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ABSTRACT

Flies with mutations in the single Drosophila Adar
gene encoding an RNA editing enzyme involved
in editing 4% of all transcripts have severe locomo-
tion defects and develop age-dependent neuro-
degeneration. Vertebrates have two ADAR-editing
enzymes that are catalytically active; ADAR1 and
ADAR2. We show that human ADAR2 rescues
Drosophila Adar mutant phenotypes. Neither the
short nuclear ADAR1p110 isoform nor the longer
interferon-inducible cytoplasmic ADAR1p150
isoform rescue walking defects efficiently, nor do
they correctly edit specific sites in Drosophila tran-
scripts. Surprisingly, human ADAR1p110 does
suppress age-dependent neurodegeneration in
Drosophila Adar mutants whereas ADAR1p150
does not. The single Drosophila Adar gene was pre-
viously assumed to represent an evolutionary
ancestor of the multiple vertebrate ADARs. The
strong functional similarity of human ADAR2 and
Drosophila Adar suggests rather that these are
true orthologs. By a combination of direct cloning
and searching new invertebrate genome sequences
we show that distinct ADAR1 and ADAR2 genes
were present very early in the Metazoan lineage,
both occurring before the split between the
Bilateria and Cnidarians. The ADAR1 gene has
been lost several times, including during the evolu-
tion of insects and crustacea. These data comple-
ment our rescue results, supporting the idea that
ADAR1 and ADAR2 have evolved highly conserved,
distinct functions.

INTRODUCTION

The conversion of adenosine (A) to inosine (I) by RNA
editing occurs in CNS transcripts in both Drosophila
and humans, diversifying ion channels and many other
proteins [for reviews see (1,2)]. The ADAR RNA editing
enzymes recognize specific adenosines within RNA
duplexes that form, typically by base pairing between
edited exons and sequences in adjacent introns, in edited
transcripts. ADARs have two or more double-stranded
(ds) RNA binding domains that bind dsRNA (3), and
a catalytic deaminase domain that also contributes to rec-
ognition of bases adjacent to the edited site (Figure 1A).
Although the ADAR RNA editing enzymes are
conserved, the editing events in particular transcripts are
not; edited transcripts differ substantially between fly and
human and no clear example of a conserved editing site
has been found. In Drosophila editing is extensive. A
recent study identified 972 edited positions within tran-
scripts of 597 genes, 630 of which are predicted to alter
protein-coding sequences (4) It is not known which editing
events are responsible for the Adar phenotype (5,6). Other
invertebrates such as the squid, a member of the Phylum
Mollusca, also show extensive RNA editing of CNS tran-
scripts (7–10). Vertebrates have far fewer editing events
that result in recoding of transcripts and only one
editing event is essential (11). One recent study identified
239 edited sites in 207 human transcripts, but only 38 are
predicted to change codons (12).
Mutations to both Drosophila and vertebrate ADAR

genes have catastrophic effects on the CNS. Drosophila
has a single Adar gene and mutations cause a loss of loco-
motion in adult flies from birth and drastic age-dependent
neurodegeneration (13,14). Vertebrates have two cata-
lytically active ADAR genes and mutations in one of
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them, the CNS-expressed Adar2 gene, leads to seizures
and early postnatal death with localized hippocampal
neurodegeneration in mice (11). The mouse Adar2
mutant is rescued by genomically encoding a single
residue change in a key AMPA class glutamate receptor
subunit transcript that is normally introduced by editing.
By replacing a glutamine (Q) codon with an arginine (R)
codon within the region of GluR2 transcripts that encodes
the ion channel pore, Adar2 mutant mice survive to adult-
hood. Editing at this site has the key functions of both
restraining the assembly of AMPA receptors to synapses
and blocking calcium entry through the resulting channels
(15,16). Reductions in RNA editing efficiency at this site
leads to production of calcium-permeable AMPA recep-
tors and may be involved in disease symptoms such as
motor neuron death through glutamate excitotoxicity in
ALS (17), and selective neuron death following ischaemia
in stroke (18).
Vertebrates have two other ADAR genes; ADAR1 is

widely expressed within the CNS as well as in mesoderm
and haematopoietic lineages. Mutations in Adar1 result in
death of mouse embryos by embryonic day 12.5 with
failure of haematopoiesis in the liver and overproduction
of interferon (19–21), preventing the role of Adar1 in the
CNS from being assessed. ADAR1 has an intrinsic RNA
editing site specificity that is distinct from that of ADAR2,
however to date no site-specific editing event catalysed by
ADAR1 has been found to be essential. This enzymatic
substrate specificity is surprising considering the overall
homology between the two proteins and also that the
major groove in the A structure of dsRNA is inaccessible,
rendering it difficult for proteins to read the actual base
sequence of dsRNA substrates (22). Selection of particular
adenosines for editing at different RNA editing sites is
likely to be determined by the location of the edited
base within the duplex and by its proximity to imperfect
pairings between base pairs in each duplex structure (3). In
addition both ADAR1 and ADAR2 have distinct yet
overlapping preferences for particular nucleotides 50 and
30 of the editing sites when editing long dsRNA (23,24).
There is some evidence of competition between ADAR1
and ADAR2 in editing: in neurons cultured from
Adar1�/� ES cells loss of ADAR1 leads to increases in
RNA editing by ADAR2 at some sites in transcripts
encoding 5-HT2C receptor (19,20).
Until recently the single Drosophila Adar gene appeared

