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Abstract: 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) is present in food. It has a caramel-like
flavor, which affects the quality of food, and is formed via multiple pathways. Msalais is a traditional
wine fermented from boiled local grape juice in Xinjiang (China). It has a strong caramel odor, which
suggests high furaneol content. Furaneol formation during Msalais-making had not been investigated
to date. Here, high-performance liquid chromatography and different fermentation models of
Msalais-making were used to investigate the furaneol content and formation during Msalais-making.
The furaneol content of Msalais is high, between 27.59 ± 0.493 mg/L and 117.6 ± 0.235 mg/L. It is
formed throughout the entire Msalais-making process. The formation pathways include the Maillard
reaction and chemical hydrolysis of bound furaneol during grape juice concentration; enzymatic
release and/or chemical acidic hydrolysis of furaneol glucosides, and biosynthesis from Maillard
products and d-fructose-1,6-diphosphate during fermentation; chemical transformation of Maillard
products at room temperature (16–25 ◦C) and hydrolysis of furaneol glucosides during storage.
Importantly, furaneol is formed by an efficient biotransformation of Maillard products. These findings
suggest that furaneol content can be used as an important indicator of wine quality, and could be
controlled by controlling the grape quality, grape juice concentration, fermentation, and wine storage.
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1. Introduction

4-Hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) is a compound with a strong caramel-like
flavor, present in food. It was first reported as a product of the Maillard reaction in 1960 [1]. It has
been since identified in a variety of fruits (e.g., pineapple, strawberry, raspberry, and grape) [2–5] and
vegetables (e.g., tomato, potato, leek, and onion) [6–8], and foods prepared from plants by heating or
without heating (e.g., nonalcoholic beverages, wine, cooked potato, roasted almond, popcorn, roasted
coffee, and green tea) [2,9–13]. It was also detected in cooked meat and milk products, including
roast beef, human breast milk, and powdered and cooked milk [14–17]. Further, furaneol appears
to form easily in heated and fermented foods, such as soy sauce, beer, bread, Baijiu, and cheddar
cheese [12,18–21].

Dilute solutions of furaneol have a strawberry flavor, while furaneol concentrates have a caramel-like
flavor [22]. Due to its pleasant taste and low odor thresholds (0.03 mg for taste and 0.1 mg/L water
for odor) [12], furaneol is widely used as a flavoring agent in jams, jellies, ice cream, alcoholic drinks,
and sweets [23,24]. Further, the compound has some physiological activity, e.g., it protects the human
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erythrocyte membranes and low-density lipoprotein against iron-induced oxidative modifications,
effectively inhibits hyperpigmentation, and shows anti-infective activity during microbial infections in
human [24].

The pronounced caramel-like flavor of furaneol and other 4-hydroxy-3(2H)-furanones is associated
with the planar enol-oxo group of a cyclic dicarbonyl derivative that forms strong hydrogen bonds with
the adjacent 4-hydroxy group [24]. On an industrial scale, furaneol is produced from l-rhamnose by
heating [12]. Furaneol may also be formed via chemical transformation in model solutions containing
d-fructose-1,6-diphosphate (FDP) and nicotinamide adenine dinucleotide phosphate [NAD(P)H] [25].
Further, furaneol naturally forms at the heating stage of food processing, via the Maillard reaction [26].
At room temperature, it is biosynthesized in fruit, and by yeast and bacteria, most probably via
different pathways [24]. For instance, furaneol and its glucoside derivatives in strawberry fruit
are synthesized from d-fructose and d-fructose 6-phosphate [27,28] by Fragaria × ananassa quinone
oxidoreductase (FaQR) and F. × ananassa enone oxidoreductase (FaEO) (furaneol formation), and
glucosyl transferase and malonyl transferase (glucoside derivative formation) [24,29]. On the other
hand, the yeast Zygosaccharomyces rouxii transforms exogenous FDP to furaneol (27). Z. rouxii and
bacteria (Lactococcus lactis subsp. cremoris) also produce furaneol in vitro, in a medium prepared by
damp-heat sterilization [24,25,30]. The bio-formation pathways of furaneol by microbes are complicated
and have not been fully delineated [24]. As furaneol is widely present in agricultural products and
foods, and is formed via complicated pathways in different food matrices, it is difficult to control the
quality of food containing high levels of furaneol.

