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ABSTRACT

Large genomic rearrangements involve inversions,
deletions and other structural changes that span
Megabase segments of the human genome. This
category of genetic aberration is the cause of
many hereditary genetic disorders and contributes
to pathogenesis of diseases like cancer. We devel-
oped a new algorithm called ZoomX for analysing
barcode-linked sequence reads––these sequences
can be traced to individual high molecular weight
DNA molecules (>50 kb). To generate barcode linked
sequence reads, we employ a library preparation
technology (10X Genomics) that uses droplets to
partition and barcode DNA molecules. Using linked
read data from whole genome sequencing, we iden-
tify large genomic rearrangements, typically greater
than 200kb, even when they are only present in
low allelic fractions. Our algorithm uses a Pois-
son scan statistic to identify genomic rearrangement
junctions, determine counts of junction-spanning
molecules and calculate a Fisher’s exact test for de-
termining statistical significance for somatic aberra-
tions. Utilizing a well-characterized human genome,
we benchmarked this approach to accurately iden-
tify large rearrangement. Subsequently, we demon-
strated that our algorithm identifies somatic rear-
rangements when present in lower allelic fractions
as occurs in tumors. We characterized a set of com-
plex cancer rearrangements with multiple classes
of structural aberrations and with possible roles in
oncogenesis.

INTRODUCTION

Genomic rearrangements are composed of structural vari-
ations (SVs), such as deletions, insertions, inversions, du-

plications, translocations (transpositions) and others (1).
Genomic rearrangements contribute towards the increased
susceptibility and development of many human diseases
(2,3). Some rearrangements produce gene fusions with
oncogenic activity (4), alter gene dosage, dysregulate cell
function and change the context of regulatory elements
(1,2). Over 9000 gene fusions have been identified (5). A
classic example is the Philadelphia chromosome that arises
from a translocation between chromosome 9 and chromo-
some 22. This event leads to a fused BCR/ABL1 protein
which is a principle driver of chronic myeloid leukemia
(4). For this study, we focused on the size category of ge-
nomic rearrangements that have breakpoints >200 kb or
more apart. Structural aberrations in this range account for
>85% of curated cancer gene fusions (6).

Many methods have been used to characterize this class
of large cancer rearrangements across the genome. Kary-
otyping, fluorescent in-situ hybridization (FISH) and mi-
croarrays that measure copy number have been used to
characterize these events at low resolution and without
breakpoint information. More recently, whole-genome se-
quencing (WGS) using next-generation sequencing (NGS)
technologies (i.e. Illumina), and sophisticated bioinformat-
ics tools have been developed that identify structural vari-
ants in such data (7–14). However, current WGS approaches
are geared towards identifying small- to mid-scale struc-
tural variants under 200 kb in size (15). In addition, most
WGS data is generated from sequencing libraries with short
DNA fragments under 0.5 kb. The use of short DNA inserts
results in loss of genomic contiguity that adversely affects
the calling of rearrangements generally (16).

As an added challenge, resolving large, complex so-
matic rearrangements is difficult when both germline al-
leles are involved. Moreover, complex somatic rearrange-
ments sometimes involve multiple SV types and this fur-
ther prevents a detailed characterization. Accurate detec-
tion of these events is limited by overall base coverage of the
genome, the methodology and ultimately by the sequencing
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cost. The repetitive nature of rearranged regions also com-
plicates detection of these events – genomic regions with a
high density of repeat elements reduce the mapping quality
locally around breakpoints. Overall, short sequence reads
generated from short DNA inserts represent a significant
handicap for identifying SVs in these regions.

Some sequencing technologies generate long reads (i.e.
Oxford Nanopore and Pacific Biosciences) using high
molecular weight (HMW) DNA (e.g. 5 kb of more). These
long reads are useful for identifying rearrangements (17–
19). However, for SV analysis, current long read sequencers
are more costly than conventional short insert sequencing
(i.e. Illumina). As added challenges, long read sequencers
have lower base quality, unevenness in genome coverage, or
very high DNA input requirement, thus making them less
suitable for high efficiency analysis and side-by-side SNV
calling. For example, long-read sequencers have high DNA
requirements that can be greater than microgram amounts
of starting material, and this can be a significant issue for
clinical tumor samples where the amount of nucleic acid
may be limited. In addition, clinical samples pose challenges
because the content of cancer cells relative to normal cells
may be low, thus diluting out the number of molecules con-
taining a genetic aberration.

Recent technology developments include synthetic long-
read sequencing (SLRS) to determine variant haplotypes
and structural variants (20,21). These technologies main-
tain high weight molecules rather than relying on physical
fragmentation to small DNA inserts, use barcodes to de-
lineate specific molecules and thus provide long-range in-
formation based on short-read sequencing. These methods
offer high resolution (sequencing-based) and improved de-
tection of structural variants and related distal breakpoint
junctions. These methods leverage the high fidelity, low cost,
high throughput of short read sequencers such as the Illu-
mina system. As a result, this approach has great potential
for characterizing large-scale rearrangements that are not
recognized using conventional short read sequencing.