to be an invertebrate ancestor of both human ADARs and
we wondered if it had similar or distinct substrate specifi-
city to the human ADARs. As the edited sites in target
transcripts are not conserved, the ADARs may also have
diverged in their substrate specificities. We investigated
this with RNA editing assays in vitro and by expressing
the human ADARs in Drosophila, to determine if they can
edit Drosophila transcripts, rescue locomotion defects and
suppress neurodegeneration. It is advantageous to
perform this analysis in Drosophila as there are a large
number of editing sites in the fly to compare the editing
site specificities of the different ADARs.
Surprisingly, we find that the editing specificity of an

ADAR2-type protein is conserved from fly to human,
allowing effective rescue of site-specific RNA editing

events, locomotion defects and suppression of neuro-
degenerative phenotypes in Adar mutant flies by human
ADAR2. ADAR1 does not efficiently edit most sites in
Drosophila transcripts nor does it rescue the locomotion
phenotype. However the different ADAR1 isoforms
behave differently with regard to the neurodegeneration
phenotype; ADARp110 suppress neurodegeneration
whereas ADAR1p150 does not.

We conclude that Drosophila Adar is an orthologue of
vertebrate ADAR2. By cloning ADAR genes from inver-
tebrates and by examining data from genome sequencing
projects, particularly that of the starlet sea anemone
Nematostella vectensis (25), we show that ADAR1 and
ADAR2 have evolved independently since early in
Metazoan evolution. Both ADAR1 and ADAR2 genes
are present in molluscs, annelids, echinoderms and even
cnidarians. ADAR1 appears to have been lost in some
Arthropods, including insects, as well as in some other
taxa.

MATERIALS AND METHODS

Comparison of RNA editing site specificities of
Drosophila and vertebrate ADARs in vitro

All recombinant ADAR proteins were expressed and
purified from Pichia pastoris as previously described
(26). Poisoned primer extension assays in the presence of
dideoxythymidine were performed with equivalent con-
centrations of ADAR proteins as described in (27).

Rescue of Adar mutant phenotypes in Drosophila by
human ADAR1 and ADAR2

cDNAs encoding full length human ADARs were cloned
into the vector pUAST and multiple balanced transgenic
Drosophila lines were generated with constructs inserted
randomly at different locations on Chromosomes II or
III. These construct lines were crossed to lines expressing
GAL4 ubiquitously and strongly in all cells [actin
5C-GAL4 25FO1 driver (28)], or strongly in cholinergic
neurons [Cha-GAL4 19B, UAS-GFP S65T driver (29)
also expressing an enhanced GFP from Chr. II]. To
express ADARs in an Adar5G1 mutant background
under the control of the Cha-GAL4 driver, for example,
we crossed the UAS-ADAR lines to females of a strain
that had the first and second chromosome genotypes y,
Adar5G1, w/w, FM6 Bar; Cha-GAL4 / SM5 Cy and picked
male y, Adar5G1, w; Cha-GAL4, UAS-ADAR progeny to
measure rescue of mutant phenotypes.

We also constructed a strain that had the first and
second chromosome genotypes y, Adar5G1, w /w, FM6
Bar; UAS-dADAR S / SM5 Cy. This strain has no
GAL4 driver but it allows the rescue effectiveness of
drivers expressing GAL4 in different cell types to be
tested. Crossing males of some GAL4 driver lines to
females of this strain gives male y, Adar5G1, w; GAL4
driver; UAS-Adar S progeny in which phenotypes are
rescued by expression of the UAS-dAdar S construct in
particular cell types.
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Open field locomotion assay

We measured phenotypic rescue of Adar1F4 and Adar5G1

locomotion defects with an open field locomotion assay on
flies expressing the human UAS-ADAR constructs 2–4
days after eclosion (30). Flies were collected using CO2

and left for 1 day to recover before performing this
assay. They were placed in a 30-mm petri dish divided
into seven equal areas. The dishes were tapped and the
number of times a fly walked over a line separating the
zones was recorded for a 2-min period. This was then
repeated a further two times for each individual fly. For
each UAS-ADAR construct multiple different transgenic
lines with random insertions were generated to control for
variations in expression levels due to insertion sites.
Locomotion rescue was measured for 10 or more flies
from each of three different transgenic lines for each con-
struct. RNA editing in vivo and protein expression levels
were determined for the line of each construct that rescued
locomotion best or that showed the darkest red eye colour,
another correlate of expression levels at different sites of
chromosomal insertion.