Msalais is a traditional wine produced by spontaneous fermentation of boiled grape juice by the
Uygur people in the Xinjiang Uygur Autonomous Region (XUAR) in China. The Msalais tradition
and Msalais-producing technology have been passed down from generation to generation in the
A’Wati region in XUAR, the only main production region of Msalais. Since 2007, Msalais has been
protected as an intangible human cultural heritage. The flavor characters of Msalais and strong
caramel odor are different from those of other wines primarily because it is produced from a local
grape, Vitis vinifera Hetianhong, often planted in the courtyards in Southern Xinjiang, with a 1600-year
growth history and a neutral aroma [31]. Another explanation of the special characteristics of Msalais
is the unique winemaking technology: local grape juice is boiled (to concentrate the sugar, extract
the color, and produce flavor via the Maillard reaction), and the cooled grape juice is subsequently
naturally fermented into Msalais within 45 days, and stored for 1–3 years at room temperature [32,33].
The caramel flavor is dominant in Msalais, however, its intensity varies from pleasant to very strong;
in extreme cases, it is too strong, which diminishes the aromatic and flavor complexity of the wine [34].
Considering the strong caramel odor of furaneol, we hypothesized that the wine quality may potentially
be associated with a variable furaneol content. Hence, in the current study, the furaneol content and
formation during Msalais-making were explored, to create a theoretical basis for improving the quality
of wine by controlling its furaneol content.

2. Results

2.1. Furaneol Content of Msalais

As shown in Table 1, the ◦Brix, alcohol, and pH values of the 13 Msalais wines supplied by different
producers were significantly different (p < 0.05). The furaneol content was between 27.59 ± 0.49 mg/L
and 117.60 ± 0.24 mg/L, and also significantly different (p < 0.05) between samples. To evaluate
the furaneol odor intensity in Msalais, the odor activity values (OAVs) of furaneol in Msalais were
calculated by dividing the contents of furaneol in wines by the threshold value in water (0.1 mg/L) [20]
and in 10% hydroalcoholic solution at pH 3.2 (5 µg/L) [35]. For all tested wines, the OAV of furaneol
exceeded 1, reaching hundreds to thousands in some cases (Table 1). These observations indicated that
furaneol plays an important role not only in the aroma but also in the flavor of Msalais.
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Table 1. Furaneol content of Msalais.

Msalais
Sample

◦Brix pH Alcohol (%)
Furaneol

Content (mg/L) OAV1 OAV2

ms1 9.7 ± 0.0c 3.96 ± 0.01i 12.3 ± 0.1gh 81.84 ± 0.00d 818 16,368
ms2 12.7 ± 0.0f 3.66 ± 0.03e 9.0 ± 0.1bc 56.51 ± 0.07b 565 11,301
ms3 11.8 ± 0.1e 3.61 ± 0.01d 8.8 ± 0.6ab 68.20 ± 0.41fc 682 13,639
ms4 13.0 ± 0.1g 3.10 ± 0.01a 9.5 ± 0.5cd 63.50 ± 0.28c 635 12,700
ms5 10.8 ± 0.0d 3.15 ± 0.03b 8.8 ± 0.0ab 27.59 ± 0.49a 276 5518
ms6 11.0 ± 0.0de 4.00 ± 0.01j 10.6 ± 0.2e 102.73 ± 0.63f 1027 20,545
ms7 10.4 ± 0.1cd 3.56 ± 0.01c 12.1 ± 0.0g 53.42 ± 0.21b 534 10,684
ms8 7.8 ± 0.0ab 3.85 ± 0.01g 9.7 ± 0.1d 78.14 ± 0.54d 781 15,629
ms9 14.3 ± 0.0h 3.73 ± 0.01f 8.1 ± 0.1a 83.17 ± 0.71d 832 16,634
ms10 7.0 ± 0.1a 3.93 ± 0.01h 9.4 ± 0.1c 117.6 ± 0.24g 1176 23,520
ms11 9.0 ± 0.0bc 4.09 ± 0.01k 11.2 ± 0.2f 91.02 ± 0.85e 910 18,204
ms12 10.3 ± 0.0cd 3.93 ± 0.01h 10.4 ± 0.1de 83.66 ± 0.36d 837 16,732
ms13 8.3 ± 0.0b 3.93 ± 0.01g 10.6 ± 0.1e 98.47 ± 0.70f 985 19,693

The differences between values were significant except for the ones indicated by different lowercase letters (one-way ANOVA,
p < 0.05, Tukey’s test, triplicate for per wine); OAV, odor activity value. OAV1 was calculated by dividing the concentration
of furaneol by its odor threshold in water (0.1 mg/L) [20]. OAV2 was calculated by dividing the concentration of furaneol by
its odor threshold in 10% hydroalcoholic solution at pH 3.2 (5 µg/L) [35].

2.2. Formation of Furaneol during Msalais-Making

An increase of furaneol content in the different winemaking experiments with time was observed,
as shown in Figure 1.

Considering sample type, grape juice (Sgj, Ogj, and mgj) contained less than 2 mg/L furaneol,
which was less than that in other samples (Figure 1, Table S1); heated simulated grape juice (sb)
contained approximately 1.40 ± 0.14 mg/L furaneol (Table S1); and the furaneol contents of Sgi, Ogj,
mgj, and sb were significantly different (p < 0.05) (Table S1).