In this study, we used one existing SLRS technol-
ogy termed linked-read sequencing that employs the 10X
Genomics Chromium system (21). By requiring only
nanogram level input, this approach is particularly useful
for analyzing tumor samples with low cellularity. WGS li-
braries were prepared on a 10X Genomics Chromium sys-
tem (Pleasanton, CA, USA). This technology uses a mi-
crofluidic process to generate up to 106 droplet partitions
if not more per experiment sample. HMW DNA molecules
(>50kb) are distributed across these droplet partitions. This
preparative method uses one nanogram of genomic DNA,
representing approximately 300 haploid genome equiva-
lents and no pre-amplification is required. After the library
is completed, one uses an Illumina sequencer to generate
reads with an integrated barcode––this information enables
one to trace paired-end reads back to the originating HMW
DNA molecule (22,23).

There are a limited number of methods available for ana-
lyzing linked-read sequencing data (22–26). Up to this date,
Long Ranger is the standard tool to phase haplotypes and
detect structural variations based on linked reads (21). The
underlying statistical framework involves a binomial test
of linked-read barcode counts. Long Ranger was used by

Collins et al. to characterize germline SVs in several hu-
man genomes (22). Spies et al. developed a local assem-
bly approach to reconstruct contigs with structural alter-
ations from linked-read data, which used a binomial test
similar to Long Ranger’s for detecting SVs (23,26). These
individual-read based approaches were prone to errors such
as incorrect read mapping due to repeats or erroneous bar-
code reads due to sequencing errors.

To identify large rearrangements (>200 kb), we lever-
age a statistical property of linked-reads data. Namely, the
likelihood of two DNA molecules with the same sequence
composition occurring in each droplet is extremely low. We
estimated this probability to be on the order of ∼ 10−8

per droplet or <1 per experiment with tens of millions of
droplets (see Supplementary Results), which enables us to
characterize individual molecules present in each portion.
The molecule-based approach incorporates information
from multiple linked-reads distributed along a molecule.
This information is less prone to both mapping and barcode
errors. Based on this property, we developed the ZoomX
tool, embedding a Poisson-based statistic in a scalable grid
scan algorithm. ZoomX systematically identifies novel ge-
nomic junctions. We demonstrate that ZoomX performs
better at calling large rearrangements compared to the cur-
rently available SV calling method Long Ranger (21) for
linked reads. As a demonstration of our approach, we con-
ducted a benchmark analysis of the NA12878 genome for
germline SVs. Subsequently, we identified a series of somatic
rearrangements among several gastrointestinal cancers, se-
quencing primary tissue samples.

MATERIALS AND METHODS

Sequencing data for NA12878

Linked read data for NA12878 is publically available from
10X Genomics. The data is also available from the Genome-
in-a-Bottle Project (27). The original DNA sample was ob-
tained from the Coriell Institute, and 1.25 ng of DNA were
extracted for sequencing. High molecular weight (HMW)
genomic DNA on the order of 50 kb or higher was selected.
A barcoded library was prepared using the Chromium as-
say (10X Genomics). Sequencing was performed using the
Illumina XTens. Sequence data processing relied on Long
Ranger software package.

Samples

The Institutional Review Board (IRB) of Stanford Univer-
sity School of Medicine approved the study protocol. We
obtained informed consent for all patients prior to obtain-
ing the samples. The tissue samples were collected at the
time of surgical resection and fresh frozen as available from
the Stanford Tissue Bank. The samples included a primary
colorectal adenocarcinoma (labelled as MetB7175) and
matched normal colorectal tissue (labelled as Norm7176).
This sample had a mixed cellularity with at least 50% tumor
fraction. Also, we obtained matched normal gastric tissue
(labeled as Norm2386) and gastric metastatic tumors (la-
beled as MetR2721 and MetL2725, respectively). Based on
histopathological examination, the tumor purity was esti-
mated to be 20% for the MetR2721 sample and 50% for
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the MetL2725 sample. Genomic DNA extraction was per-
formed with a Maxwell 16 Tissue DNA purification kit
according to the manufacturer’s recommended protocols
(Promega, Madison, WI, USA). The genomic DNA did not
require further size selection or processing. DNA was quan-
tified with Life Technologies Qubit.

