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Abstract

Although research in the field of cultural psychology and cultural neuroscience has revealed that culture is an important factor related
to the human behaviors and neural activities in various tasks, it remains unclear how different brain regions organize together to
construct a topological network for the representation of individual’s cultural tendency. In this study, we examined the hypothesis that
resting-state brain network properties can reflect individual’s cultural background or tendency. By combining the methods of resting-
state magnetic resonance imaging and graph theoretical analysis, significant cultural differences between participants from Eastern
andWestern cultures were found in the degree and global efficiency of regionsmainly within the default mode network and subcortical
network. Furthermore, the holistic–analytic thinking style, as a cultural value, provided a partial explanation for the cultural differences
on various nodal metrics. Validation analyses further confirmed that these network properties effectively predicted the tendency of
holistic–analytic cultural style within a group (r=0.23) and accurately classified cultural groups (65%). The current study establishes
a neural connectome representation of holistic–analytic cultural style including the topological brain network properties of regions in
the default mode network, the basal ganglia and amygdala, which enable accurate cultural group membership classification.
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Introduction
Research in cultural neuroscience has revealed that cultural
behaviors or values are closely associated with neural activities
(Rule et al., 2013; Han andMa, 2014; Sasaki and Kim, 2017). Engag-
ing in tasks related to a culture repeatedly will create culturally
patterned neural activities andwill be reflected by the anatomical
or functional characteristics of the brain (Kitayama and Tomp-
son, 2010; Kitayama and Uskul, 2011). In particular, Kitayama
et al. (2017) discovered that among Japanese individuals, the brain
volume of the orbitofrontal cortex is negatively correlated with
interdependence, which is an important cultural value among
East Asians (Markus and Kitayama, 1991). Another study also
found that independence is associated with an increase in gray-
matter volume in regions such as the ventromedial prefrontal
cortex (vmPFC), right dorsolateral prefrontal cortex (DLPFC) and
right rostrolateral prefrontal cortex (RLPFC) among Chinese indi-
viduals (Wang et al., 2017). These studies indicate that typical
cultural values are interrelated with the structural features of

the brain, and the neural mechanism of cultural expression may
involve different brain regions.

In recent decades, using functional magnetic resonance imag-

ing (fMRI) methods, researchers have also explored how culture

affects the functional properties of the brain. During different

culturally related tasks, different brain activation patterns have

been found across cultural groups. For example, Zhu et al. (2007)

discovered that the overlapping neural correlates of reflection on

oneself and others close to the self are specific to Chinese individ-

uals and are not shared byWesterners. Research has also revealed

that in self-judgment tasks, Caucasian Americans exhibit higher

levels of activation in the bilateral thalamus, right putamen
(PUT), bilateral cuneus, right insula, bilateral cerebellum and
right superior frontal gyrus, whereas native Japanese individuals
show greater activation in the left middle temporal gyrus (Chiao
et al., 2009). Likewise, self-judgment stimulates greater neural
medial prefrontal cortex ( activity in the medial prefrontal cor-
tex (mPFC) among Danish participants but greater neural activity

Received: 10 March 2021; Revised: 25 May 2021; Accepted: 23 June 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0003-1067-7560
https://orcid.org/0000-0003-3350-5104
mailto:ljc520ida@163.com
https://creativecommons.org/licenses/by/4.0/


S. Luo et al. 173

in the temporoparietal junction (TPJ) among Chinese participants
(Ma et al., 2014). In addition, regarding the aspect of emotion
recognition, emerging evidence also highlights the crucial role
of culture in modulating the amygdala (AMYG) response. For
example, greater AMYG activation was found in processing fear
expressed by members of the same cultural group (Chiao et al.,
2008). Other studies also revealed that Asian participants showed
a stronger AMYG response to Caucasian emotional faces than
European participants did, and a longer duration of stay in a for-
eign culture is associated with a lower level of AMYG activation
among Asians (Derntl et al., 2009, 2012). Additionally, in object
or emotion-processing tasks, significant cultural differences were
found in the prefrontal cortex, TPJ and subcortical areas (e.g. ven-
tral striatal; Gutchess et al., 2006; de Greck et al., 2012; Park et al.,
2016, 2018). A quantitative meta-analysis (Han and Ma, 2014)
summarized that in social or nonsocial processes, distinct neu-
ral network activities are shown in East Asians and Westerners.
Activity exhibited by the key regions in the social brain network,
such as the mPFC, TPJ, anterior cingulate cortex (ACC) and ante-
rior insula, are related to culture. The study also found that in
social cognitive or affective tasks, East Asians show increased
brain activity in the regions associated with the functions of the-
ory of mind, self-perception and self-control/emotion regulation,
while Westerners show enhanced activities in the regions that
are important for the functions of self-reflection, socioemotional
processing and emotion/empathy responses (Han and Ma, 2014).

The abovementioned findings suggest that culture modulates
the functional properties of the brain, and the involvement of dif-
ferent brain regions suggests that the representation of culture
may depend on the brain network. Noticeably, regions that have
been revealed to have cultural differences are mainly distributed
in subcortical areas (e.g. AMYG and ventral striatal) and in the
default mode network (DMN; e.g. mPFC, TPJ and ACC; Andrews-
Hanna et al., 2010). Additionally, previous findings were obtained
mostly by comparing brain activation across cultural groups dur-
ing specific tasks; whether people from different cultures have
distinct brain network properties or culturally patterned func-
tional properties in a general state remains unknown. In this
study, we address this gap by comparing spontaneous brain activ-
ity measured by the resting-fMRI (R-fMRI) method. Compared
to task-based fMRI, which illustrates the function of different
brain regions during specific tasks (Shimony et al., 2009), R-fMRI
enables us to examine the functional connections between differ-
ent regions in a general state (Shen et al., 2010) and helps identify
the functional architecture and the resting networks of the brain
(Lee et al., 2013). Moreover, research has shown that R-fMRI sig-
nals can effectively predict people’s psychological tendencies and
can be used to clarify different types of neurologic and psychiatric
diseases (Chen et al., 2011; Pizoli et al., 2011; Baur et al., 2013; Lee
et al., 2013).