Further, the furaneol content increased during grape juice concentration (Figure 1a–d, Table S1),
up to 9.0–15 mg/L end concentration in bSgj120min, bOgj120min, bmgj90min, and bSgej120min. In sb,
it was significantly lower (p < 0.05) than that in the boiled grape juice (bSgj, bOgj, bmgj, and bSgej)
(Table S1).

During fermentation (day 0 to approximately day 45), the furaneol content increased more than
6.3–9.3 times compared with the content after grape juice concentration (bSgj120min, bOgj120min,
bSgej120min, and bmgj90min), to over 84 mg/L in the approximately 45 days fermentations (fbSgj48d,
dfbOgj48d, afbOgj48d, fbSgej48d, and fbmgj44d) (Figure 1a–d, Table S1). In the sb model, the furaneol
content increased up to 21.42± 0.51 mg/L in afsb48d and 25.54± 0.84 mg/L in dfsb48d (Figure 1e, Table S1).
That was 15.3 and 18.24 times higher, respectively, than furaneol content in sb (1.401 ± 0.129 mg/L).
For the natural fermentation of grape juice, the furaneol content increased 6.02 times in nfSgj48d and
5.53 times in nfOgj48d compared with the furaneol content in Sgj and Ogj grape juice, accordingly
(Figure 1f, Table S1). The final Msalais wine, after 90–256 days of storage, contained over 100 mg/L
furaneol and was significantly different between fbSgj256d, fbSgej256d, afbOgj245d, dfbOgj245d, and
fbmgj90d (p < 0.05) (Figure 1a–d, Table S1). Further, the furaneol content increased in the nf group,
up to 23.32 ± 0.165 mg/L in nfgOj245d and 27.47 ± 0.07 mg/L in nfSgj256d (Figure 1f, Table S1). During
storage in the sb model, the furaneol content increased up to 43.83 ± 0.17 mg/L in afsb114d and
41.84 ± 0.37 in dfsb114d, which was significantly higher than that in the nf group (p < 0.05) (Figure 1e,f,
Table S1). Furthermore, furaneol content in samples fermented and stored for the same or similar
periods of time, e.g., 90 days, was also significantly different (p < 0.05) and ranked, in decreasing order,
as follows: fbSgej > fbOj > fbSgj > fbmj > fsb > nf (Table S1).
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For fermentations using different fermenting starter cultures, the furaneol content in samples
inoculated with a starter from the Daolang modern plant (df) was higher than that in samples inoculated
with a starter from the Ahuizhang craft workshop (af), e.g., dfsb114d vs. afsb114d (Figure 1e, Table S1),
or dfbOjg245d vs. afbOjg245d (Figure 1c, Table S1).
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Figure 1. Changes of furaneol content during Msalais-making. The furaneol content was determined
in six different models: (a) Sj1 model; (b) Sj2 model; (c) Oj model; (d) mj model; (e) sb model; and (f) nf
model. Samples: sgj, grape juice from grape harvested in September 2017; Sgej, a mixture of sgj grape
juice and liquid extracts (16◦Brix) of grape residues obtained by adding water and boiling; Ogj, grape
juice from grape harvested in October 2017; mgj, grape juice from Manaizi grape harvested in September
2017; sb, concentrate of a synthetic grape juice solution; bSgj0min–bSgj120min, bSgej0min–bSgej120min,
bOgj0min–bOgj90min, and bmgj0min–bmgj90min indicate the different boiling times used to
concentrate Sgj, Sgej, Ogj, and mj, respectively; fbSgj1d–fbSgj256d, fbSgej1d–fbSgej256d, and
fbmgj1d–fbmgj90d indicate natural fermentation of cooled bsgj120min, bSgej120min, and bmgj90min
on different fermenting days, respectively; afbOgj1d–afbOgj245d and dfbOgj1d–dfbOgj245d, and
afsb1d–114d and dfsb1d-dfsb114d indicate the fermentation of cooled bOgj120min and sb, respectively,
on different fermenting days, and inoculated using starters from Ahuizhang craft workshop (“a . . . ”)
and Daolang modern plant (“d . . . ”); nfSgj1d–nfSgj256d and nfOgj1d–nfOgj245d indicate the natural
fermentation of Sgj and Ogj, respectively, conducted for different times. The data are presented as the
mean ± SD from three independent experiments, with three replicates each.
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These observations indicated the furaneol was produced at different stages of Msalais-making,
mainly during fermentation and storage. More furaneol was produced by microbiological transformation
of sb than of grape juice. The different starters used for fermentation also influenced the furaneol content
of the final product.