Generating and sequencing linked read libraries

Using 1.0 nanogram of genomic DNA, from each of the
tissue samples, we prepared barcode libraries using the
Chromium Gel Bead and Library Kit (10X Genomics,
Pleasanton, CA, USA). No preamplification was used. We
performed sequencing runs on an Illumina HiSeq 2500 or
X10 sequencer with 2 × 151 paired-end reads and achieved
∼30× coverage for all tumor and normal samples (Sup-
plementary Table S1B). All resulting read pairs contain a
16-base barcode. We used bclprocessor (v2.0.0) to demul-
tiplex and convert the resulting BCL files to FASTQ files.
We used Long Ranger (v2.0.0) to align the barcoded reads
in the FASTQ files to the human genome reference build
GRCH37.1. Sequence data was deposited in dbGAP under
the accession numbers phs001362.v1.p1 and phs001400.

Identifying rearrangements from barcode linked reads

The workflow for data generation and application of our
algorithm is shown in Figure 1. Our statistical algorithm is
implemented in the ZoomX software package that consists
of Python and R scripts that call up Samtools (28) and Bed-
tools (29) (Supplementary Figure S1). For visual display of
the results from ZoomX, we leveraged the 10X Loupe visu-
alizer to show our results with barcode-sharing heatmaps.
In the following, we summarize the steps of ZoomX al-
gorithms. Complete statistical details are provided in the
Supplementary Methods. ZoomX is open source software
available in the Bitbucket repository (https://bitbucket.org/
charade/zoomx).

We use aligned, linked reads to identify individual HMW
DNA molecules based on barcodes that distinguish dif-
ferent droplet partitions (21). Our statistic involves a two-
dimensional Poisson scan for determining significant levels
of barcode-sharing molecule counts between two genomic
regions. Given two distal genomic regions, the event of dis-
tinct molecules originating separately from the two regions
occurring in the same droplet is negligible. Therefore, distal
genomic junctions can be detected by screening for region
grid pairs. We also found overall linked-read sequencing
metrics were consistent across all analysed samples, where
the distributions of individual molecules were well approxi-
mated by Poisson distributions (Figure 2A, Supplementary
Figure S2 and Supplementary Results). The range of metric
values consistently allows for well-separated null and alter-
native distributions in our model. By simulations, we esti-
mated the detection power of the statistic is >90%, for junc-
tion allele fractions as low as 10% (Supplementary Figure
S3 and Supplementary Results).

The initial input to the algorithm are the BAM align-
ments of linked-reads. Given the sparsity of molecules per
a droplet partition, typically from three to five, ZoomX
uses the associated barcode and aligned sequences to de-
termine the identity and characteristics of each partitioned

molecule. ZoomX then computes molecule statistics across
the genome, such as effective molecule coverage (as de-
fined in Supplementary Methods) for a given genomic
segment, and stores the coordinates of individual DNA
molecules into a BED file with annotations. In this parser
step, ZoomX also finds all mapped read pairs in unusual po-
sitions (i.e. not contiguous from the same genomic region or
chromosome) and saves these read pairs into BEDPE files.

In the next step, ZoomX conducts a genome-wide grid
scan (Supplementary Figure S4 and Supplementary Meth-
ods). ZoomX identifies high frequency barcode sharing be-
tween two regions by applying the Poisson statistic to the
molecule BED file defined in the previous step. If a ge-
nomic junction J(X, Y) exists between regions X and Y,
then one expects a substantial number of molecules to span
such junction and be captured and sequenced with the same
barcodes. As already noted, the probability of barcode colli-
sion, that is, the event of two molecules with sequence over-
lap in the library sharing the same barcode, is extremely
small. Therefore, two linked-read molecules from X and Y
sharing the same barcode are likely to have originated from
the same individual HMW DNA molecule. One has the op-
tion to mask the liked-read molecules mapping to regions
of aberrant coverage. This step reduces potential false dis-
coveries resulting from abrupt coverage spikes. The required
input of this optional step is a bed file containing the base
coverage values in each grid region. The scanning step pro-
duces a list of candidate junctions in BEDPE format as rep-
resented by grid pairs, which become the input to the refine-
ment step.

The next position refinement step clusters junctions into
groups and identifies additional short insert read pairs that
support for each junction group. We use the Bedtools’ pair-
topair function to create a connection graph of all identified
candidate grid pairs, in which each candidate grid pair is a
node. A connecting edge is defined only if two grid pairs
overlap at both ends, ignoring strand direction. Then, we
use an efficient graph algorithm as implemented in Scipy
to find all connected components in the resulting connec-
tion graph. The node set of each connected component is
the group of grid pairs representing the same junction. We
output the refined candidate list by taking the unions of the
group of grid pairs within each component.

