al., 2008; Schevzov et al.,
2012); (v) spectrins that are localized at subcortical regions
linking actin cytoskeletal meshwork to membrane receptors
(Burridge et al., 1982); (vi) capping proteins (adducin) which
bind to actin filaments blocking their growth (Matsuoka et al.,
2000) and (vii) severing proteins (actin depolymerizing factor
(ADF)/cofilin-1 and gelsolin) which control the rate of actin
polymerization (Weeds et al., 1991; Andrianantoandro and
Pollard, 2006).

In neurons, actin acquires several structural rearrangements
that are differentially distributed in the cell. Lamellipodia is an
actin structure characterized by a branched network of short
actin filaments while filopodia is composed of long parallel
bundles of actin filaments (Neukirchen and Bradke, 2011).
Lamellipodia and filopodia are actin arrangements enriched in
the more dynamic neuronal structures including the growth
cone, dendrites and dendritic spines. In the growth cones,
besides filopodia and lamellipodia, there is, in the transition
zone, an actomyosin contractile structure named actin arcs
which are perpendicular to F-actin and are suggested to
interact with microtubules and allow them to invade the
growth cone (Schaefer et al., 2002). In dendritic spines,
actin is the core structure providing the architecture for the
formation, stability, motility, and morphology of the spines (Basu
and Lamprecht, 2018). Actin patches are structurally similar
to lamellipodia and are found in the axons and dendrites
(Korobova and Svitkina, 2010; Spillane et al., 2011). It is
suggested that they promote locally actin filopodia formation,
as these actin patches are not motile structures (Spillane
et al., 2011). More recently, a component of the neuronal
subcortical cytoskeleton was described, the actin rings (Xu
et al., 2013). This structure is along the axon and dendrites
and is composed by a ring of short actin filaments capped by
adducin and distanced by ∼190 nm by spectrin (Xu et al.,
2013). More recently, non-muscle myosin II was proposed
to regulate the axonal actin ring contraction and expansion
(Costa et al., 2020). While actin rings are considered to give
mechanical support to neurons, there is a dynamic pool of
actin in the structure of the axon, termed actin trails, which
have been suggested to be composed of actin “hotspots” and
provide for a flexible actin cytoskeleton network in the axon
(Ganguly et al., 2015).

In mature neurons a dysregulation of the actin cytoskeleton
has tremendous implications for spine density, morphology and
function (Zhang and Benson, 2001). An emergent number of
studies have also reported the abundance and relevance of actin
and ABPs in the pre-synaptic terminals, where actin dynamics
plays essential functions on the vesicle pool organization,
synaptic vesicle mobilization and exocytosis and posterior
endocytosis (Rust and Maritzen, 2015). The crucial roles of
actin at the synapse turns it an important protein to study
in the context of neurodegenerative disorders where synaptic
dysfunction is a central causing agent.

αSYN-ACTIN CYTOSKELETON LINK:
IMPACT ON NEURONAL HEALTH AND
DISEASE

Evidences of αSyn Interaction With Actin
and Actin-Binding Proteins
The most αSyn recognized physiological function is on the
synaptic vesicle cycle, a process where actin plays a key role.
This functional “proximity” between αSyn and actin boosted
the research on identifying an interaction between the two
proteins. This interaction was investigated mainly in in vitro
assays, either with cell-free or with cell-line approaches, which
although were critical for the demonstration of the interaction
of αSyn with actin and actin-binding proteins (Zhou et al.,
2004; Peng et al., 2005; Esposito et al., 2007; Sousa et al., 2009;
Welander et al., 2011; Lee et al., 2012), lack the validation in
primary neuronal cultures which would be a more relevant
scenario. In this respect, in a cellular PD model using rotenone-
treated dopaminergic neurons, it was observed an increase in
the expression levels of F-actin and αSyn. However, a putative
interaction between the two proteins was not explored in that
context (Mattii et al., 2019). Further supporting an interaction,
αSyn and actin co-immunoprecipitated in rat brain homogenates
under physiological conditions (Sousa et al., 2009).