Other Drosophila GAL4 driver lines used in this study

w1118; Ddc-Gal4 L 4.3D on Chr. II expresses GAL4 in the
pattern of dopa decarboxylase which is involved in syn-
thesis of the excitatory neurotransmitter dopamine in
dopaminergic neurons. Tdc2-GAL4 C 2 on Chr. III
expresses GAL4 in the pattern of tyrosine decarboxylase
which is involved in synthesis of the excitatory neurotrans-
mitter octopamine in octopaminergic neurons. Expression
of two of the three motor neurone driver lines have been
examined in detail elsewhere (31). The OK6 line has a
GAL4 enhancer trap insertion in the Rapgap1 gene on
Chr. II and is the driver line most highly specific for
motor neurones. The D42 line is a GAL4 enhancer trap
insertion in the toll6 gene on Chr. III (31). It is expressed
in a very small number of brain cells and in peripheral
nervous system in addition to motor neurones. w1118;
VGlutOK371 has a GAL4 enhancer trap insertion on Chr.
II in the gene encoding the vesicular glutamate vesicular
uptake receptor (32), broadly expressed in all glutama-
tergic neurons including motor neurons. w1118; OK307 is
a GAL4 enhancer trap insertion on Chr. II that is ex-
pressed specifically in the giant fibre descending jump
escape neuron.

Haematoxylin and eosin staining

To characterize neurodegeneration 6-mm sections of
paraffin wax-embedded Adar5G1 mutant heads were cut
and stained with haematoxylin and eosin. To remove the
wax the slides were taken through three 5-min incubations
in Xylene. To re-hydrate, the slides were incubated twice
in 100% ethanol for 2min, 90% ethanol for 2min, 80%
ethanol for 2min, 50% ethanol for 2min, 30% ethanol for
2min and finally in H2O for 2min. The slides were
incubated in freshly filtered haematoxylin for 4min and
then in running tap water. Once the haematoxylin had
washed out the slides were dipped twice into acid
alcohol and again washed in running tap water. The

slides were incubated in lithium carbonate for 3min and
then in water for 3min. The slides were incubated in 1%
eosin for 4min and quickly washed in running tap water.
The slides were dipped in 100% ethanol and then
incubated three times in 100% ethanol each for 2min.
Before mounting the slides were incubated in Xylene
three times, each for 5min. The slides were mounted
with D.P.X. and eyes were photographed at 40� and
mushroom bodies at 63� with Zeiss Plan Neofluor ob-
jectives on a Zeiss Axiophot compound microscope
with Coolsnap HQ CCD camera (Photometrics Ltd.
Tuscon, AZ, USA) and images processed using IPLab
Spectrum (Scanalytics Corp, Fairfax VA, USA) with all
alterations of brightness and contrast covering the entire
image.

Oligos, RT–PCR and sequencing

The oligos used in this study to perform RT–PCR and
for sequencing the edited positions are listed in
Supplementary Table S1.

Quantitating RNA editing activity in vivo

RNA was extracted from rescue and control male flies
with Trizol reagent (Invitrogen) as described by the manu-
facturer and sequential RT–PCR was performed on the
isolated RNA. To ensure that each RT–PCR product
sequenced represents a distinct initial first strand cDNA,
two separate RT reactions were performed. The majority
of the editing sites were analysed by sequencing the
RT–PCR reaction product pools and not by sequencing
individual clones. We measured the relative heights of A
and G peaks in electropherograms of RT–PCR product
pools covering edited sites. Editing at each site was
determined using multiple sequence chromatograms
in each direction. To indicate the variability in this
data: for percentage editing in adult male flies at Eag
2107 Y/C in Table 1 the standard error is ±2% flies
and for editing at Eag 2159 V/V the standard error
is ±2.9%. If editing appeared to be zero at a position
but there was a low background in the electro-
pherogram then we inserted an asterisk in the tables to
represent this.

Phylogenetic analysis of invertebrate ADAR1
and ADAR2

Putative ADAR sequences were identified using blast
searches (tblastn or blastp) against invertebrate gen-
ome sequences available at the National Center for
Biotechnology Information (NCBI; http://www.ncbi.nlm
.nih.gov/sutils/genom_table.cgi?organism=euk) and the
Joint Genome Institute (JGI- (http://genome.jgi-psf.
org/). Initially human ADAR1 and ADAR2 were used
as query sequences. As we identified invertebrate homo-
logues, they were used as queries as well. Cephalopod
ADAR deaminase domains were cloned directly using
cDNA samples and PCR primers based on other inverte-
brate ADAR sequences. Putative ADAR hits were defined
as ADAR1 or ADAR2 using several criteria. First, the
core deaminase domains were aligned with vertebrate
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ADAR1 and ADAR2 using T-COFFEE (http://tcoffee
.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/index.cgi) to assess
general homology with residues previously defined as
ADAR1 or ADAR2 consensus. Second, phylogenetic
trees were generated using the entire deaminase domain.
Alignments for ADAR1 and ADAR2 were generated
using M-COFFEE (http://tcoffee.vital-it.ch/cgi-bin/
Tcoffee/tcoffee_cgi/index.cgi). Both alignment files were
joined by ClustalX2 (profile mode). Gap-rich columns
were removed from each alignment. The tree was
generated using Phylip Package (Protdist, Neighbor,
Consense) (http://bioweb.pasteur.fr/phylogeny/intro-en
.html). In the following cases only partial sequences were
available; Varroa destructor (ADAR1 and ADAR2),
Helobdella robusta (ADAR1), Acropora millepora
(ADAR1) See Supplementary Table S2 for the names of
species in different evolutionary groups and for sequence
accession numbers. For these, separate phylogenetic trees
were generated using the homologous regions from both
human ADAR1 and ADAR2. Based on these trees
the partial sequences were classified as either ADAR1 or
ADAR2. All the accession numbers for ADAR1 and
ADAR2 that were used in the alignment are in
Supplementary Table S2.