Further research using R-fMRI also proposed the concept of the
human connectome, which emphasizes the importance of view-
ing the brain as a complex, interconnected network with different
regions working cooperatively (Sporns et al., 2005; van den Heuvel
and Hulshoff Pol, 2010; Sporns, 2013). To unravel the human con-
nectome, rational informative mapping of the brain is equally
important (Fornito et al., 2013). It has been shown that graph the-
ory, which abstracts the brain as a graph with different brain
regions as nodes and their interrelationships as edges, is appro-
priate for analyzing brain connectivity data (i.e. correlation data
collected with R-fMRI; He and Evans, 2010; Braun et al., 2012; For-
nito et al., 2013) and is an effective way to understand topological
brain network characteristics (Bullmore and Sporns, 2009). Graph

theoretical analysis also provides different metrics for measur-
ing the nodal functional properties in the whole-brain network,
which extends the understanding of regional activationmeasured
by task-based fMRI.

In the current study, we investigated the cultural represen-
tation in functional brain networks through R-fMRI and graph
theoretical analysis. We first examined whether people from dif-
ferent cultural backgrounds (namely, Westerners vs Chinese indi-
viduals) exhibit diverse functional properties in different brain
regions. For people from Western cultural backgrounds, who
are more likely to endorse an independent construal of self and
emphasize the internal attributes of self (Markus and Kitayama,
1991), brain regions that are involved in self-related process-
ing may be relatively important in the brain network. Thus, we
hypothesized that regions in the DMN (e.g. mPFC), which have
been revealed as crucial areas for maintaining independent self-
construal (Han et al., 2008; Kitayama and Park, 2010; Kitayama
et al., 2017; Wang et al., 2017) and self-consciousness (Qin and
Northoff, 2011; Davey et al., 2016), would be crucial nodes in
Westerners’ brain networks. In contrast, for East Asians, who are
more interdependent and underline harmonious relationships
with others (Markus and Kitayama, 1991), brain regions that con-
tribute to social information processing may be more critical in
their brain network. As emotion is an essential aspect of social
information that influences social interaction (Van Kleef, 2009),
previous work provides abundant evidence that culture affects
emotional processing. For instance, past research has suggested
that East Asians or people who aremore interdependent aremore
sensitive to emotional information (Ishii et al., 2011; Ma-Kellams
and Blascovich, 2012). Moreover, Kitayama et al. (2006) found
that Japanese people experience more socially engaging emotions
(e.g. friendly feelings, respect and shame), whereas Americans
experience more socially disengaging emotions (e.g. superiority,
anger and frustration). Tsai et al. (2006) discovered that Euro-
pean Americans place a higher value on high-arousal positive
emotions, while Chinese individuals are more disposed to expe-
riencing low-arousal positive emotions. Combined with studies
that have revealed that the AMYG and subcortical areas (e.g.
basal ganglia) are pivotal in processing social information and
emotions (LeDoux, 1992; Johnson, 2005; Bhanji and Delgado,
2014; McFadyen et al., 2020) and that the activation of the AMYG
and subcortical areas is modulated by culture (Gutchess et al.,
2006; Chiao et al., 2008; de Greck et al., 2012; Park et al., 2016,
2018), we hypothesized that the AMYG and subcortical areas
would be important nodes in the brain networks of Chinese
individuals.

Furthermore, we explored whether cultural differences in
brain network properties were interrelated with a typical cul-
ture value. We focused on the holistic–analytic thinking style,
which is a crucial cultural value that affects an individual’s
cognitive processes (e.g. attention) and social interaction. Abun-
dant evidence shows that people from East Asian cultures
(e.g. China, Korea and Japan) tend to exhibit holism in per-
ception and cognition representation, which is characterized by
paying attention to both a focal object and the background and
comprehending behavior and causality according to the relation-
ships between specific elements, whereas people from Western
culture are more likely to process information in a more ana-
lytical way, characterized by paying more attention to a focal
object and understanding behavior and causality according to
established rules or attributes rather than corresponding con-
texts (Morris and Peng, 1994; Choi et al., 1999, 2003; Nisbett and
Miyamoto, 2005). Researchers suggest that cultural differences
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in holistic–analytic thinking styles are rooted in how social rela-
tions are organized in different cultures. In interdependent social
environments, individuals may encounter various situations in
which social relationships should be considered, behave or make
attributions according to different contexts and reconcile incon-
sistencies to promote social harmony (Cheon et al., 2018). Through
long-term cultural practices, a holistic thinking style will be inter-
nalized and reinforced in an interdependent culture (Kitayama
et al., 2009). In contrast, independent social environments may
promote the development of analytic thinking. Based on research
that has revealed that psychological activities associated with
analytic thinking, such as rumination (Watkins and Teasdale,
2001; Rimes and Watkins, 2005; Moulds et al., 2007) and focal
object processing (compared to background processing; Kitayama
et al., 2003; Nisbett andMasuda, 2003; Senzaki et al., 2014), involve
different regions in the DMN (Gutchess et al., 2006; Hedden et al.,
2008; Berman et al., 2011; Zhou et al., 2020), we hypothesized that
the importance of DMN nodes in the brain network (measured by
graph metrics) would be associated with analytic thinking. Com-
pared to analytic thinking, holistic thinking increases attention
to the relationship between a focal object and its contexts (Nis-
bett and Miyamoto, 2005). Combining cross-cultural studies that
showed that holistic thinkers are more proficient in integrating
contradictory emotional signals (Masuda et al., 2008; Goto et al.,
2010; Ishii et al., 2010) and neuroscience studies that revealed
that AMYG integrates emotional expression cues (Cristinzio et al.,
2010; Sato et al., 2010) and that subcortical areas (e.g. basal gan-
glia) are crucial areas for attention switching (Casey et al., 2004;
Van Schouwenburg et al., 2010, 2014), we hypothesized that holis-
tic thinking would emphasize the role of AMYG and subcortical
areas. Finally, we explored the feasibility of using functional met-
rics as a cultural fingerprint to predict the tendency toward a
holistic–analytic thinking style and to classify individuals into
cultural groups.

Study 1
Study 1 sought to examine cultural differences in graph met-
rics across the functional brain network. Based on R-fMRI
data, a functional brain network was constructed for each
participant, and graph metrics were calculated accordingly.
Through comparison of graphmetrics across two cultural groups,
we found that East Asians (i.e. Chinese individuals) and Western-
ers have distinct brain networks.

Method
Participants.
Study 1 gathered R-fMRI data from both Chinese and Western
samples. The Chinese sample contained 306 healthy adults (91
females; age=21.05±2.43 years). R-fMRI data of the Western

sample were adopted frommulticenter datasets and included 315
healthy adults (168 females; age=31.93±15.61 years). The West-
ern sample was selected from the 1000 Functional Connectomes
Project dataset (FCP, www.nitrc.org/projects/fcon_1000/, Biswal
et al., 2010). We selected datasets that match the TR and magnet
field strengths of the Chinese sample. Demographic details and
scanning parameters of each dataset are provided in Table 1.