Additionally, proteomic studies demonstrated alterations on
the expression levels of several ABPs in models of αSyn
overexpression in D. melanogaster (Xun et al., 2007a,b) and
C. elegans (Ichibangase et al., 2008). Moreover, gelsolin was found
in LBs from PD and Dementia with Lewy Bodies (DLB) patients
and was shown to have a positive effect on αSyn aggregation in the
presence of high Ca2+ concentrations (Welander et al., 2011).

αSyn Impact on Actin Dynamics:
Cofilin-1 Involvement
Based on the data demonstrating a putative interaction between
αSyn and actin, it was investigated whether αSyn directly binds to
actin modulating actin dynamics. In vitro cell-free assays showed
that WT αSyn decreased the rate of polymerized actin, an effect
suggested to occur due to the αSyn-mediated sequestration of the
actin monomers. Interestingly, this effect was decreased in the
presence of high concentrations of Ca2+, a scenario mimicking
a stimulated state of neurons. In opposite, A30P aSyn, increased
actin polymerization and stabilization of the actin filaments
(Sousa et al., 2009). Validation of the impact of αSyn on actin
dynamics was performed in studies with neuronal cell lines and
primary cultures of hippocampal neurons, expressing either WT
or A30P αSyn, which demonstrated that physiologically WT
αSyn regulates actin dynamics, while the pathologic A30P aSyn
disrupts the actin cytoskeleton (Sousa et al., 2009).

The proposed physiologic impact of WT αSyn on actin
dynamics, and the fact that both αSyn and actin play a role on
the synapse, raise the question of whether αSyn-actin interaction
might regulate neurotransmitter homeostasis. Supporting this
hypothesis, a report demonstrated a critical dependence of
the interaction of αSyn with the actin cytoskeleton for the
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trafficking and transport activity of norepineprhine transporters
(Jeannotte and Sidhu, 2008).

Concerning the pathological impact of αSyn on the actin
cytoskeleton, further studies showed that the extracellular
addition of high concentrations of WT or A30P αSyn to
hippocampal neurons induced a stabilization of the actin
cytoskeleton, by increasing the number of lamellipodia and
filopodia and resistance to depolymerization, with the mutant
protein having a more pronounced effect. These αSyn-induced
actin alterations were mediated by the activation of the actin
signaling pathway Rac1/PAK2/LIMK/cofilin-1 and to require
GRP78, an endoplasmic reticulum chaperone present at the cell
membrane of several cell types (Bellani et al., 2014). Cofilin-1
is an actin depolymerizing protein which activity is negatively
regulated by phosphorylation in the Serine 3 residue, promoted
by several kinases, including LIMK (Arber et al., 1998). As such,
pathologic αSyn induced cofilin-1 phosphorylation leading to
inactivation of its depolymerizing action and consequently to
actin stabilization. Importantly, this outcome was recapitulated
using fibroblasts from PD patients carrying multiplications
of the SNCA gene (Bellani et al., 2014), which presented a
threefold increase in the phospho-cofilin 1/cofilin 1 ratio and an
increased number and thickness of actin stress fibers structures
(Bellani et al., 2014).

Additional work with primary hippocampal neurons
confirmed a negative effect of pathologic αSyn on actin
dynamics, mediated by cofilin-1 inactivation, which impacted on
neuronal functions such as axon elongation and migration (Tilve
et al., 2015). Additionally, and also supporting αSyn-induced
cofilin-1 inactivation, in a glaucoma animal model, consisting
on elevated intraocular pressure which results in retinal
neurodegeneration, the intravitreal injection of αSyn antibodies
hampered neurodegeneration, an effect that was suggested to
involve upregulation of cofilin-1 (Teister et al., 2017).

The presented studies claim that pathologic concentrations of
αSyn induce cofilin-1 inactivation resulting on actin stabilization
and neuronal dysfunction. However, cofilin-1 was also placed
in the context of αSyn-induced neurodegeneration in a
different scenario. In a study addressing the mechanisms of
protein aggregates entry in cells, downregulation of cofilin-1
decreased αSyn aggregates entry, while both, the silencing of
ROCK1 and the pharmacological inhibition of Rho, increased
aggregate entry (Zhong et al., 2018). These observations
suggested Rho-ROCK1-LIMK-Cofilin-1 pathway as a relevant
signaling cascade triggering αSyn aggregates entry in the host
cells (Zhong et al., 2018). Regardless of the context, it is
remarkable the impact of αSyn in the actin cytoskeleton
through cofilin-1.