RESULTS

Human ADAR1 and ADAR2 proteins show greater
selectivity than Drosophila ADAR for specific sites
in vitro

Human ADAR1 and ADAR2 proteins (Figure 1A), have
been shown to have distinct editing site specificities for
vertebrate transcripts. Using an in vitro poisoned primer
extension assay in the presence of dideoxythymidine we
compared the specific RNA editing activities of dADAR
3/4, human ADAR1p110 and human ADAR2 proteins on
the Adar exon 7 substrate from Drosophila which dADAR
edits very efficiently in vitro (30) (Figure 1B) and on the
GluR2 B13 minigene substrate (Figure 1C). Fly and
human ADAR proteins expressed in the yeast Pichia
pastoris were purified and cross-species editing was
tested using equivalent amounts of the different proteins
sufficient for maximal editing of their specific substrates.

The vertebrate proteins are much less active on the
Drosophila Adar exon 7 substrate than dADAR 3/4 is.
Human ADAR2 edits the Adar exon7 site slightly more
efficiently than human ADAR1p110, but the activity is
significantly lower than that of Drosophila ADAR
(Figure 1B). This data is in agreement with what was pre-
viously observed when all three enzymes were assayed on
long dsRNA for promiscuous RNA editing and dADAR
edited more sites than the two human proteins (24).

The dADAR 3/4 protein edits sites in the vertebrate
substrate efficiently (Figure 1C). The GluR2 B13
minigene substrate contains an exonic Q/R editing site
that is preferentially edited by human ADAR2 and an
intronic hotspot site that is preferentially edited by
human ADAR1 (27,33). Drosophila ADAR is less select-
ive than the human ADARs on the GluR2 B13 minigene
substrate, efficiently editing both the Q/R (ADAR2-
preferred) site and the hotspot (ADAR1-preferred) site.

Because relatively few of the dsRNA structures that are
required for editing have been fully defined in Drosophila,
only a limited number of site-specific RNA editing events
can be assayed in vitro. Since Drosophila has so many
edited transcripts, a much larger number of edited sites
can be studied in vivo in transgenic flies. By expressing
human ADAR proteins we can elucidate if some
Drosophila editing sites respond to human ADARs differ-
ently than the dAdar exon7 site.

Human ADAR2 rescues locomotion defects in
Adar mutant Drosophila

Constructs designed to express human ADAR cDNAs
under UAS/GAL4 control were injected into Drosophila
and transgenic lines were generated and balanced.
To measure phenotypic rescues, human and Drosophila
ADAR proteins were expressed in two different deletion
strains of Adar in a range of tissue-specific expression
patterns by means of the GAL4-UAS binary system.
Both Adar1F4 and Adar5G1 mutants are equally grossly
defective in open-field locomotion and totally lack RNA
editing in all ion channel transcripts tested (Figure 2) (14).
The Adar1F4 deletion removes promoters of Adar but
leaves the coding sequence intact and its expression is at

Table 1. Percentage RNA editing at specific sites in transcripts

isolated from whole wildtype Canton S male or female flies, embryos

and third instar larvae

Male n Female n Embryo n Larva n

Ca�1D
2061 L/L 36 4 38 4 0 5 0 2
2083 N/D 97 4 95 4 22 6 20 3
2097 L/L 96 4 89 4 a 4 0 3
2098 R/G 96 4 92 4 a 4 0 3
2140 I/M 100 2 100 4 14 6 18 3

Eag
1864 K/R 58 11 66 4 76 2 89 3
2107 Y/C 89 11 92 5 46 3 70 5
2159 V/V 16 7 a 5 0 3 a 4
2163 N/D 88 7 86 5 52 3 66 4
2560 K/R 78 3 60 2 a 2 0 3

Nic 34E
1872 L/L 100 6 76 4 85 4 100 4
1873 I/V 100 6 78 4 85 4 100 4
2020 T/A 100 7 97 6 100 4 100 3
2023 I/V 38 5 30 5 16 4 17 3
2028 L/L 35 5 28 3 15 2 15 3
2037 I/M 67 5 60 3 41 2 48 3
2049 L/L 16 4 17 3 0 2 a 3
2052 S/S 71 4 63 1 40 1 40 3
2062 I/V 100 4 100 2 100 2 100 3
2065 I/V 53 4 41 1 15 2 11 3