2.3. Analysis of Furaneol Released by Hydrolysis from Furaneol Glucosides

Furaneol was produced in the naturally fermented grape juice (Figure 1e). More furaneol was
produced during the fermentation of boiled grape juice (bSgj120min, bSgej 120min, bmgj90min, and
bOgj90min) (Figure 1a–d) than during the fermentation of sb (Figure 1e) and natural grape juice (Figure 1f).
This indicated the presence of furaneol glucosides and derivatives in the grape juice. To verify this,
furaneol was released by enzymatic or thermal acidic hydrolysis from the Sgj, Sgej, and bSgej120min
extracts, and from the fbSgej13d and fbSgej48d fermentations, and after 90 days of storage (Figure 2).
Slightly more furaneol was released from the Sgj extract than from the Sgej extract, but the content
did not exceed 0.10 ± 0.08 mg/L and 0.18 ± 0.07 mg/L, respectively. On the other hand, the quantity of
furaneol released from the bSgej120min extract (3.51 ± 0.13 mg/L released by enzymatic hydrolysis, and
2.97 ± 0.01 mg/L released by thermal acidic hydrolysis) was approximately 10 times and significantly
higher (p < 0.05) than that released from Sgej and its subsequent fermentations. The content of furaneol
released from the fermented extracts significantly decreased with the fermentation time (p < 0.05).
Although different quantities of furaneol were released by enzymatic and thermal acidic hydrolysis,
the content of furaneol released by either method showed the same trends in the analyzed samples.
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Figure 2. The quantity of furaneol released from furaneol glucosides by enzymatic hydrolysis (EH)
(by glycosidase AR 2000, at 40 ◦C for 16 h, pH 5.0) and thermal acidic hydrolysis (AH) (100 ◦C for 1 h,
pH 4.0). The quantity of released furaneol was determined by high-performance liquid chromatography
(HPLC). The data are presented as the mean ± SD from three independent experiments, with three
replicates each. Different lowercase or capital letters over the bars respectively indicate significant
differences between the enzymatically hydrolyzed or thermal acidic hydrolyzed samples analyzed
by one-way ANOVA and Tukey’s test at p < 0.05. Samples: sgj, grape juice from grape harvested
in September 2017; Sgej, a mixture of sgj grape juice and liquid extracts (16◦Brix) of grape residues
obtained by adding water and boiling; bSgej120min indicates the concentrate of Sgej for 120 min;
fbSgej13d, fbSgej48d, and fbSgej90d indicate natural fermentation of cooled bSgej120min on different
fermenting days.
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3. Discussion

In the current study, the furaneol content and formation pathways were investigated during
Msalais-making. The data indicated that Msalais contains unusually high levels of furaneol, and that
the compound is formed as a result of a complex interplay of abiotic and biotic factors.

Msalais contains at least 27.59 ± 0.49 mg/L furaneol, which is considerably higher than the values
reported for other alcoholic beverages to date [2]. The furaneol content in alcoholic beverages varies
from trace amounts to 3.5 mg/L in wine (depending on the grape variety), 2.0–8.0 mg/L in beer, and
6.6 mg/L in strawberry wine [2]. A compound with OAV greater than 1 contributes to the wine aroma,
and the higher the OAV, the greater the contribution [36]. Hence, the high OAV of furaneol in Msalais
(exceeding 1) indicated its important contribution to flavor and, especially, aroma characters of Msalais.
The highly variable furaneol levels in the sampled Msalais wines indicate varying quality of the wine.

The high content of furaneol in Msalais is an outcome of the winemaking process as a whole,
with fermentation as the main stage of furaneol formation. The possible furaneol formation pathways
during Msalais-making are presented in Figure 3. These pathways are based on the observations
made in the current study and on the furaneol formation pathways reported earlier [24,26,27,37–41].
The data from the current study suggest that furaneol formation in Msalais involves the Maillard
reaction and thermal hydrolysis of bound furaneol during grape juice concentration; enzymatic release
and chemical acidic hydrolysis of bound furaneol during fermentation; biosynthesis from FDP and/or
the Maillard products during fermentation and storage; and chemical transformation of FDP and/or
the Maillard products at room temperature during storage.

Furaneol formation during grape juice concentration for Msalais-making could be ascribed to
the Maillard reaction and chemical hydrolysis (Figure 3, red). In the absence or presence of amino
acids, in a thermal system, hexoses, 6-deoxysugars, and pentoses can be degraded to furaneol via a
major pathway that involves the 2,3-enolisation of sugar, β-elimination of water or an amino group,
intra-molecular cyclisation, and dehydration [41]. In heat-processed foods containing hexoses and
amino acids, furaneol always forms via the Maillard reaction, with acetylformoin, diacetylformoin, and
dihydrodiacetylformoin as important intermediates [38,39,42]. As a major formation pathway, glucose
is cleaved into acetaol and lactaldehyde; acetylformoin is then formed by idolization; and acetylformoin
is reduced to furaneol [26,38]. Acetylformoin can also be obtained from FDP as a precursor, under
pyrolytic conditions [12]. In the current study, furaneol formation in the heated stimulated grape
juice (sb) and increased furaneol levels during grape juice concentration (bSgj, bOgj, bmgj, and bSgej
samples) (Figure 1) provided direct evidence of furaneol formation via the Maillard reaction.