Image acquisition.
Scanning parameters for data from the FCP are presented in
Table 1. The Chinese data were acquired using a 3.0T scan-
ner with a standard head coil. Functional images were acquired
using T2-weighted, gradient-echo and echo-planar imaging (EPI)
sequences sensitive to BOLD signals (64× 64×32matrix with
3.75×3.75×5 mm3 spatial resolution, repetition time=2000ms,
echo time=30ms, flip angle=90◦ and field of view=24×24 cm).
A high-resolution T1-weighted structural image (512×512×180
matrix with a spatial resolution of 0.47×0.47×1.0 mm3, repe-
tition time=8.204ms, echo time=3.22ms and flip angle=12◦)
was acquired before the functional scans. Participants underwent
a 5min scan and were instructed to relax and keep their eyes
closed but to not fall asleep during scanning.

Data preprocessing.
All functional imaging data were preprocessed using Statistical
ParametricMapping 8 ( http://www.fil.ion.ucl.ac.uk/spm/) and the
Data Processing Assistant for Resting-State fMRI (Yan and Zang,
2010). Before data processing, we checked the quality of the
R-fMRI data obtained from the FCP, and 43 participants with low-
quality raw images were excluded. The first five volumes of each
participant’s resting-state data (except for the Dallas dataset)
were discarded to reduce the effect of unstable BOLD signals at
the beginning of scanning. Image data of each participant were
truncated to 115 timepoints to coordinate with the data with
the fewest timepoints among the datasets. The remaining fMRI
data were slice acquisition corrected according to the number of
slices and the slice order of each dataset. Head motion correc-
tion was conducted thereafter using head motion criteria of 3◦

and 3mm. Six Chinese participants and three Westerners were
excluded due to excessive head motion. fMRI data were then
spatially normalized to the standard EPI template in Montreal
Neurological Institute (MNI) space with a resampled resolution of
3× 3×3 mm3 and spatially smoothed using a 4mm Gaussian ker-
nel. Normalization was conducted based on EPI images because
several studies have suggested that this approach increases reg-
istration accuracies and is more accurate than normalization
based on T1-weighted images (Calhoun et al., 2017; Dohmatob
et al., 2018; Faghiri et al., 2018; Weis et al., 2020). Detrending and

Table 1. Demographic details and scan parameters of each dataset from the FCP

N Sex Age TR Slices Timepoints

AnnArbor_a 3T 25 22M/3F 13–40 2 40 295
Bangor 3T 20 20M/0 F 19–38 2 34 265
Dallas 3T 24 12M/12 F 20–71 2 36 115
ICBM 3T 86 41M/45F 19–85 2 23 128
Newark 3T 19 9M/10F 21–39 2 32 135
NewYork_a 3T 84 43M/41 F 7–49 2 39 192
NewYork_b 3T 20 8M/12F 18–46 2 33 175
Oxford 3T 22 12M/10 F 20–35 2 34 175
PaloAlto 3T 17 2M/15F 22–46 2 29 235

https://www.nitrc.org/projects/fcon_1000/
http://www.fil.ion.ucl.ac.uk/spm/
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temporal filtering (0.01–0.08Hz) were then applied to remove low-
frequency drift and high-frequency physiological noise. Finally,
24 head motion parameters (Friston et al., 1996) and two potential
nuisance signals, including cerebrospinal fluid and white mat-
ter, were regressed out from time courses at each voxel. Given
that studies have suggested that global signal regression is a con-
troversial step that may induce artifactual negative correlations
(Fox et al., 2009; Murphy et al., 2009; Weissenbacher et al., 2009;
Anderson et al., 2011; Saad et al., 2012; Nalci et al., 2017) and that
global signals include significant neural correlates (Schölvinck
et al., 2010; Wong et al., 2013; Wen and Liu, 2016) and may provide
meaningful neurobiological information (Yang et al., 2014), we did
not regress the global signal out. The preprocessing decreased the
sample to 269 Westerners and 300 Chinese participants for the
following analyses.

Graph theoretical analysis
Network construction. To define the nodes of the network for
further processing, we employed the Automated Anatomical
Labeling atlas (Tzourio-Mazoyer et al., 2002) to segment each par-
ticipant’s images into 90 cortical and subcortical regions of inter-
est. To estimate the network edges, we first calculated Pearson
correlation coefficients between the regional mean time series of
all possible pairs of nodes, resulting in a 90×90 correlationmatrix
for each participant. In our subsequent analysis, individual cor-
relation matrices were converted into binary matrices Aij = [aij]
using a predefined threshold. In binary matrices Aij, aij was set to
1 if the value of the correlation between regions i and j was larger
than the threshold and 0 otherwise. Before this process, we set
the negative correlations to zero and retained the positive corre-
lations because negative correlations may lead to low test–retest
reliability (Wang et al., 2011).

Network analysis. Instead of selecting a single threshold for
correlation analyses, we applied sparsity thresholds S to all cor-
relation matrices. S was computed as the ratio of the number of
existing edges divided by the maximum possible number of edges
in a network (Bullmore and Bassett, 2011). This approach was per-
formed by applying a specific correlation coefficient threshold for
each participant. Therefore, all resulting matrices were normal-
ized to have the same number of edges, which minimized the
effects of possible discrepancies in the overall correlation strength
between groups (Achard and Bullmore, 2007; He et al., 2009).
We applied a threshold range of 0.10≤ S≤0.30 to each binary
matrix, which was similar to previous research (Khundrakpam
et al., 2017). Nodal network topological properties were calculated
under each threshold. Moreover, we calculated the area under
the curve (AUC) for each metric over the sparsity threshold range
to provide a summary of the topological characterization of the
brain network. To determine the association between culture and
the importance of different brain regions, we focused on metrics
concerning each node’s effect on the overall brain network. These
metrics included the degree Ki and the global efficiency Ei_global.

The degree of each node, Ki, is defined as the number of direct
connections between node i and other nodes in the network and
thus reflects the number of direct neighbors of node i (Bullmore
and Sporns, 2009). The nodal global efficiency, Ei_global, is the
inverse of the harmonic mean of the length between node i and
all other nodes in the network.