Rdl
728 L/L 23 8 23 4 0 2 0 2
735 R/G 65 8 68 4 0 2 a 2
1218 I/V 100 8 87 8 78 2 100 2
1251 N/D 22 4 14 8 0 1 0 2
1448 Q/Q 8 4 12 7 0 2 0 2
1449 M/V 22 4 20 7 0 2 0 2

The left column lists the specific editing sites in target transcripts and
the bold numbers indicate the percentage editing at that site in the
different samples. The total number of RT–PCR reactions sequenced
is represented by n.
aEditing is probably 0 however due to background in sequencing
electropherogram 0 cannot be assigned to this position.
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least 10- to 20-fold lower (14). This strain shows residual
RNA editing at only one identified site—the Adar exon7
site. In later stages of this study we concentrate on the
Adar5G1 null mutant, as it completely removes the
coding sequence and expresses no ADAR protein. In
addition we found age-dependent neurodegeneration
proceeds more rapidly in the Adar5G1 null mutant.
Strong and widespread expression of ADAR proteins in

both the Adar5G1 and Adar1F4 mutant brains was obtained
using the Cha-GAL4 driver: choline acetyl transferase
encoded by the Cha gene is involved in the biosynthesis
of acetylcholine, the major excitatory neurotransmitter in
insect neurons. Because the Drosophila Adar gene is on
the X chromosome, rescue phenotypes were measured in
male flies that had the Adar mutation and that also had
the Cha-GAL4 driver construct and UAS-ADAR
constructs.
Each of the two vertebrate ADARs yield viable flies

when expressed under the control of the Cha-GAL4
driver. Figure 2 shows a comparison of open field
locomotion tests on Adar1F4 (Figure 2A) or Adar5G1

(Figure 2B) mutant flies that have Drosophila ADAR
protein or different vertebrate ADARs expressed under
the control of the Cha-GAL4 driver. The Adar mutants
are both grossly defective in locomotion and this defect
is efficiently rescued by either the Drosophila ADAR 3/4
protein or human ADAR2 in either Adar1F4 or Adar5G1

mutant flies (Figure 2A and B) whereas the rescue with
human ADAR1p110 or ADAR1p150 is barely above
background and movement is not well coordinated. For
each ADAR expressed the locomotion data represents an
average of results obtained with three independent inser-
tions of the relevant UAS-ADAR transgene and the results
obtained with different insertion lines for each ADAR are
consistent with each other. The wild-type control strain is
w1118; Cha-GAL4. This is an appropriate control because
strong expression of GAL4 in neurons negatively affects
locomotion in flies, (w1118 flies cross 57 lines in 2min in
this test.) Expression of ADAR 3/4 restores locomotion
above the level seen in w1118; Cha-GAL4 but not quite to
the level seen in w1118. Locomotion rescue by ADAR2 is
not as strong as expected since it edits most Drosophila
sites more efficiently than dADAR 3/4.
ADAR1 is expressed as either a cytoplasmic 150-kDa

protein that shuttles in and out of the nucleus but accu-
mulates in cytoplasm or as a shorter 110-kDa protein that
is primarily localized to the nucleus (34). Neither isoform
efficiently rescues the locomotion defects in either Adar1F4

or Adar5G1 mutant Drosophila (Figure 2A and B). There is
a small effect of ADAR1 in improving the locomotion but
a similar slight effect is seen with a catalytically inactive
mutant form of Drosophila ADAR in which an essential

Figure 1. Comparison of human and Drosophila ADAR structures and
activities on RNA substrates in vitro. (A) Domain structures of human
and Drosophila ADARs. (B) In vitro RNA editing of a single site in the
Drosophila Adar exon 7 substrate by duplicate samples of Drosophila
and human ADARs analysed by poisoned primer extension with
dideoxythymidine. Dash indicates substrate RNA incubated without
ADAR. For each primer extension reaction P (primer) indicates the
end-labelled primer, U, (unedited) indicates the position of the next
A after the primer in the template. On unedited templates primer ex-
tension terminates at the first A but if this is edited then primer exten-
sion continues to the next A, which is indicated with E, (edited). (C)
In vitro RNA editing of two sites in the mammalian GluR-2 miniB 13

substrate by Drosophila and human ADARs analysed with poisoned
primer extension with dideoxythymidine. The GluR-2 miniB 13 tran-
script contains an exonic Q/R editing site (unextended primer and
unedited and edited extension product sizes indicated on the right)
that is preferentially edited by human ADAR2 and an intronic
hotspot site (primer and extension product sizes on the left) that is
preferentially edited by human ADAR1.
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glutamate residue at the catalytic site has been mutated
to alanine (dADAR 3/4 EA, Figure 2B). Catalytic RNA
editing activity at appropriate target sites is necessary for
full locomotion rescue.
The equivalence of function between human ADAR2

and Drosophila Adar is further supported by the fact
that ubiquitous expression of UAS-ADAR2 with the
actin 5C-GAL4 driver is lethal to Drosophila; similar le-
thality was previously observed with the very active
genome-encoded isoform of dADAR that has a serine
residue as found in ADAR2 at the S/G RNA editing
site in the deaminase domain (30). The lethality was
attributed to premature editing of target transcripts
during embryonic development, particularly in muscle
tissue or heart which normally have lower ADAR expres-
sion than CNS. There is a very much weaker rescue of
locomotion when the serine corresponding to the
Drosophila self-editing site is mutated to glycine in
ADAR2 (Figure 2A). Editing of the GluR2 B13
minigene substrate at the Q/R site is reduced 8-fold by
the serine to glycine mutation in poisoned primer

extension assays (Supplementary Figure S1). Widespread
ADAR1 expression under actin 5C-GAL4 driver control is
not fully lethal in Drosophila though viability is low and
only small numbers of flies are obtained.