Further, the occurrence of thermal hydrolysis of bound furaneol during grape juice concentration
was indirectly confirmed. First, the furaneol content in the final concentrated grape juice (Figure 1a–d)
was higher than that in the heated simulated grape juice (Figure 1f). Second, the increase of
furaneol levels during the concentration of a mixture of grape juice and grape residue extracts
(bSgej0min–120min) was higher than that observed during the concentration of samples containing
only grape juice (bSgj0min–120min) (Figure 1a,b), even though both sample types were obtained from
the same grape (Sj). Thermal acidic hydrolysis of bound glucosides to release furaneol was further
evidenced by a successful identification of furaneol as one of the products of thermal acidic hydrolysis
(100 ◦C for 1 h, pH 4.0) of the extracts of Sgj, Sgej, and bSgej120min samples (Figure 2). The increased
levels of furaneol during grape concentration indicated that the bound furaneol mainly originated from
grape residues (skin and/or seed) in these samples. Furaneol was also released by thermal hydrolysis
during the concentration of the mixture of grape juice and grape residue extracts (Figure 2).
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Figure 3. Multiple pathways of furaneol formation during Msalais wine making. FaQR: Fragaria × ananassa
quinone oxidoreductase, FaEO: F. × ananassa enone oxidoreductase, HMMF: 4-hydroxy-5-methyl-3(2H)-furanone.
The pathways were reported by Nashalian et al. [26], Dahlen et al. [27], Hauck et al. [25,37], Schieberle et al. [38],
Wang et al. [39], Wong et al. [40], and Zabetakis et al. [40].
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Furaneol accumulates largely during the fermentation stage. The two pathways of furaneol
formation, namely, the release of bound furaneol by chemical or enzymatic hydrolysis (Figure 3),
are important contributors to the furaneol content. Furaneol and its derivatives are present in
different grape species [35,43–46]. In the current study, the furaneol content increased during natural
fermentation of grape juice without pre-heating, which could be attributed to the enzymatic release
and/or chemical acidic hydrolysis of the bound furaneol (Figure 1e, Figure 2). Specific glucosides
of furaneol in grape are present in the form of furaneol glucosides [4]. While furaneol glucosides
present in strawberry, such as furaneol-glucuronide and furaneol-malonylated glucoside, have not
yet been identified in grape [4,7,47], grape contains furaneol aglycon [4]. The glucosides have a
direct linkage of furaneol to a β-d-glucose moiety [2,7,24,48]. In the current study, Msalais obtained
from concentrated Hetianhong grape juice or grape juice containing grape residue extracts contained
more furaneol than Msalais from concentrated Munage grape juice (Figure 1a–d). This indicated
that Hetianhong grape juice might contain more bound furaneol than Munage grape juice. Indeed,
Hetianhong grape juice contained more free furaneol (Figure 1a,c) than Munage grape juice (Figure 1d).
This indirectly indicated that Hetianhong grape contains more bound furaneol than Munage grape.
However, additional experiments are required to confirm this.

During Msalais fermentation, furaneol was generated via biological and chemical pathways from
FDP and (highly likely) the Maillard products (Figure 3). This was evidenced by furaneol formation
during fermentation in the sb model, a heated artificial synthetic medium containing hexoses and
amino acids (Figure 1f). Although the complete pathway of furaneol formation in yeast has not yet
been delineated, the following important points should be considered: the carbons of furaneol originate
exclusively from exogenous FDP [27]; FDP is biotransformed to furaneol by the yeast Z. rouxii and in
strawberry fruit [27]; and FDP is chemically transformed to 1-deoxy-2,3-hexodiulose-6-phosphate via
2,3-enolization and then enzymatically to furaneol by Z. rouxii [25]. Further, FDP is also enzymatically
transformed into dihydroxyacetone phosphate by exogenous biphosphate aldolase and triose phosphate
isomerase; the product of the reaction can react with lactaldehyde, via an aldol condensation, to produce
6-deoxyhexose; and furaneol is subsequently formed during heating at 80 ◦C for 20 h with piperidine
in an acidic-ethanol solution [40]. Furaneol glucoside is biosynthesized from 6-deoxyhexoses as
precursors of the furan ring of furaneol in strawberry [49], but it is not known whether microbes could
also biotransform 6-deoxyhexoses into furaneol. During Msalais-making, FDP would originate from
the grape juice and/or would be released by yeast; aldolase would be secreted by yeast; and lactaldehyde
would be produced by the Maillard reaction during grape concentration. Further, grape juice is acidic,
and the wine contains at least 8% ethanol and has low pH (3.2–4.0). These observations suggest the
existence of an enzymatic-chemical pathway of furaneol formation during yeast fermentation, and a
potential alternative microbial transformation of 6-deoxyhexoses to furaneol. Currently, the knowledge
of microbiological pathways of furaneol formation, especially biotransformation from the Maillard
products, is limited. Theoretically, the yeast should be able to assimilate sugar fragments produced
during the Maillard reaction more easily than hexoses. In the current study, the furaneol content
increased during fermentation in the sb model in the absence of exogenous FPD, providing direct
evidence for the biological formation of furaneol from the Maillard products, most likely involving
acetol, acetylformoin, in addition to FPD. That is the first and unambiguous demonstration of the
biotransformation of furaneol from Maillard products. In the future, fermentation experiments in the
presence of the potential Maillard products as substrates, combined with isotope analysis, should be
performed to verify the proposed pathway of furaneol formation.