Finally, we delineate the breakpoints by overlapping
short read pairs saved in the parser steps with refined candi-
date junctions using the Bedtools’ pairtopair function. We
require overlap of both ends and ignore strand context. We
report the indices of overlapping read pairs as additional
annotations in our output, which can be used to derive ex-
act breakpoints. The final output is a BEDPE file in which
each junction is recorded with the confidence regions for
its two breakpoints in the genome, along with annotations
such as the number of supporting molecules and the indices
of all supporting read pairs. As an optional step, we align
and plot all supporting molecules spanning each junction.
Subsequently, we derive base pair breakpoint as the consen-
sus of molecules with flushing ending positions. The algo-
rithm generates sequence contigs encapsulating the break-
points and computing the Fisher’s exact test statistic based
on matched sample molecule data.

https://bitbucket.org/charade/zoomx
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Figure 1. Identifying rearrangements from linked reads. The workflow is illustrated in steps (A) to (D): (A) 1 nanogram of high molecule weight (HMW)
DNA is extracted from the sample; (B) the extraction was partitioned to > 106 droplets, where in average only a few DNA molecules enter each droplet
and get the same barcode; The barcode, uniquely colored, is linked to random primers which sparsely prime on the HMW DNA; (C) the primed DNA
undergoes several rounds of displacement amplification to generate short fragment within the droplet, which will be released into one sequencing library
pool; (D) the linked-read sequencing is performed and ZoomX infers single molecules based on aligned barcode linked reads; ZoomX scans genome
coordinate pairs to detect if there is any rearrangement junction in between based on single molecule coverage. In the plot: Each DNA molecule (fragment)
is represented by a gray curved (linear) segment; each color represents a unique barcode. In (B); each short segment represents a random primer with
barcode. In (D): Each colored long stretch is an inferred linked-read molecule; Each colored vertical short bar is a linked-read pair, which is interspersed
along the inferred molecule; We depict the single molecule coverage against the base pair coverage given the shown molecules. The single molecule coverage
is higher and more consistent across the genome.

In this work, we analysed the barcode linked read
datasets using ZoomX with a scan grid length of 10kb,
aiming to detect large-scale transpositions/translocations,
inversions and more complex types (breakpoints at least
200kb apart) where previous analysis encountered difficul-
ties. We excluded any genomic regions within 1 Mb of a cen-
tromere, a telomere or a large gap from our analysis to avoid
alignment errors related to the genome reference. Call set

differentiation was done by the Bedtools pairtopair func-
tion to remove any potential germline events from tumour
call set if they were also found in matched normal call set.
The pairtopair overlap was used to remove any event in the
matched normal call set. Resulting somatic junctions were
denoted in BEDPE format and were visualized by the 10X
Genomics Loupe program. We used ZoomX’s molecule
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Figure 2. Sequencing statistics from the linked-read, whole genome analysis of NA12878. (A) Observed genome-wide molecule coverage density represents
a Poisson distribution, as fitted by maximum likelihood (NA12878 Fit). (B) Individual molecule coverage (NA12878 molecule) is significantly higher than
paired-end fragment coverage (NA12878 PEfrag) over the entire genome; (C) Individual molecule coverage (NA12878 molecule) is higher than paired-end
fragment coverage (NA12878 PEfrag) over the entire genome.

plotting functions to illustrate rearrangement junctions and
single-molecule support.

Fisher’s exact test for identifying statistical significance of
SV junctions

ZoomX uses a Fisher’s exact test for identifying statisti-
cally significant somatic events from matched normal tu-
mor pairs. We denote the normal control genome as C
and tumor genome as T. Any junction to be tested has
following data acquired from the genome-wide scan: all
molecules covering the junction breakpoints nC and nT,
respectively for control and tumor samples, and barcode-
sharing molecules supporting the proposed junction zC and
zT, respectively. The data can be summarized in a two-way
contingency table:

Control Tumor
Junction zC zT

Non − Junction nC − zC nT − zT

A one-sided Fisher’s exact test is directly applicable to de-
termine if there is significant evidence for more junction-
supporting molecules in the tumor sample. The test was
done by R’s fisher.test function. The reported P-value P
were Bonferroni-corrected Fisher’s test P-values PF , such
that P = #junctions∗PF . A standard cut-off P <0.05 was
used to determine statistical significance.

RESULTS

Defining molecule coverage based on barcode linked reads

First, we developed the concept of ‘molecule coverage’
that improves rearrangement calling compared to the Long
Ranger SV caller. This concept is based on the identifica-
tion of the molecules and their genomic characteristics from
each droplet partition as denoted by the barcodes. The bar-
code linked reads are used to extrapolate the genomic posi-
tion of the partition contents. There is little overlap among
the molecules’ genomic positions given that there are only

three to five molecules per each droplet, as defined by a Pois-
son distribution from the 300 genome equivalents originally
used. With this information, several features proved very
useful. As noted in the step (D) in Figure 1, the molecule
coverage or depth is based on counting the number of sep-
arate DNA molecules that span a given genomic region.
The partition barcode information is crucial for enumer-
ating molecule coverage for any given genomic region. In
a typical barcode library preparation, linked-read sequenc-
ing generates tens of millions of separate molecules with
a mean molecule length around tens of kb (Supplemen-
tary Table S1). With this level of partitioning one achieves
∼100× effective coverage of the whole genome by individ-
ual molecules when the actual sequenced base pair coverage
is only around 30x. The increased coverage was fully ob-
served in all of samples including the tumor samples (Figure
2B and Supplementary Figure S5).