Ei_global =
1

N− 1

∑
j∈G
j̸=i

1

min
{
Li,j

}

The Gretna toolbox (http://www.nitrc.org/projects/gretna/,
Wang et al., 2015) was used to calculate the functional connec-
tivity strength matrices (r-score matrices and z-score matrices)
and to conduct analyses of graph theoretical metrics. The group
differences (Chinese individuals vs Westerners) in the AUC of the
degree and global efficiency of each node were first estimated by
conducting amultivariate analysis of covariance (MANCOVA) and
an analysis of covariance (ANCOVA), which included headmotion,
sex, age and slice number as covariates. To account for multiple
comparisons of the AUC of nodal metrics (90 nodes here), false
discovery rate (FDR) correction was applied for MANCOVAs and
ANCOVAs separately. Nodes with significant cultural effects, as
revealed by MANCOCAs and ANCOVAs, were considered nodes
related to cultural differences between Westerners and Chinese
people.

Supplementary analyses.
To test the robustness of our findings, we also conducted supple-
mentary analyses to examine the potential influences of global
signals, negative correlations and different brain parcellations.

Results
We first examined the age and sex distributions among the
two cultural samples before fMRI data analysis. The distribu-
tion of age significantly differed across Westerners and Chinese
participants (30.11±14.60 vs 21.08±2.45 years, t(281.51)=10.02,
P<0.001). The sex ratio in the Western and Chinese samples also
differed significantly (χ2(1569)=28.62, P<0.001). Therefore, in
the MANCOVAs and ANVOVAs for assessing cultural differences
in each node’s degree and global efficiency, age and sex were
included as covariates.

The MANCOVAs revealed significant group differences in the
AUC of degree and global efficiency for 26 nodes (FDR corrected,
P<0.05; Figure 1, Table 2). These nodes included the bilat-
eral precentral gyrus (PreCG), left dorsal superior frontal gyrus
(SFGdor), bilateral supplementary motor area, left olfactory cor-
tex (OLF), bilateral mPFC, left dorsal anterior cingulate cortex
(DACC), right hippocampus (HIP), right parahippocampal gyrus
(PHG), bilateral AMYG, right inferior occipital gyrus (IOG), bilat-
eral precuneus (PCUN), left caudate (CAU), bilateral PUT, bilat-
eral pallidum (PAL), bilateral superior temporal pole (TPOsup),

Fig. 1. Results of the MANCOVA analyses of the AUC for the degree and
global efficiency.

http://www.nitrc.org/projects/gretna/
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Fig. 2. Results of ANCOVA analyses of the AUC for the degree and global
efficiency. West > East represents a significantly higher value among
Westerners; East >West represents a significantly higher value among
East Asians (i.e. Chinese individuals).

left middle temporal gyrus and bilateral middle temporal pole
(TPOmid) (Fs(2557)=4.57–21.78, ps=7.83×10−10–0.011).

The ANOVAs on the AUCs of degree of all nodes revealed
significant group differences in the bilateral PreCG, left SFG-
dor, left OLF, bilateral mPFC, right HIP, right PHG, bilateral
AMYG, right IOG, bilateral PCUN, left CAU, bilateral PUT, bilat-
eral PAL, right TPOsup and left TPOmid (FDR corrected, P<0.05;
Figure 2, Table 2). The degrees of bilateral PreCG, left SFGdor,

bilateral mPFC, bilateral PCUN and left CAU were significantly
higher among Westerners (Fs(1558)=9.34–34.88, ps=6.08×10−9–
0.002). The degrees of the left OLF, right HIP, right PHG, bilateral
AMYG, right IOG, bilateral PUT, bilateral PAL, right TPOsup and
left TPOmid were, however, significantly higher among Chinese
participants (Fs(1558)=6.76–41.81, ps=2.20×10−10–0 .010).

The ANOVAs on the AUCs of global efficiency of all nodes
demonstrated significant group differences in the bilateral PreCG,
left SFGdor, left OLF, bilateral mPFC, left DACC, right HIP, bilat-
eral PHG, bilateral AMYG, bilateral IOG, bilateral PCUN, bilateral
PUT, bilateral PAL, bilateral TPOsup and bilateral TPOmid (FDR
corrected, P<0.05; Figure 2, Table 2). Westerners showed higher
global efficiency in the bilateral PreCG, left SFGdor, bilateral
mPFC, and bilateral PCUN (Fs(1558)=8.95–26.26, ps=4.11×10−7–
0.003), while Chinese participants showed significantly higher
global efficiency in the left OLF, left DACC, right HIP, bilat-
eral PHG, bilateral AMYG, bilateral IOG, bilateral PUT, bilateral
PAL, bilateral TPOsup and bilateral TPOmid (Fs(1558)=6.59–38.27,
ps=1.19×10−9–0.011).

Supplementary analyses to address the potential effects of
global signals, negative correlations and brain parcellations
revealed similar results (see Supplementary Tables S1–S3).

To summarize, using MANCOVAs and ANCOVAs, we discov-
ered that people from different cultural groups have distinct
characteristics in the topological features of their brain networks.
Nineteen nodes showed consistent cultural differences in both
degree and global efficiency metrics. In general, the nodes dis-
tributed in the DMN (e.g. bilateral mPFC and PCUN) were more
important in Westerners’ brain network, whereas nodes dis-
tributed in subcortical areas (e.g. AMYG and PUT) were more
important for Chinese participants.

Study 2
Although the results of Study 1 suggest group differences in the
organization of functional brain networks between Chinese indi-
viduals and Westerners, it remains unclear how graph metrics
and the relationships between nodes are associated with cultur-
ally specific cognitive styles such as the holistic–analytic thinking
style. Therefore, based on the 19 nodes identified in Study 1, Study
2 further examined whether these nodes’ degree, global efficiency
and their respective functional connectivity with the other nodes
were associated with a holistic–analytic thinking style. Finally, we
conducted intrasample and cross-sample validation analyses to
investigate the efficiency of using culturally related brain network
properties to predict individuals’ holistic–analytic thinking style
and cultural background.

Method
Participants.
Data from the Chinese sample in Study 1 were used.

Measure.
Participants completed the Analysis-Holism Scale (AHS) to mea-
sure analytic versus holistic thinking tendencies (Choi et al.,
2007) after scanning. The scale measures four factors involved
in analytic–holistic thinking style: causality, attitude toward con-
tradictions, perception of change and locus of attention. A higher
composite score indicates a stronger inclination toward the holis-
tic thinking style, whereas a lower composite score indicates a
stronger inclination toward the analytic thinking style.