Finally, during Msalais fermentation and storage at room temperature, furaneol might be formed
via chemical transformation (Figure 3, green font). In addition to the biotransformation of FPD
to furaneol, FDP can also be chemically converted to furaneol in the Maillard reaction, with or
without heating [12], or in solutions containing FDP and NAD(P)H at room temperature (perhaps via
mechanisms similar to those during heating), with acetylformoin as a key intermediate (Figure 3) [37].
Phosphate ions stimulate furaneol production via the Maillard reaction, and FDP is rapidly converted
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to furaneol under room-temperature conditions [12,50]. During Msalais-making, the concentration of
phosphate ions is sufficient to allow the yeast to grow, and FDP and NAD(P) could be derived from the
yeast lysate, with acetylformoin formed by the Maillard reaction. Therefore, furaneol could be formed
by a chemical transformation during fermentation and during Msalais storage at room temperature.
This could be confirmed in the future by experiments involving fermentation in the presence of these
compounds (FDP, NAD(P), acetylformoin, etc.).

Collectively, furaneol is formed via multiple pathways during Msalais-making (Figure 3).
The contribution of these pathways to the furaneol content in Msalais is as follows, in increasing
order: the isolated Maillard reaction (sb, 1.401 ± 0.13 mg/L furaneol), and chemical hydrolysis
with the Maillard reaction upon heating (bSgj, bSgej, and bOgj samples, from 9.01 ± 0.06 mg/L
to 14.625 ± 0.20 mg/L furaneol); microbial and chemical hydrolysis of furaneol glucosides (up to
27.468 ± 0.07 mg/L during natural fermentation of grape juice after 256 days) (Figure 1f); and microbial
and chemical transformation of the Maillard products (sb, up to 43.83 ± 0.17 mg/L after 114 days
(Figure 1e). All these pathways together contribute to the high and variable furaneol content in Msalais
(Table 1), with the microbial and chemical transformation of the Maillard products as the main pathway.

From a practical perspective, considering the high furaneol content of Msalais and the fact that
furaneol is a strong caramel-like compound in alcoholic beverages [35], furaneol could be used as
an important indicator for controlling the quality of wine. The higher the level of furaneol, the
stronger the caramel odor of wine. However, while moderate furaneol content enhances the quality of
wine, extremely high furaneol content and strong caramel odor diminishes the aromatic and flavor
complexity of wine, impairing the wine quality. Standards for acceptable furaneol content in wine could
be set. Although fermentation and storage are the main stages during which furaneol is generated,
the grape quality and concentration intensity of the grape juice determine the species of compounds
for furaneol formation during these stages (e.g., furaneol glucosides and Maillard intermediates). It is
hence necessary to synergistically control the grape quality, concentration of grape juice, fermentation,
and storage, e.g., by using grape with moderate furaneol glucoside content; concentrating the grape
juice with or without extraction of grape residues; fermentation using selected starters and appropriate
fermenting parameters; and storage with or without lees. A specific program to control the content
of furaneol generated at different stages of winemaking should be carefully optimized for Msalais,
focusing on the fermentation stage, and mainly considering the biotransformation of Maillard products
and enzymatic hydrolysis of furaneol glucosides. Further, since all the currently known pathways of
furaneol formation in the food matrix possibly occur during Msalais-making, Msalais production could
be used as a model for researching the formation mechanisms of furaneol in food, e.g., for qualitative
and quantitative identification of furaneol glucosides in specific grape varieties, and key intermediates
during chemical and microbiological transformation from the Maillard products.