αSyn-Induced Disruption of the Actin
Cytoskeleton in in vivo Models of PD
In the previous sections the analysis of the effect of αSyn on the
actin cytoskeleton was mainly derived from cell-based studies.
It is important to understand what happens in vivo by using
disease models. In this respect, a report using a PD Drosophila
model based on the neuronal overexpression of αSyn, validated

the pathologic impact of the protein on the actin cytoskeleton, as
αSyn transgenic flies showed increased F-actin and the presence
of rod-shaped actin-cofilin rich inclusions in whole-mounted
brains (Ordonez et al., 2018). Rod structures were also observed
in the brainstem region of a PD mouse model expressing the
A53T mutant form of αSyn, and in the cingulate cortex region
of a DLB patient (Ordonez et al., 2018). Following experiments
in fly demonstrated that the disruption of the actin cytoskeleton
induced by αSyn was mediated by its interaction with α-spectrin,
and resulted on the mislocalization of the mitochondrial
fission protein Drp1 and subsequent mitochondrial dysfunction
(Ordonez et al., 2018). This study pointed to a critical interaction
between αSyn and α-spectrin resulting in actin dysfunction which
consequently affects mitochondria. Additionally, and although
not highly explored, the study also shows the scenario of αSyn
induction of cofilin-actin rods. These are structures formed
upon localized cofilin-1 activation (by dephosphorylation),
leading to its association to F-actin and promoting the
formation of short actin filaments saturated with cofilin-1.
Rod formation has been mainly studied in the context of
Alzheimer’s disease (AD) and shown to have a tremendous
impact in neurons causing synaptic dysfunction, blocking axonal
transport, and exacerbating mitochondrial membrane potential
loss what culminates in cognitive impairment (Bamburg and
Bernstein, 2016). Considering the impact of cofilin-actin rods
on neurodegeneration, the pathologic relevance of rod formation
upon αSyn overexpression should be further addressed. In this
respect, one study reported the presence of oxidized γ-Synuclein
in cofilin-actin rods in the thalamus of mice subjected to
traumatic brain injury (Surgucheva et al., 2014).

DISCUSSION

The current revision summarizes the studies supporting the
link between αSyn and the actin cytoskeleton. This is an
important topic as while the interplay between αSyn and the
microtubules was recently reviewed (Carnwath et al., 2018;
Calogero et al., 2019), the link αSyn-actin was less explored.
Considering the αSyn structural features responsible for the
interaction with cytoskeleton components, it was described that
αSyn is a functional microtubule-associated protein with its
C-terminal region suggested to be responsible for the interaction
with microtubules (Alim et al., 2004; Cartelli et al., 2016). In
the case of αSyn interaction with actin, although it is implied
by the available literature, no structural features underlying
this interaction have been explored to date what deserves
future investigation.

One important question raised by this review is whether
physiologically αSyn, by regulating actin dynamics, impacts on
the actin-derived functions on synaptic transmission. In this
respect, while there are studies with αSyn KO mice showing
decreased SNARE-complex assembly and changes in synaptic
structure and size (Burre et al., 2010; Greten-Harrison et al.,
2010), other reports showed no major defects in synaptic function
in αSyn KO mice (Abeliovich et al., 2000; Chandra et al., 2004;
Chadchankar and Yavich, 2011). Taking this into consideration,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 787

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00787 August 10, 2020 Time: 14:53 # 5

Oliveira da Silva and Liz Alpha-Synuclein Impacts on Neuronal Actin

it would be important to explore neuronal actin dynamics and
actin organization in synaptic structures in αSyn KO mice.
This would clarify whether the αSyn-actin link acts on the
physiology of the synapse, what could explain the impairment of
synaptic activity in PD.