Data preprocessing and network analysis.
The procedures for data preprocessing and network metric anal-
yses were similar to those in Study 1. Because each Chinese
participant was scanned for 5min (150 timepoints), after exclud-
ing the first 5 timepoints, 145 timepoints were used for data
preprocessing and network analysis.

Data analyses
Partial correlation analyses. In the first step, we investigated
the relationship between the AUCs of the degree and global effi-
ciency of the 19 nodes (identified in Study 1) and the AHS score.
We conducted partial correlation analyses, controlling for the
effects of sex, age and head motions. For the nodes that had at
least one network metric significantly correlated with the AHS
score, we further calculated the functional connectivity between
the nodes and the other 89 nodes in the network separately. The
functional connectivity was calculated through the correlation of
the time series between node pairs. A higher score indicates a
higher functional connectivity between two nodes. Additionally,
we conducted partial correlation analyses to explore the relation-
ship between the functional connectivity of these nodes and the
AHS score.

K-fold cross-validation. In the procedures above, the AUC of
the degree of seven nodes and the AUC of the global efficiency
of three nodes were significantly correlated with the AHS score.
Thus, these network metrics were used to establish cultural rep-
resentation models for predicting individuals’ holistic thinking
style (Study 2 sample; intrasample analysis) and cultural group
(Study 1 sample; cross-sample analysis). For the intrasample
analysis, we tested whether the metrics could be used to predict
the AHS score in the Chinese sample, and for the cross-sample
analysis, we explored whether these metrics could be used to
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classify Westerners and Chinese individuals using the data from
Study 1.

Intrasample validation analysis. Before conducting the
intrasample validation analysis, we unified the correlation
directions between the AHS score and the nodal degree as well
as the global efficiency. The unified metrics were averaged to two
variables for each participant whose data was included in Study
2. Tdeg represents the mean of the degree of seven nodes, and Teg

represents themean of the global efficiency of three nodes. K-fold
cross-validation (K=10) was conducted to examine the predic-
tive power of Tdeg and Teg in predicting the AHS score. In 10-fold
cross-validation, data were first randomly separated into 10-folds
and then repeated 10 times to use 9-folds for training (i.e. train-
ing set) and a left fold for validation (i.e. test set). The training
set was used to fit a linear regression model between the AHS
score and the two combined variables (i.e. Tdeg and Teg). Sub-
sequently, the linear regression model was applied to the test
set to generate predicted AHS scores. After this iterative process,
the predictive power was assessed by calculating the correlation
between the predicted and observed AHS scores. The statistical
significance was also estimated by comparison to the null dis-
tribution generated by the permutation test. In the permutation
test, we randomly assigned the AHS scores to different partici-
pants and repeated the 10-fold cross-validation procedures 1000
times to generate a null distribution of the predictive power. We
evaluated that whether the observed predictive power was signif-
icantly higher than the 95% confidence interval (CI; generated by
recording the values in the 25th and 975th percentile positions) of
the null distribution.

Cross-sample validation analysis. In the cross-sample valida-
tion analysis, we first extracted the 10 metrics in the data
from Study 1 for Westerners and Chinese participants, and we
combined the 10metrics into two variables representing themean
of the degree of seven nodes (Tdeg) and the mean of the global
efficiency of three nodes (Teg). To examine whether these two
variables could be used to classify Westerners or Chinese par-
ticipants, we conducted a prediction analysis based on logistic
regression using the two combined variables as predictors and
the cultural background (0 for Westerners and 1 for the Chinese
individuals) as the dependent variable. Similarly, 10-fold cross-
validation were conducted. The training set was used to generate
a logistic regression model, which was further applied to the test
set to generate predicted logits. With the cutoff set at 0.5, pre-
dicted logits higher than 0.5 were categorized as Chinese and
those less than 0.5 were linked to Westerners. The predictive
power was assessed by averaging the classification accuracies.
Similarly, the statistical significance of the predictive power was
determined through a permutation test. In this process, we ran-
domly assigned Westerner and Chinese labels to each participant
and repeated the 10-fold cross-validation. A null distribution of
accuracy was generated through a permutation conducted 1000
times, and we evaluated whether the probability of obtaining
the resulting accuracy was higher than the 95% CI of the null
distribution.

Connectome-based predictive modeling. Next, we adopted a
method in functional brain imaging analysis—connectome-based
predictive modeling (Finn et al., 2015; Rosenberg et al., 2016)—to
test whether using the degree and global efficiency of all nodes
to generate predictors would achieve a higher predictive power.
We first conducted intrasample 10-fold cross-validation based on
the degree and global efficiency of all nodes. In each iteration, the

correlations between the nodal metrics (i.e. each node’s degree
and global efficiency) and the AHS score were calculated based
on the data from the training set. Nodal metrics significantly
correlated with the AHS score (P<0.05) were selected and fur-
ther combined into two variables (Tdeg and Teg) representing the
means of degree and global efficiency, respectively. The two rep-
resentative variables were then used to build a linear regression
model for predicting the AHS score. The two combined variables
from the test set were then extracted and entered into the model
to generate the predicted AHS scores. The predictive power was
also assessed by calculating the correlation between the predicted
and observed AHS scores, and its significance level was also esti-
mated by comparison to the null distribution generated by the
permutation test.

Finally, we summarized the significant metrics in each iter-
ation (in the previous step). Metrics that correlated with the
AHS score 10 times were selected and combined into two vari-
ables (Tdeg and Teg) using the data from Study 1 for each
participant. Consistent with the previous cross-sample analy-
sis, we conducted 10-fold cross-validation analysis using logistic
regression, with the two merged variables as the predictors and
the cultural background as the dependent variable. The proce-
dures and the assessment of classification were the same as
before.

Meta-analytic decoding. To identify the psychological func-
tions related to the important nodes in the prediction model
of the holistic–analytic cultural style, we decoded the images
of the important nodes and the remaining nodes using the
Neurosynth Image Decoder (Yarkoni et al., 2011). The Neu-
rosynth Image Decoder enabled us to compare specific images
to images associated with various psychological constructs in the
Neurosynth database (version 0.7). TheNeurosynth database con-
tains the activation data for 14 371 studies and the feature infor-
mation for over 3200 term-based features. Nodes were decoded by
calculating the voxelwise Pearson correlation between the nodes’
image files and the meta-analytical image file belonging to each
feature term.