Second, a molecule’s map position, based on linked reads,
is less constrained by mapping individual reads in the repet-
itive sequences that are likely directly adjacent to SV break-
points. It is well known that such breakpoint mappings are
error prone and confuse conventional SV callers. In con-
trast, a linked-read molecule’s map position is based on
multiple mapped read pairs per a given barcode. Namely,
the HMW DNA source molecule provides extended ge-
nomic contiguity, thus providing a fundamental advantage
for SV analysis compared to short DNA insert sequencing
libraries. With this scheme, SV junctions are no less evident
based on reads mapping distal to the breakpoint. The prob-
ability of two extrapolated DNA molecules with the same
sequence present in the same partition droplet is very low
(<0.01). This feature insures that the mapping and identifi-
cation of HMW species is accurate. Therefore, the detection
of structural variant junctions no longer relies on short read
mapping close to the breakpoint––this short read process is
more error-prone owing to the enrichment of repetitive se-
quences next to structural variations (30–32). As a result, we
consistently see a better evenness of genome wide molecule
coverage as compared to read pair coverage in all samples
(Figure 2C and Supplementary Figure S5).
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Whole genome performance metrics from barcode linked
reads

As an initial test of our method, we processed the linked
read data available from the whole genome sequencing of
NA12878 (Materials and Methods). This genome has been
extensively sequenced across multiple platforms including
with linked reads. First, we demonstrated a significant in-
crease of molecule coverage that enables the sensitive de-
tection of SV junctions. Figure 2B shows the cumulative
molecule coverage from barcode linked-reads versus the
fragment coverage based on short-insert, paired-end reads
for the NA12878 genome. Molecules identified by linked
reads provide higher extrapolated molecule coverage for any
genomic interval compared to paired-end sequencing frag-
ments. The molecule coverage for the NA12878 sample is
176× for >50% of the genome and 160× for >80% of the
genome. In comparison, the average coverage of paired-
end sequences (also linked reads) was 33× for >50% of the
genome and 24× for >90% of the genome, and the base
pair coverage was 27× for >50% of the genome and 19×
for >80% of the genome. The molecule coverage has sig-
nificantly less coverage variance than what one encounters
from standard sequence coverage using short insert paired-
end fragments. We normalized the cumulative molecule cov-
erage, a step that requires aligning the curves for the two
different methods at the point where 50% of the genome
is covered (Figure 2C). The normalized curve for extrapo-
lated molecule coverage has a much steeper transition that
translates into improved evenness. Thus, 55% of the genome
had extrapolated molecule coverage ranging from minus to
plus one standard deviation from the mean as compared to
just 40% for coverage computed using the paired-end short-
insert fragments. The same conclusion was drawn based on
all other samples (Supplementary Figure S5).

Identifying large rearrangements from NA12878 linked reads

Our analysis focused on discovery of large-scale events that
were 200 kb in size or greater. We used the linked read
data to identify individual DNA molecules that define the
SV structure. Using our approach, we identified a series
of rearrangements that included multiple SV elements not
detected with the 10X Long Ranger SV caller. In total,
we found seven intra- and two inter-chromosomal large-
scale structural variations in the NA12878 genome (Sup-
plementary Table S2). All the SVs were orthogonally cor-
roborated by examining sequence data from Pacific Bio-
science’s long sequence reads and/or Illumina Moleculo
synthetic long reads using split read analysis provided by
Layer et al. (10). In comparison, the Long Ranger caller
(10X Genomics) did not detect eight out of the nine vali-
dated ZoomX rearrangements (21). Long Ranger detected
one intra-chromosome event that was not validated by any
orthogonal data set (Supplementary Table S2)––ZoomX
did not detect this SV. Long Ranger detected three inter-
chromosome events where only one was validated (Supple-
mentary Table S2). In comparison, ZoomX identified the
single validated Long Ranger SV, which is a transposition
located at Chr11:108 585 666–Chr13:21 727 735 (Table 1).
We also validated many of the ZoomX calls using other
reported results including clone-by-clone sequencing calls

from Kidd et al. (33), microarray calls from Conrad et al.
(34) and SVs from the 1000 Genome Project using conven-
tional WGS (16) (Supplementary Table S3).