4. Materials and Methods

4.1. Chemicals

Methanol and acetonitrile (HPLC grade), and furaneol standards (≥98%) for the HPLC analysis
were from Sigma-Aldrich (St Louis, MO, USA). For the simulated grape juice models, individual amino
acids (biological grade), glucose (biological grade), fructose (biological grade), and salts (analytical
grade) were purchased from Shanghai Yuan Ye Biotechnology Co., Ltd. (Shanghai, China). Amberlite
XAD-2 (150 mg/6 mL) was purchased from Tianjin Boer Ajir Technology Co., Ltd. (Tijanjin, China).
Double-distilled water was used in all experiments. Rapidase revelation aroma (AR 2000) from
Aspergillus niger was purchased from Creative Enzymes (New York, NY, USA).

4.2. Msalais

In the current study, different samples of Msalais wine (13 different Msalais wines) were obtained
from the maximum number of producers, as feasible, from the Awati production region. Generally,
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the sampled wines were produced from ripe Hetianhong grape in 2017, and prepared by the two basic
processes of grape concentration and spontaneous fermentation. The alcohol content in wine was at
least 8%, with 7.0–14.3◦Brix, and pH of 3.09–4.10 (Table 1). The Msalais samples were prepared in
triplicate for analysis.

4.3. Preparation of Models for Simulated Msalais-Making

To analyze the multiple pathways of Msalais formations at the different stages of Msalais making
(grape juice concentration, fermentation, and storage), the six models were designed as the follows:

Model Sj1: ripe Hetianhong grapes (19◦Brix) harvested on 17 September 2017 → cleaning →
de-stalking → weighing (10 kg) → juice pressing → grape juice (Sgj) → concentration (samples
bSgj0min–120min)→ cooling down to 25 ◦C→ natural fermentation (samples fbSgj1d–fbSgj41d)→
Msalais storage (samples fbSgj45d–fbSgj256d).

Model Sj2: ripe Hetianhong grapes (19◦Brix) harvested on 17 September 2017 → cleaning →
de-stalking→ weighing (10 kg)→ juice pressing→ grape residues boiled with 2 L of water to 16◦Brix
→ filtering into grape juice and fully mixing (Sgej) → concentration (samples bSgej0min–120min)
→ cooling down to 25 ◦C→ natural fermentation (samples fbSgej1d–fbSgej41d)→Msalais storage
(samples fbSgej48d–fbSgej256d).

Model Oj: Ripe Hetianhong grapes (22◦Brix) harvested on 2 October 2017→ cleaning→de-stalking
→weighing (20 kg)→ dividing into four equal portions (10 kg each)→ juice pressing→ grape juice
(Ogj) → concentration (samples bOgj0min–90min) → cooling down to 25 ◦C → inoculation with
the df or af starters, as indicated → inoculated fermentation (samples afbOgj1d–afbOgj33d and
dfbOgj1d–dfbOgj33d)→ storage (samples afbOgj48d–afbOgj245d and dfbOgj48d–dfbOgj245d).

Model mj : ripe V. vinifera cv. Munage grape (20◦Brix) harvested on 17 September 2017→ cleaning
→ de-stalking→ weighing (10 kg)→ juice pressing→ grape juice (mgj)→ concentration (samples
bSgj0min–90min)→ cooling down to 25 ◦C→ natural fermentation (samples fbmgj1d–fbmgj33d)→
Msalais storage (samples fbmgj44d–fbmgj90d).

Model nf: Sgj and Ogj grape juice (8 kg each)→ natural fermentation (samples nfSgj1d–41d and
nfOgj1d–41d)→ storage (samples nfSgj48d–256d and nfOgj48d–245d).

Model sb: a synthetic grape juice solution [51] (220 g/L sugar with the glucose and fructose ratio
1:1, pH 3.5, 3 L) → dividing into two equal portions (1.5 L each) → boiled with stirring (800 rpm)
to approximately 28◦Brix in 30 min, using a multi-head temperature-controlled magnetic stirrer→
cooling down to 25 ◦C (samples sb)→ inoculation with the df or af starters, as indicated→ inoculated
fermentation (samples afsb1d–afsb33d and dfsb1d–dfsb33d)→ storage (samples afsb48d–afsb114d
and dfsb48d–dfsb114d).