Results
Because Study 1 revealed consistent cultural differences in the
metrics of 19 nodes, we further investigated whether the met-
rics were associated with holistic–analytic cognitive style across
individuals in the Chinese sample. The partial correlation analy-
ses revealed significant associations between the AHS score and
10 metrics (FDR corrected, P<0.05). The degrees of the left SFG-
dor, right mPFC and bilateral PCUN were negatively correlated
with the AHS score (rs=−0.20–(−0.15), ps=1.27×10−3–0.02). The
degrees of the bilateral AMYG and the left PUT were positively
correlated with the AHS score (rs=0.17–0.20, ps=1.27×10−3–
7.94×10−3; Figure 3, Table 3). Likewise, the global efficiency of
the left SFGdor was negatively correlated with the AHS score
(r=−0.20, p=1.05×10−3). The global efficiency of the right AMYG
and the left PUT were positively correlated with the AHS score
(rs=0.17, 0.17, ps=5.19×10−3, 7.20 ×10−3; Figure 3, Table 3). We
also conducted the partial correlation analyses following the sup-
plementary analyses in Study 1 and found similar patterns (see
Supplementary Tables S4–S6).

We further tested whether these nodes’ functional connec-
tivity with the other 89 nodes was associated with the holis-
tic thinking style. The results (FDR corrected, P<0.05) showed
that the functional connectivity strength from the left SFG-
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Fig. 3. Partial correlations between the AUC of degree and global efficiency and the AHS.

Table 3. Partial correlation between network metrics and the AHS

Degree Global efficiency

Nodes r P R P

L.PreCG −0.03 0.61 −0.03 0.66
R.PreCG 0.07 0.27 0.04 0.50
L.SFGdor −0.20* 1.27×10−3 −0.20* 1.05×10−3

L.OLF 0.01 0.90 0.02 0.75
L.mPFC −0.08 0.17 −0.10 0.12
R.mPFC −0.16* 0.01 −0.15 0.02
R.HIP 0.11 0.08 0.06 0.30
R.PHG −0.04 0.54 −0.04 0.47
L.AMYG 0.17* 7.94×10−3 0.16 0.01
R.AMYG 0.17* 5.40×10−3 0.17* 5.19×10−3

R.IOG 0.00 0.94 −0.03 0.63
L.PCUN −0.15* 0.02 −0.15 0.02
R.PCUN −0.15* 0.01 −0.12 0.05
L.PUT 0.20* 1.27×10−3 0.17* 7.20×10−3

R.PUT 0.13 0.04 0.10 0.10
L.PAL 0.13 0.04 0.11 0.07
R.PAL 0.00 0.96 0.03 0.61
R.TPOsup 0.12 0.07 0.11 0.08
L.TPOmid 0.05 0.40 0.10 0.10

Abbreviations: L. PreCG, left precental gyrus; R. PreCG, right precental gyrus;
L. SFGdor, left dorsal superior frontal gyrus; L. OLF, left olfactory cortex; L.
mPFC, left medial prefrontal cortex; R. mPFC, right medial prefrontal cortex;
R. HIP, right hippocampus; R. PHG, right parahippocampal gyrus; L. AMYG,
left amygdala; R. AMYG, right amygdala; R. IOG, right inferior occipital gyrus;
L. PCUN, left precuneus; R. PCUN, right precuneus; L. PUT, left putamen; R.
PUT, right putamen; L. PAL, left pallidum; R. PAL, right pallidum; R. TPOsup,
right superior temporal pole; L. TPOmid, left middle temporal pole.
*P<0.05, FDR corrected.

dor to 27 nodes showed significant negative correlations with
the AHS score (rs=−0.24–(−0.15), ps=3.90×10−5–0.01; Figure 4,
Supplementary Table S7). Similarly, functional connectivity
between the right mPFC and 26 nodes (rs= −0.24–(−0.15),
ps=6.00×10−5< ps<0.01; Figure 4, supplementary results Table
S8), functional connectivity between the left PCUN and 12
nodes (rs= −0.21–(−0.16), ps=2.35×10−4 < ps<6.64×10−3; Figure
4, Supplementary Table S9) and functional connectivity between
the right PCUN to 3 nodes (rs=−0.21–(−0.19), ps=5.27×10−4–
1.53×10−3; Figure 4, Supplementary Table S10) was also nega-
tively correlated with the AHS score. There was no significant

correlation between the AHS score and the functional connectiv-
ity of the bilateral AMYG or left PUT.

We found that seven nodes’ AUCs for degree and three nodes’
AUCs for global efficiency were significantly correlated with the
AHS score. We then examined whether these metrics could be
used as effective predictors for holistic thinking style or cultural
background. We merged the AUCs for the degree of the left SFG-
dor, right mPFC, bilateral PCUN, bilateral AMYG and left PUT
and the AUCs for the global efficiency of the left SFGdor, right
AMYG and left PUT into two combined variables in the datasets
of Study 1 and Study 2. In the intrasample 10-fold cross-validation
analysis, the correlation between the predicted and observed
scores was significant (r=0.23, P=1.33×10−4; Figure 5A). The
permutation test revealed a null distribution of the correlation
coefficients with a 95% CI [−0.22, 0.12], indicating that the pre-
dictive power was significantly higher than the chance level.
In the cross-sample validation analysis, we used 10-fold cross-
validation based on logistic regression analysis, and the overall
accuracy was 64.9% (60.22% of the Westerners and 69.00% of
the Chinese participants were classified correctly). The permu-
tation test revealed a null distribution of the overall accuracy,
with a 95% CI [49.4%, 54.8%], which indicated that the obtained
overall accuracy of the 10-fold cross-validation was significant
(Figure 5B).

In the validation analyses that adopted the method
from connectome-based predictive modeling (Finn et al., 2015;
Rosenberg et al., 2016) and involved all nodemetrics (without prior
knowledge), intrasample 10-fold cross-validation showed that the
correlation between the observed and predicted scores was signif-
icant (r=0.28, P =4.20×10−6; Figure 5C). The 95% CI of the null
distribution of the predictive power was [−0.31, 0.15], indicating
that the obtained predictive power was significantly higher than
the chance level. Using Fisher r-to-z transformation, we found
no significant difference between the current predictive power
and the former predictive power based on 10 metrics (P=0.29).
In the cross-sample cross-validation, the degree of 17 nodes and
the global efficiency of 15 nodes, which were correlated with the
AHS score 10 times in the previous step, were used to generate
the predictors for the logistic regression model using the data
from Study 1. The total accuracy was 56.93% (44.60% of the West-
erners and 68.00% of the Chinese participants were categorized
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Fig. 4. Partial correlations between functional connectivity and the AHS. Abbreviations: L. SFGdor, left dorsal superior frontal gyrus; R. AMYG, right
amygdala; L. PCUN, left precuneus; R. PCUN, right precuneus. Please see Supplementary Table S11 for the abbreviations and the functional
classification of all nodes.

correctly). The permutation test revealed a null distribution of
the overall accuracy, with a 95% CI [49.5%, 55.1%], indicating that
the obtained overall accuracy was significantly higher than the
chance level (Figure 5D).