Citing an example, we identified a novel heterogeneous
double deletion on autosome 22 (Figure 3A). The locus
is composed of a larger ∼700 kb deletion (Chr22: 22
550 534–23 242 648) allele and a smaller ∼80 kb dele-
tion (Chr20: 23 210 673–23 242 648) allele. Greater than
80 molecules supported this variant call––these molecules
spanned the breakpoints of the larger allele (Supplemen-
tary Figure S6A). Additional read depth analysis confirmed
this SV––average coverage decreased from 30× to 15× for
the larger allele and drops to zero for the smaller allele.
The larger allele corresponds to a variant listed in the
Database of Genomic Variants (35) (DGV) gold standard
entry gssvL77096 (accession number). This variant has a
population frequency of 0.55% (in 117 of 14642 unique
samples). The smaller allele corresponds to the DGV entry
gssvL77095 with population frequency 0.93% (128 of 13818
unique samples).

The entire locus resides in a significantly repetitive ge-
nomic region, interspersed by multiple LINE-1, LINE-
2, Alu and other tandem repeats (36). The larger allele
contains two segmental duplications (chr22: 22 604 170–
22 669 477 and chr22: 22 973 847–22 997 581) that have
high sequence similarity (97%) with other genomic regions.
As noted, the Long Ranger SV caller provided with the
10X Chromium assay did not identify this variant. This
larger allele event was only reported previously by the
clone-by-clone approach and by microarray data, but at
much lower resolution. In comparison, coupling linked-
read single-molecule sequencing with ZoomX analysis, we
resolved the larger allele at base pair level resolution. The
other WGS studies may have missed this variant given the
repetitive sequence structure and its large size.

Figure 3B shows another complex rearrangement that in-
corporates a heterogeneous inversion and deletion locus on
autosome 2. The locus is composed of a large ∼1.4 Mb
inversion and deletion allele (Chr2: 130 892 516–132 296
052) and a smaller ∼75 kb deletion allele. A total of 61
and 67 molecules support the two breakpoints of the larger
allele, respectively (Supplementary Figure S6B and S6C).
Additional read depth analysis also confirms the locus.
The variant was independently confirmed by one long read
from long synthetic reads (i.e. Illumina Moleculo) (10). The
event corresponds to the InvFEST (37) entry HsInv0669.
All other studies with different long read sequencer ap-
proaches failed to identify this event. Similar to the previ-
ous variant, the fact that it resides within repetitive regions
might have hindered its discovery by other studies.

One inter-chromosomal variant that we found repre-
sents a balanced transposition junction between autosomes
Chr12 and Chr15. A total of 57 molecules supported the
junction breakpoint (Supplementary Table S3). The vari-
ant is heterozygous. In one haplotype, a small segment of
Chr15 was inserted into Chr12: 73 239 613. Short read
pairs also confirmed the variant with eight forward-forward
and four reverse-reverse abnormal pairs. The transposed re-
gion is defined as Chr15: 94 886 289–94 888 455. A sim-
ilar heterozygous variant was found between autosomes
Chr11 and Chr13, with 52 supporting molecules. More-
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Table 1. All ZoomX and Long Range identified events (>200 kb) in NA12878

For Long Ranger, results from Zheng et al. 2016 (Zheng2016) and a recent version 2.1.0 were reported. ZoomX analysis and read pair coverage were
performed The molecule and read pair coverage for each event was remarked and highlighted by color-coding, where green denotes good-support, yellow
denotes adequate-support, and red denotes poor-support. The inter-chromosome (InterChr) event is denoted by one of its breakpoints for simplicity. The
full event is reported in Supplementary Table S3.
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the same in this case. The heatmaps display the rearrangement. The middle panel is the base coverage along the X-axis segment. The bottom panel is the
resolved genotypes or haplotypes resulting from the junction events.
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over, we confirmed that regions consisted of a small region
of Chr13: 21 727 733–21 732 060 inserted into Chr11: 108
585 666––this was validated with short insert read pairs.
We identified independent sequencing validation of these
events. For the first transposition, we identified nine long
reads generated from Pacific Biosciences WGS data and 21
synthetic long reads that confirmed our call. Likewise, for
the second transposition, we identified eight long reads and
36 synthetic reads that confirmed our call.

Discovery of somatic rearrangements in cancer

We analysed three cancers, including one colon and two gas-
tric cancers. Our analysis method identified a series of com-
plex somatic rearrangements composed of multiple SVs that
would be challenging to identify with either short insert or
long sequence reads. The first sample we analysed was a col-
orectal tumor, focusing on large genomic events that exceed
200 kb. We used the ZoomX program with a grid length
of 10 kb. We inferred a range of 42–43 million molecules
with average molecule length ∼6 kb. The estimated extrap-
olated molecule coverage cM was 88 and 89 for MetB7175
and Norm7176, respectively. The estimated null sharing was
μ0 < 0.1 for both samples. The expected sharing for 10% al-
lele fractions was 14 for both MetB7175 and Norm7176,
which we used as the minimum required single-molecule
support for junction allele.