The most striking point of the present review is the highlight
of cofilin-1 as a central player in αSyn-induced neuronal
dysfunction. Cofilin-1 depolymerizing activity upon actin is
crucial for synaptic function since the remodeling of the
pre- and post-synapses intimately relies on actin dynamics
(Pontrello et al., 2012). As such, we might hypothesize that
the reported αSyn-activation of the actin signaling pathway
Rac1/PAK2/LIMK/cofilin-1 via GRP78 (Bellani et al., 2014)
which results on cofilin inactivation, and consequent blockage
of actin dynamics (Sousa et al., 2009; Bellani et al., 2014)
occurs at the pre-synapse, and might contribute for the synaptic
dysfunction observed in the several synucleinopathies. An
additional pathway by which pathogenic αSyn might cause
synaptic dysfunction is via the induction of cofilin-actin rods
formation (Cichon et al., 2012), which was observed in a PD
Drosophila model (Ordonez et al., 2018). In AD, Aβ-induced
formation of rods occurs through a pathway involving the
cellular prion protein (PrPC) and NADPH oxidase (NOX)

(Walsh et al., 2014), which results in the dysregulation of cofilin
activity via oxidation and dephosphorylation, and consequent
formation of cofilin-actin rods. Interestingly, αSyn was shown
to interact with PrPC to induce synaptic dysfunction (Ferreira
et al., 2017). This finding raises the question of whether, similarly
to what occurs in AD, αSyn-induced rod formation is mediated
through a PrPC-dependent pathway culminating on disruption
of synaptic activity.

While the literature suggests that αSyn might impact on
neuronal function, through modulation of cofilin-1 activity, is
still unclear whether αSyn induces an activation or inactivation
of the ABP. Interestingly, a similar scenario was seen in AD
where cofilin-1 activity was shown to be regulated in multiple
ways depending on the pathogenesis context (Kang and Woo,
2019). Importantly, inhibition of cofilin activity or expression
was shown to have ameliorative effects in AD (Deng et al.,
2016). In the case of αSyn-induced neurodegeneration, it will
be important to analyze the phosphorylation status of cofilin-1
in different pathological scenarios and cellular contexts, as well
as the impact of cofilin-actin rods formation for neuronal
function. These studies will be critical to point cofilin-1
as novel therapeutic target to prevent neurodegeneration
in synucleinopathies.

FIGURE 1 | Schematic representation of the link between αSyn and actin. Under physiologic conditions αSyn is mainly concentrated at the pre-synapse and
interacts with synaptic vesicles at the several stages of the vesicle cycle. At the pre-synapse αSyn-actin interaction was described as being crucial for the trafficking
and transport activity of neurotransmitter transporters (Physiologic, Panel 3; A). Additionally, we suggest that the reported αSyn regulation of actin dynamics might
contribute for the proper actin-derived functions at the pre-synapse (Physiologic, Panel 3; B). Under pathologic conditions, overexpression and misfolding of αSyn
affects several cellular processes. At the cell membrane, extracellular misfolded αSyn uses a pathway culminating in cofilin-1 activation and actin remodeling to enter
the cells (Pathologic, Panels 1–3; C). Intracellularly, synaptic dysfunction might occur due to the αSyn-induced stabilization of the actin cytoskeleton (Pathologic,
Panel 3; D), through inactivation of cofilin-1 or αSyn-induced cofilin-actin rod formation (Pathologic, Panel 1; E), that also affects axonal transport. Additionally, αSyn
interaction with spectrin (Pathologic, Panel 2; F), disrupts the actin cytoskeleton with consequent mislocalization of Drp1 and mitochondrial impairment.
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Another point that stands out from the studies reported
in this review is that the few reported experiments in
primary neurons were performed with cultures of hippocampal
neurons (Sousa et al., 2009; Bellani et al., 2014; Tilve et al.,
2015). Although this observation suggests that additional
studies should be performed with primary cultures of
dopaminergic neurons, the cell type mainly affected in
typical motor PD, research on the impact of αSyn on actin
in hippocampal neurons is also essential considering the
symptomology of dementia which has been linked to Syn
pathology in the hippocampus leading to neuronal dysfunction
(Hall et al., 2014).

In summary, this review presents a critical perspective in the
αSyn impact on the actin cytoskeleton. The literature here revised
strongly suggests that αSyn interacts/modulates actin and ABPs
what has consequences to pathophysiology, as summarized in
Figure 1. Nevertheless, this topic requires further investigation
what might be of extremely importance in the context of both
health and disease.
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