Meta-analytic decoding found that the important nodes posi-
tively predicting holistic–analytic cultural style weremore related
to psychological constructs associated with reward and affective
function, including the categories ‘anxiety’, ‘reward’, ‘emotion’,
‘affective’, ‘motivation’ and ‘arousal’, and the important nodes
negatively predicting holistic–analytic cultural style were more
related to psychological constructs associated with self andmind,
including the categories ‘autobiographical memory’, ‘episodic
memory’, ‘beliefs’, ‘ToM (Theory of Mind)’, ‘memory retrieval’ and
‘self-referential’ than the other nodes were (Figure 6).

Discussion
In Study 1, by measuring the degree and global efficiency, we
discovered that culture affects the cerebral information integra-
tion function of the nodes in the DMN, AMYG and basal ganglia.
Specifically, nodes in the DMN are more crucial in the brain net-
works of Westerners, while nodes in the subcortical area (i.e.
basal ganglia, AMYG) aremore important for Chinese individuals.
In Study 2, we further established the connection between cul-
turally different nodal graph metrics and holistic thinking style.
Metrics of nodes in the DMN (i.e. mPFC, PCUN) were negatively
correlated with holistic thinking style, whereas metrics of the
nodes in subcortical regions (i.e. AMYG, PUT) were positively
correlated with holistic thinking style. Moreover, we discovered
that the functional connectivity between the nodes in the DMN
and other nodes in the brain network were negatively correlated
with holistic thinking style. Importantly, the metrics that were

correlated with holistic thinking style can be viewed as neural

representations of culture and can be used as predictors for holis-

tic thinking style and cultural background. Based on these two

studies, we can summarize that people from the East and West

exhibit diverse organizational characteristics in their functional

brain networks. The topological features of the brain network

are associated with specific cultural values and can be viewed as

neural representations as well as effective predictors of culture.
Consistent with our hypotheses, we discovered that the nodes

in the DMN are crucial for Westerner’s functional brain network.

This result is in linewith previous research that has posited a rela-

tionship between interdependence/independence and the gray-

matter volume of DMN regions. For example, there is a negative

correlation between interdependence and the gray-matter vol-
ume of the orbitofrontal cortex (Kitayama et al., 2017) and a pos-
itive correlation between independence and the gray-matter vol-
ume of the vmPFC, right DLPFC and right RLPFC (Wang et al., 2017).
As noted by Wang et al. (2017), these brain regions are related
to the function of self-agency. Using R-fMRI and graph theoreti-
cal analysis, our findings further support this notion by showing
that the functional properties of the DMN in the brain network are
more important for Westerners. This result could be explained by
the connection between the DMN and self-consciousness, which
has been shown in previous research. It was found that the DMN
is strongly connected to an individual’s personality (Lei et al., 2013)
and overlaps with the self-reference network (Legrand and Ruby,
2009; Qin and Northoff, 2011; Whitfield-Gabrieli et al., 2011). Fur-
thermore, important regions in the DMN, such as the posterior
cingulate cortex and PCUN, have been considered key compo-
nents of the neural network correlates of consciousness (Vogt and
Laureys, 2005) and impact self-related and episodicmemory tasks
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Fig. 5. Results of the intrasample and cross-sample K-fold cross-validation analyses. A) The correlation between the observed and predicted scores in
intrasample cross-validation based on 10 metrics; B) the classification accuracies in cross-sample cross-validation based on 10 metrics; C) the
correlation between the observed and predicted scores in intrasample cross-validation involving all nodal metrics; D) the classification accuracies in
cross-sample cross-validation involving all nodal metrics. Blue ribbons in b and d represent the 95% CI generated by permutation tests.

Fig. 6. Meta-decoding results of important nodes in the prediction model of holistic–analytic cultural style.

(Cavanna and Trimble, 2006; Raichle, 2015). The higher priority of
DMN nodes in the brain network may help Westerners maintain
their independent self-construal.

In contrast, we discovered different functional features
among Chinese individuals. As hypothesized, we discovered that
AMYG plays a crucial role in the brain networks of Chinese
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individuals. One potential reason is that interdependent East
Asians are more willing to maintain harmonious relationships
with others (Markus and Kitayama, 1991), and the processing
of others’ emotions may promote the achievement of this goal
(Tsai et al., 2007). Research has found that, compared to people
from Western cultural backgrounds, East Asians are more accu-
rate when inferring the emotions of close others (Ma-Kellams and
Blascovich, 2012) and more sensitive to the disappearance of pos-
itive emotions rather than negative emotions (Ishii et al., 2011).
Their AMYG also shows greater activation when participating in
emotional tasks (Derntl et al., 2012). Thus, the critical role of
the AMYG in the resting-state functional network may represent
the characteristics or strategies of socioemotional processing for
East Asians. Another explanation is that East Asians are more
likely to regulate their emotions by suppressing their emotions
(Matsumoto et al., 2008), and the AMYG contributes to emotion
regulation (Hare et al., 2005; Banks et al., 2007; Frank et al., 2014).
In addition to the hypothesized results concerning the AMYG, we
found that nodes in the basal ganglia (i.e. PUT and PAL) are also
important in the brain networks of Chinese individuals. Inside
the basal ganglia, the striatum has been argued to make criti-
cal contributions to emotion regulation (Hare et al., 2005), and
meta-analysis research revealed the involvement of the PUT and
PAL in this process (Kohn et al., 2014). Thus, the characteristics
of emotion processing and emotion regulation may explain the
importance of the AMYG and basal ganglia in the functional brain
networks of Chinese individuals. Notably, we also found that
Chinese individuals exhibited a significantly higher degree and
global efficiency in the temporal pole (i.e. TPOsup and TPOmid).
Although the temporal pole belongs to the DMN (Andrews-Hanna
et al., 2010) and participates in self-reference tasks (Longe et al.,
2010; Pauly et al., 2014), evidence also shows that the temporal
pole is crucial for representing and retrieving social knowledge
(Olson et al., 2013), integrating social information (Pehrs et al.,
2017), making attributions based on contexts (Kestemont et al.,
2015), theory of mind (Ross and Olson, 2010) and emotion reg-
ulation (Taylor et al., 2018). It is possible that the temporal pole
cooperates with the AMYG and basal ganglia in processing socioe-
motional information, which increases its importance in the brain
networks of Chinese individuals.