Human ADAR2 edits many Drosophila editing sites
similarly to dADAR but ADAR1 edits only a subset
of these sites

We do not know which individual RNA editing events
or which combination of editing events in the known
edited transcripts in Drosophila are the most essential.
Therefore we chose to measure RNA editing levels in a
subset of the known Drosophila transcripts that contain
sites that are highly edited at functionally important
amino acids (5). These sites were originally identified by
comparative genomics due to strong evolutionary conser-
vation among fly species of exonic sequences flanking
some of the highly edited positions due to conservation
of RNA duplex formation. We analysed 26 RNA editing
sites in four transcripts in embryos, larvae and adult male
and female flies to examine developmental RNA editing
levels in these transcripts and to determine if there were
sex-specific effects (Table 1). Editing levels were calculated
using peak height measurements of A and G peaks in
sequencing electropherograms of RT–PCR products
covering each the edited sites. The analysis shows that
amongst this set of transcripts some sites are fully edited
such as the 1218 I/V site in the Rdl (Resistance to
Dieldrin) transcript which encodes a pore-forming alpha
subunit of a member of the inhibitory GABA-gated
chloride channel family. Another transcript with fully
edited sites, Nic34E, encodes a pore-forming subunit of
acetylcholine receptors. Acetylcholine has widespread sig-
nificance as an excitatory neurotransmitter in insect brain
similar to that of glutamate in vertebrate brain.

As previously observed, editing at most sites is low in
embryos and increases during development (13,30). There
was a dramatic increase in editing of the Ca�1D transcript
encoding a muscle-type voltage-gated calcium channel
that is expressed in both muscle and CNS at metamor-
phosis. The Nic34E transcript encoding a pore-forming
subunit of a nicotinic acetylcholine receptor is always
highly edited with two sites being edited to 100% even
in early developmental stages. We decided that these
sites would be informative to analyse rescue of RNA
editing by human ADARs since they include sites consti-
tutively edited by dADAR as well as sites with editing
levels ranging from 0 to 100%. The constitutive editing
of some of these sites throughout development (Table 1),
is reminiscent of the human GluR2 Q/R site (35) and also
suggests that these editing sites might be physiologically
important. Editing of these transcripts was slightly higher
in males than females.

We measured RNA editing levels in these transcripts
in flies expressing either human ADAR proteins or
Drosophila ADAR and compared these to editing levels
seen in wild-type Canton S and Adar mutant flies (Tables 2
and 3). Expressing Drosophila ADAR 3/4 under the
control of the Cha-GAL4 driver in the Adar5G1 back-
ground rescues RNA editing in these sites, substantially

Figure 2. Human ADAR2 rescues Drosophila Adar mutant locomotion
defects. (A) Rescue by human ADAR2 of hypomorphic Adar1F4 mutant
open field locomotion defects with the strong neuron-specific
Cha-GAL4 driver. Neither the long nucleocytoplasmic shuttling
human ADAR1p150 isoform nor the shorter human ADAR1p110
nuclear isoform rescue locomotion defects. (B) Rescue of locomotion
in the Adar5G1 null mutant.

7254 Nucleic Acids Research, 2011, Vol. 39, No. 16

http://nar.oxfordjournals.org/cgi/content/full/gkr423/DC1


though not completely (Table 2). Editing is completely
dependent on dADAR as it is eliminated in the Adar5G1

mutant and not restored by expression of a catalytically
inactive dADAR 3/4 EA protein (data not shown).
Human ADAR2 edits 22/26 sites analysed in Drosophila
when expressed using the Cha-GAL4 driver in Adar5G1

(Table 2). The levels of editing at specific sites are gener-
ally similar to, and generally higher than, levels obtained
for rescue by dADAR expressed under the control of the
Cha-GAL4 driver. We have repeated this with different
drivers and the pattern of editing with ADAR2 is always
similar to that with dADAR. Human ADAR1p110 and
p150 display low levels of editing activity, 2/26 and 3/26
sites respectively were edited.