In the six models, except for the sb model, the liquid concentrations were performed in a
20-L steel barrel on a gas stove, up to approximately 28◦Brix in 90–120 min, with manual stirring.
The fermentations from grape juice and their derivatives were performed in a 10-L Chinese ceramic jar
with a water seal (cleaned and heated for 30 min by water at 80–90 ◦C in a 50-L steel barrel), sealed by
boiled water. The fermentation of sb was performed in a 2-L flask (cleaned and heated for 30 min by
water at 80–90 ◦C in a 50-L steel barrel), sealed by a plastic wrap. The natural fermentation liquids
(200 mL) at the high-bubble stage from Daolang modern plant (df) or Ahuizhang craft workshop (af)
were centrifuged (5000 rpm/min), and washed with sterile water three times to use as starters for the
inoculated fermentations in the Oj model. Starters from 20 mL of af and df natural fermentation liquids
for the sb model were prepared in the same manner. The fermentations in the other four models were
all natural, i.e., without inoculation with starters. The duration of the fermentation in the six models
was approximately 45 days, and proceeded at room temperature (20–25 ◦C). The liquids of the six
models were stored in the same jar type (except for the sb model, which was performed in the same
flask as that used for fermenting), up to 256 days at room temperature (16–20 ◦C). For the analysis,
each model was prepared in duplicate and the samples were collected at the indicated time points,
in triplicate (5 mL per replicate). All samples were stored in a refrigerator at –80 ◦C for furaneol tests.
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4.4. Enzymatic and Thermal Acidic Hydrolysis of Furaneol Glucosides

The quantity of furaneol released from glucosides during Msalais-making was analyzed in grape
juice (Sgj) and in selected samples of the Sj2 simulated model (Figure 2), by enzymatic and thermal
acidic hydrolysis. Before the hydrolysis, the samples were prepared as follows. A solid-phase extraction
column Amberlite XAD-2 was activated by washing with 10 mL of methanol, followed by 10 mL of
distilled water; 2 mL of sample was then loaded. Next, 2 mL of water was passed through the column
to elute polar low-molecular weight compounds, such as sugars and acids; 5 mL of dichloromethane
was then passed through the column to remove free aroma substances. The bound glucosides were
eluted with 20 mL of methanol and collected in a 50-mL round-bottom flask. The eluent flow rate
was maintained at 2 mL/min throughout the solid-phase extraction. The collected material was
dried using a rotary vacuum evaporator at 30 ◦C for 30 min. For the enzymatic digestion, the dried
material containing the bound glucosides was fully dissolved in 10 mL of citric acid buffer (2 M, pH 5),
which was then transferred to two 10-mL centrifugation tubes (4.9 mL in each tube). Next, 100 µL of
glycosidase AR 2000 (100 g/L) was added, and the enzymatic hydrolysis allowed to proceed for 16 h
in a water bath at 40 ◦C. For the acid hydrolysis, the dried bound glucosides were fully dissolved in
10 mL of citric acid buffer (2 M, pH 4.0), and incubated for 1 h in a water bath at 100 ◦C. Each sample
was prepared in triplicate. The resultant samples were analyzed by HPLC (Section 4.5).

4.5. HPLC Analysis

Furaneol content was analyzed using an LC-20AB Shimadzu Series HPLC (Shimadzu Technologies,
Shanghai, China) equipped with a quaternary pump, an auto-sampler injection system, an Ultimate
XB-C18 column (250 × 4.6 mm, 5 µm, Shimadzu, Japan), a degasser, a photo-diode array detector
(PDA-M20A), and a UV/VIS detection set to 286 nm. The system was controlled using a Shimadzu Chem
Station for Windows (Shimadzu Technologies). To detect furaneol, HPLC analysis was conducted,
with methanol/0.5% formic acid solution (v/v) as the mobile phase, and the following methanol flow
gradient: 15/85—2 min, 50/50—24 min, 100/0—27 min, 100/0—29 min, and 15/85—33 min. The operating
conditions were as follows: flow rate of 0.8 mL/min; 33-min run; column temperature of 35 ◦C; and
injection volume of 10 µL. A calibration curve (0.076–1200 mg/L, R2 = 0.9992) with 0.076 limit of
quantification was prepared using a furaneol standard (Sigma-Aldrich). The samples were injected
in duplicate.

4.6. Statistical Analysis

The data were analyzed by one-way analysis of variance (ANOVA) with Tukey’s test (mean values
comparison) to identify significant differences between samples by using SPSS 19.0 (IBM Corporation,
Somers, NY, USA). The value of p < 0.05 was considered significant. Histograms of furaneol content
in different models (mean ± SD from triplicate experiments) were also generated by using SPSS 19.0.
Furaneol formation pathways were drawn by using ChemDraw Pro 17 (Cambridge Soft Corporation,
Cambridge, MA, USA).

5. Conclusions

In the current study, the furaneol content of analyzed Msalais wines was shown to be high, between
27.59 ± 0.49 mg/L and 117.60 ± 0.24 mg/L. Furaneol is extensively formed during Msalais-making,
mainly at the fermentation stage, and via multiple pathways. These pathways involve the Maillard
reaction, chemical hydrolysis, enzymatic release of bound furaneol, and biosynthesis from the Maillard
products. The presented findings might inform ways to improve the Msalais technology, e.g., by using
furaneol as an important indicator of wine quality.
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