Study 1 revealed the general cultural differences in the orga-
nizational characteristics of the functional brain network, and
in Study 2, we further illustrated that the cultural differences
can be partly explained by thinking style. The nodal metrics in
the DMN (i.e. mPFC and PCUN), basal ganglia (i.e. left PUT) and
AMYG were correlated with a holistic–analytic thinking style. As
discussed, DMN regions are responsible for self-agency. There-
fore, the association between DMN nodal metrics and analytic
thinking may suggest that independent self-construal is strongly
associated with analytic thinking style, which has been found
in experimental research (Krishna et al., 2008; Kitayama et al.,
2009; Lin and Han, 2009; Lalwani and Shavitt, 2013). For instance,
priming independent or interdependent self-knowledge induces
the corresponding thinking style (analytic or holistic thinking;
Kühnen et al., 2001; Monga and John, 2010). The positive corre-
lations between holistic thinking style and the nodal metrics of
the AMYG and left PUT may imply that the processing of socioe-
motional information or the regulation of self-moodsmay require
abilities that rely on holistic thinking. Integrating social informa-
tion and switching attention to different social targets may be
related to the function of changing the ‘locus of attention’, which
is a main construct in holistic–analytic thinking.

We also found that the functional connectivity between the
nodes in the DMN (mPFC and PCUN) to other nodes was nega-
tively correlated with the holistic thinking style, that is, func-
tional connectivity was positively correlated with the analytic
thinking style. We suggest that the functional connectivity of
the mPFC and PCUN may fall into two categories and can be
interpreted in two different ways. First, the negative correla-
tions between intranetwork connectivity (functional connectiv-
ity between the mPFC and PCUN and other nodes in the DMN)
and holistic thinking style properly represent the relationship
between the intranetwork connectivity of the DMN and self-
concept. This view is in line with the findings from psychiatry
studies. In psychological diseases such as depression, posttrau-
matic stress disorder and schizophrenia, which are characterized
by rumination and increased self-focused thoughts (Ingram, 1990;
Watkins and Teasdale, 2001; Speckens et al., 2007), increased
intranetwork connectivity of the DMN was observed (Greicius
et al., 2007; Whitfield-Gabrieli et al., 2009; Dunkley et al., 2015).
Second, the negative correlations between the internetwork con-
nectivity (functional connectivity between the mPFC and PCUN
and other nodes outside the DMN) and holistic thinking style can
be viewed as the redistribution of resources in the brain networks
of East Asians, who generally do not have the mindset of inde-
pendence or analytic thinking as the ‘default mode’. East Asians
may need to inhibit the internetwork connectivity of the DMN and
allocate more resources to intranetwork connectivity, through
which intranetwork connectivity can be enhanced and facilitate
the processing of information in away analogous toWestern brain
networks.

Taken together, the different organizational features of the
brain network across cultural groups and the association between
thinking style and the metrics of the DMN and subcortical areas
demonstrate that culture and brain network properties are closely
linked (Kitayama and Uskul, 2011; Han and Ma, 2015). Specif-
ically, our findings are aligned with the perspectives from the
culture–behavior–brain (CBB) loop model (Han and Ma, 2015)
and the neuro-culture interaction model (Kitayama and Uskul,
2011). Both models suggest that due to the plasticity of the brain,
repeatedly engaging in tasks or conducting behaviors related
to a specific cultural context may promote the formation of
culturally patterned neural activities, which may further facil-
itate the generation of culturally related behaviors or adaptive
actions (Kitayama and Uskul, 2011; Han and Ma, 2015). Addition-
ally, through intrasample and cross-sample validation analyses,
we discovered that functional metrics are efficient predictors of
an individual’s cultural background and the tendency toward
holistic–analytic thinking. Thus, functional graph metrics are not
only strongly associated with culture but can also be viewed as
‘neuromarkers’ or functional connectome fingerprints of culture
and a holistic–analytic thinking style.

This study has some limitations that could be addressed in
future research. First, the public datasets do not provide detailed
demographic information about the sample and do not provide
measurements related to cultural values, which restricts the
ecological validity of our findings. Further research involving
detailed measurements will be helpful in verifying our findings.
In addition, data for Study 1 were collected from multiple cen-
ters, which raises the possibility that differences in scanning (e.g.
scan parameters, environments)may confound the findings. Like-
wise, as age is an essential factor that affects the segregation
of brain networks (Chan et al., 2014), differences in age across
Western and Chinese samples may also compromise ecological
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validity. More rigorous cross-cultural and multiple-center R-fMRI
studies will be helpful in assessing the robustness of the find-
ings of Study 1. Second, we discovered significant correlations
only between holistic–analytic thinking style and the metrics of
seven nodes. As culture is a complex system (Jahoda, 2012),
whether those metrics that were not significantly correlated with
holistic thinking style are correlated with other cultural subdi-
mensions remains unknown. In addition, we also found higher
accuracies for Chinese participants compared to Westerners in
cross-validation analyses for predicting cultural groups. One pos-
sible reason is that the predictors that we used are generated from
our Chinese sample. Additional research is necessary to explore
whether culture moderates the associations between brain topo-
logical properties and holistic–analytic thinking style. Moreover,
as the CBB loop model (Han and Ma, 2015) proposed, culture and
the brain may be connected through culturally related behav-
iors. More research is required to disentangle the relationships
between functional network properties and culture. Similarly,
the associations between the graph metrics and holistic–analytic
thinking do not determine the individuals’ behaviors in specific
tasks that involve holistic–analytic thinking. Thus, a possible
research direction is to examine whether R-fMRI network proper-
ties are efficient predictors participant behaviors or performance
on culturally related tasks.

In conclusion, by building up R-fMRI networks and using graph
theoretical analysis, our research explored the cultural effect
on the topological properties of the brain and discovered the
culturally patterned characteristics of brain networks. We also
provided a possible explanation for the link between brain net-
works and culture by revealing the correlations between global
properties and the holistic–analytic thinking style. More impor-
tantly, functional graphmetrics can be regarded as fingerprints of
our cultural background and cultural tendencies, which enriches
the current understanding of the relationship between culture
and the brain.
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