When the Adar1F4 hypomorphic mutant background is
used in rescue experiments with the Cha-GAL4 driver the
pattern of locomotion rescue is unchanged from that
obtained in the Adar5G1 null background, i.e. ADAR2
rescues and ADAR1 isoforms do not (Figure 2). Levels
of RNA editing at most sites are higher in Adar1F4 rescues
with UAS-dAdar and UAS-hADAR2 than in the
Adar5G1rescues with the same UAS-ADAR transgenic
lines (Table 3), presumably due to some assistance from
the low level of residual dADAR in the Adar1F4 strain.
Also RNA editing by ADAR1 is observed at more sites
in ion channel transcripts in the Adar1F4 rescue but the

pattern of sites with high and low levels of editing is
very different from that seen in wild-type flies or in
rescues by Drosophila ADAR protein or human ADAR2
(Table 3). This is exemplified by editing of the Nic 34E
transcript where sites that are normally edited to 100% are
edited slightly or not all by ADAR1 yet other sites within
in the same transcript are highly edited by ADAR1p110
(Nic 34E I/M site, 84%) Editing activity is due to ADAR1
itself and not to endogenous Drosophila ADAR protein
because no editing is observed at any site in transgenic flies
expressing catalytically inactive ADAR1 EA (not shown).
We conclude that human ADAR1, even when it succeeds
in editing ion channel transcripts in Drosophila, does not
restore the wild-type pattern of editing.
The ADAR proteins are expressed at low levels and

cannot be detected on immunoblots of total protein
extracts from embryos, whole flies or fly heads. In the
case of ADAR2 low level expression in mammalian cells
is due to the activity of a specific E3 ubiquitin ligase (R.
Marcucci, manuscript in preparation). To express ADARs
strongly in embryos male flies of UAS-ADAR lines were
crossed to actin 5C-GAL4 / SM5 Cy and soluble protein
extracts were made from 48-h embryo collections. The
FLAG-tagged ADAR proteins were immunoprecipitated
from extracts with anti-FLAG antibodies and the proteins
were detected on immunoblots with anti-FLAG or

Table 2. Percentage RNA editing at specific sites in transcripts from rescued Adar5G1 flies expressing either dADAR, hADAR1p110,

hADARp150 or hADAR2 under the control of the Cha-GAL4 driver

WT n 5G1 n dAdar n ADAR2 n ADAR1 P110 n ADAR1 P150 n

Ca�1D
2061 L/L 36 1 0 4 0 4 18 5 0 4 0 3
2083 N/D 97 2 0 4 20 4 56 4 0 4 0 3
2097 L/L 96 2 0 4 0 4 20 4 0 4 0 3
2098 R/G 96 2 0 4 11 4 24 4 0 4 a 2
2140 I/M 100 2 a 2 0 4 25 3 0 2 0 2

Eag
1864 K/R 58 3 0 11 14 5 10 2 a 4 0 6
2107 Y/C 89 5 0 11 21 5 36 9 0 7 0 13
2159 V/V 16 5 0 7 0 3 23 7 0 7 0 13
2163 N/D 88 5 0 7 52 3 30 7 0 7 10 13
2560 K/R 78 2 a 3 a 1 31 6 0 3 a 11

Nic 34E
1872 L/L 100 4 0 6 16 2 54 6 0 4 0 3
1873 I/V 100 4 0 6 14 2 56 6 0 4 0 3
2020 T/A 100 3 0 7 55 2 79 5 0 3 a 3
2023 I/V 38 1 0 5 0 2 10 5 0 3 0 3
2028 L/L 35 1 a 5 0 2 19 5 0 3 0 2
2037 I/M 67 1 a 5 6 2 49 5 0 2 21 7
2049 L/L 16 1 0 4 0 2 0 4 0 3 0 6
2052 S/S 71 1 0 4 18 2 10 3 0 3 0 6
2062 I/V 100 3 0 4 46 2 31 3 0 2 * 6
2065 I/V 53 1 0 4 14 2 11 3 0 2 11 4

Rdl
728 L/L 23 2 a 8 a 6 12 4 10 11 a 8
735 R/G 65 2 a 8 12 6 39 4 16 11 a 8
1218 I/V 100 3 a 8 43 3 81 5 0 4 0 4
1251 N/D 22 3 0 4 0 3 0 12 0 4 0 4
1448 Q/Q 8 3 0 4 0 4 0 7 0 4 0 5
1449 M/V 22 3 0 4 0 4 0 7 0 4 0 4

The left column lists the specific editing sites in target transcripts and the bold numbers indicate the percentage editing at that site in the different
samples. The total number of RT–PCR reactions sequenced is represented by n.
aEditing is probably 0 however due to background in sequencing electropherogram 0 cannot be assigned to this position.
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anti-His antibodies. This allowed confirmation that
proteins of the expected sizes are expressed at similar
though not identical levels. The ADAR1p150 protein
was not detected in this way but other evidence indicates
that this protein is expressed and that it behaves different-
ly than ADAR1p110 (36).

To ascertain if the fly and human proteins have similar
levels of RNA editing activity in transgenic flies and there-
fore similar protein expression, we analysed non-specific
RNA editing of the Rnp-4F transcript. This transcript is
overlapped at the 30-end by a convergently transcribed
antisense transcript generated by read-through at the tran-
scription terminator of the convergently transcribed gene
(37). The resulting dsRNA is promiscuously edited by
ADARs. Non-specific editing in the Rnp-4F transcript is
rescued to the same level as in wild-type (approximately
14%) in Adar mutant flies rescued by expression of
dADAR 3/4, ADAR1 p110 and p150 and human
ADAR2 under engrailed-GAL4 control.