For this colorectal tumor, all of the reported somatic re-
arrangements underwent Bonferroni adjusted Fisher Exact
test with P-values <0.05 (Supplementary Table S4). In to-
tal, we identified 13 somatic rearrangements as circus plot-
ted in Figure 4. MetB7175, had seven intra-chromosomal
and six inter-chromosomal somatic junctions with an aver-
age of 31 molecules supporting the identification of each.
Moreover, short read pairs supported ∼80% of these junc-
tions, although with an average of only six pairs per
junction––significantly lower than molecule support (P =
2.122e–11, one-tailed paired t-test).

One of the somatic events overlapped with SET gene,
which is a nuclear protein and listed as an annotated can-
cer driver among the curated variants in COSMIC (38).
Specifically, we identified a translocation where a segment
of Chr9: 131 457 029–131 458 900 was duplicated and in-
serted into Chr2: 116 376 786. The Long Ranger software
did not detect this rearrangement. The junction was sup-
ported by 50 molecules and with additional sequence break-
point support coming from 26 short read pairs. The ∼1.8
kb inserted segment incorporates nearly the entire first exon
of the SET gene. The translocation creates a novel DPP10
(2q14.1)/SET (9q34.11) gene fusion. SET gene fusions,
such as NUP214 (9q34.13)/SET (9q34.11), are known to be
associated with various leukaemias (39). Dipeptidyl Pepti-
dase Like 10 (DPP10) is high expressed in brain tissue (40)
and has been implicated in asthma (41). Several reports have
shown that DPP10 has a potential role in colorectal cancer
(42) and neuroblastoma (43). The role of this rearrangement
in colorectal cancer is yet to be determined.

We identified other somatic rearrangements as well.
Three examples are shown in Figure 5. A total of 39
molecules supported the first junction. The rearrangement
involved a ∼3.2 Mb partial duplication of Chr10: 144

Figure 4. Somatic rearrangements identified in a colorectal cancer. In total
six intrachromosomal (intraChr) and seven interchromosomal (interChr)
somatic rearrangement junctions were identified in the colorectal tumor
(MetB7175). The junctions were illustrated by intra- and interchromoso-
mal links. The junctions were supported by 25–50 molecules, which were
marked as a dot next to the link and to the size.

672 679–147 914 434 (Figure 5A and Supplementary Fig-
ure S7A). The segment harbors the ST3 Beta-Galactoside
Alpha-2,3-Sialyltransferase 3 gene (ST3GAL3). The break-
point is within the last intron of the gene, which alters nor-
mal transcript forms. ST3GAL3 is known to affect cell mo-
bility in metastasis (44,45). The second junction, which has
29 supporting molecules, represents a ∼458 kb deletion of
Chr8: 98 634 834–99 093 478 (Figure 5B and Supplemen-
tary Figure S7B). The deletion covers three genes associated
with metastasis including: Metadherin (MTDH), Lysoso-
mal Protein Transmembrane 4 Beta (LAPTM4B) and Ma-
trilin 2 (MATN2) (46,47), along with others. The third junc-
tion, which has 34 supporting molecules, represents a ∼941
kb deletion of Chr18: 2 993 550–3 935 415 (Figure 5C
and Supplementary Figure S7C). The deletion removes the
TGFB Induced Factor Homeobox 1 (TGIF1) gene, which
is crucial to normal brain development, the loss of which
causes holoprosencephaly (48). The deletion breakpoint re-
sides within the first intron of Lipin 2 (LPIN2), which can
disrupt normal gene transcripts. Deactivation of this gene
along with the NF2, NIPSNAP1 and UGT2B17 genes, is
reported to enable metastasis in prostate cancer cell lines
(49).

As additional demonstration of this approach’s ability for
identifying complex somatic rearrangements we sequenced
two gastric tumors with a matched normal as denoted
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Figure 5. Three somatic rearrangements resolved in a colorectal cancer. (A) A somatic duplication that interrupts gene ST3GAL3. A total of 39 molecules
supported the junction breakpoint. (B) A somatic deletion that deletes MTDH, LAPTM4B and MATN2 genes. A total of 29 molecules supported the
junction breakpoint. (C) A somatic deletion that deletes MYOM1 and TFIF1 genes and interrupts the LPIN1 gene. A total of 34 molecules supported the
junction breakpoint. Each subfigure also shows the same region from the matched Norm7176 sample as an inset, which shows no alteration. Higher than
anticipated barcode sharing was red circled, which represents the junction breakpoint.

by MetR2721 (tumor), MetL2725 (tumor) and Norm2386
(normal tissue). Like the colorectal cancer, we identified a
series of somatic rearrangements with multiple SV elements.
Importantly, our molecule method identified these events
despite the limited tumor cellularity that was less than 30%
in both samples.

We ran ZoomX with grid length of 10 kb. The sequenc-
ing statistics are presented in Supplementary Table S1. We
inferred 12–42 million molecules with average molecule
length around 10kb. The estimated extrapolated molecule
coverage cM was 142 (Norm2386), 132 (MetL2725) and 43
(MetR2721), respectively. The estimated null sharing was
μ0 < 0.1 for all three. We required the minimum estimated
junction allele to be at least 14. The analysis was focused
on large-scale events (>200kb). We listed all somatic rear-
rangements found with Bonferroni adjusted Fisher Exact
test P-values <0.05 in Supplementary Table S5. All junc-
tions also had more than two paired-end short read pairs as
additional validation support.

We found four somatic intra-chromosomal junctions in
MetR2721 and two in MetL2725 samples. Two of the four
and one of the two junctions were overlapping cancer driver
gene regions, as defined by the COSMIC census, which were
both significantly enriched (P = 0.003286 and P = 0.04081,
Binomial Test). Of particular interest was the fact that the
rearrangements clustered around the Chr10: 122–124 Mb
region harboring the fibroblast growth factor receptor 2
(FGFR2) gene. FGFR2 is a well-known oncogene impli-
cated in gastric cancers. The duplicated region was also in-
verted (Chr10: 122 763 941–123 240 993). In total, 141 and
146 molecules supported the inversion breakpoints, which
is equivalent to ∼7× expected extrapolated molecule cov-
erage for a heterozygous haplotype (Figure 6A and Supple-
mentary Figure S8A and B).

The MetL2725 site shows more complex rearrangements
in the same region with multiple coexisting somatic alleles.
Our analysis detected two distinct large-scale duplication
that affected the same region, one spanning Chr10: 122 946
850–123 782 660 and the other spanning Chr10: 122 465
823–123 486 938, as shown in Figure 6B. The first allele
is 2× duplication, while the second is duplicated multiple
times. Both duplications affect the entirety of the FGFR2
gene. A total of 71 and 41 molecules supported the junction
breakpoints, respectively (Supplementary Figure S8C and
D). The accompanying normal tissue, Norm2386, shows no
aberration in the region.

DISCUSSION

In summary, we demonstrate a new method to detect large-
scale complex structural variants and rearrangements us-
ing barcode linked read data with the 10X Genomics plat-
form. Our approach identifies germline rearrangements and
perhaps more challenging, somatic events that occur in
lower allelic fractions (<50%). We demonstrated that the
method delineates complex structural variants where the
size is >200 kb and missed by other methods that include
long read sequencers. Our approach detects a full spectrum
of structural variations, including deletions, inversions, du-
plications and remote translocations even when they occur
in a lower proportion of the sample DNA as seen in primary
cancers from clinical biopsies. The improved sensitivity is
a combined result of higher extrapolated molecule cover-
age (typically 100× or more), as well as the HMW genomic
DNA (typically >10 kb).

Compared to the read-based binomial test algorithm,
that was employed by the Long Ranger (21) and Spies et al.
(23) for SV calling, our statistical algorithm demonstrates
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Figure 6. A complex somatic rearrangement. These tumor samples show distinct rearrangements in the same genomic region harbouring the FGFR2 gene
(Chr10: 122–124 MB). In MetR2721 (A), the rearrangement was resolved to a somatic inversion-amplification haplotype. A total of 146 and 141 molecules
supported the two junction breakpoints formed by the inversion. In MetL2725 (B), the rearrangement was resolved to multiple parallel haplotypes. The two
major haplotypes were two duplications with their breakpoints red circled in the plot. A total of 71 and 41 molecules supported the duplication junction
breakpoints. The coverage changes in the region also confirmed these events. The same region from the matched Norm2386 shows no alteration, which is
shown as an inset in subfigure (A).

an improvement in performance for the following reasons:
First, the extrapolated molecule coverage of linked-read
molecules (the genome coverage computed using the in-
ferred spans of all molecules) is generally higher than the
coverage of short-insert fragments. Higher extrapolated
molecule coverage translates directly to more informative
features for junction detection as compared to the existing
read pair design. Second, compared to individual reads or
read-pairs, there is a higher likelihood that a molecule repre-
sented by multiple linked-read pairs spans a rearrangement
junction.

Barcode-linked sequencing data has additional features
that facilitate its application in many aspects beyond struc-
tural variant analysis. Linked reads are compatible with ex-
isting short read bioinformatics pipelines used to analyse
whole-genome sequencing. The DNA input is as little as
1 ng, representing orders of magnitude smaller than con-
ventional whole-genome sequencing. The N50 of phased
haplotype block size is up to 1 Mb, which offers haplo-
types of both single nucleotide and structural variant calls.
The ZoomX module developed here can be used directly on
top of the existing 10X Genomics bioinformatics pipeline.
Taken together, these developments provide a new way to
perform whole-genome analysis that can rapidly identify
complex rearrangements whether they be germline or so-
matic.
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