Locomotion defects in Adar mutant flies are rescued by
expression of ADAR specifically in motor neurons

We have tested rescue of the locomotion defect by
ADARs using a wide range of GAL4 drivers in addition
to Cha-GAL4. We constructed a strain that had Adar5G1

Table 3. Percentage RNA editing at specific sites in transcripts from rescued Adar1F4 flies expressing either dADAR, hADAR1p110,

hADARp150 or hADAR2 under the control of the Cha-GAL4 driver

WT n 1F4 n dAdar n ADAR2 n ADAR1 P110 n ADAR1 P150 n

Ca�1D
2061 L/L 36 1 a 4 13 5 24 4 25 2 29 1
2083 N/D 97 2 0 3 31 5 2 4 0 2 0 1
2097 L/L 96 2 0 3 24 5 0 2 0 1 0 1
2098 R/G 96 2 a 3 29 5 32 2 0 1 0 1
2140 I/M 100 2 0 4 26 5 20 4 0 1 0 1

Eag
1864 K/R 58 3 0 2 50 2 58 2 0 7 0 4
2107 Y/C 89 5 0 2 55 3 56 5 10 7 0 4
2159 V/V 16 5 0 2 10 5 24 6 0 7 0 4
2163 N/D 88 5 0 2 62 5 46 6 40 7 12 4
2177 A/A 0 5 0 2 a 5 0 6 0 7 0 4
2560 K/R 78 3 0 1 37 2 56 2 0 3 0 2

Nic 34E
1872 L/L 100 4 0 5 b

76 2 0 1 0 2
1873 I/V 100 4 0 5 b

74 2 0 1 0 2
2020 T/A 100 3 0 5 82 3 80 3 26 3 0 2
2023 I/V 38 1 0 5 35 3 a 3 0 3 0 2
2028 L/L 35 1 0 5 29 3 15 3 0 3 0 2
2037 I/M 67 1 0 4 63 3 75 3 84 3 37 1
2052 S/S 71 1 0 4 60 3 8 3 27 3 0 2
2062 I/V 100 3 0 5 84 3 38 2 32 3 10 1
2065 I/V 53 1 0 5 42 3 13 2 54 2 17 1

Rdl
728 L/L 23 2 0 2 29 2 34 4 a 2 0 2
735 R/G 65 2 0 2 52 2 64 4 15 2 0 2
1218 I/V 100 3 a 2 88 2 81 4 31 2 16 2
1251 N/D 22 3 0 3 0 2 0 5 0 2 0 2
1448 Q/Q 8 3 0 3 10 2 0 3 0 2 0 2
1449 M/V 22 3 0 3 12 2 a 3 0 2 0 2

The left column lists the specific editing sites in target transcripts and the bold numbers indicate the percentage editing at that site in the different
samples. The total number of RT–PCR reactions sequenced is represented by n.
aEditing is probably 0 however due to background in sequencing electropherogram 0 cannot be assigned to this position.
bSites that we were unable to obtain sequence for.

Figure 3. Adar expression in cholinergic or motor neurons is sufficient
to rescue Adar5G1 mutant locomotion defects. The chart shows open
field locomotion in Adar5G1 flies, Adar5G1; UAS-Adar 3/4 S flies having
this UAS construct in the absence of any GAL4 driver to induce
expression or lines in which the UAS-Adar 3/4 S construct is ex-
pressed in the Adar5G1 background under the control of different
GAL4 drivers. The wild-type control is w1118, Adar wild-type having
a Cha-GAL4 driver to control for locomotion effects of widespread
and strong GAL4 expression. Drivers expressing GAL4 in motor
neurons, giant fibre escape neurons and different chemical classes
of neurons are indicated. Drivers expressing GAL4 specifically in
motor neurons (OK6, D42 and OK371) and Cha-GAL4 which
expresses GAL4 in cholinergic neurons and some motor neurons
direct efficient rescue.
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on the X chromosome and a UAS-dAdar 3/4 S construct
on the second chromosome and crossed a number of dif-
ferent GAL4 drivers to this strain (Figure 3). Surprisingly
the enhancer trap GAL4 driver lines D42 and OK6 that
drive GAL4 and UAS construct expression specifically in
motor neurons, give efficient rescue of the Adar locomo-
tion defect (Figure 3). In Drosophila neuromuscular junc-
tions are primarily glutamatergic. The GAL4 enhancer
trap line OK371 has a GAL4 insert in the promoter
region of the gene encoding the vesicular glutamate trans-
porter and this line directs expression in motor neurons as
well as widely in a range of other glutamatergic neurons in
the brain. None of the driver lines tested has expression
that is absolutely restricted to motor neurons although
OK6 has very little expression elsewhere in the CNS
(31). Also the locomotion rescue by all three GAL4
driver lines is consistent with motor neurons being the
main focus of the locomotion defect. Among all GAL4
drivers we have tested those whose expression patterns
are known to include motor neurons consistently give ef-
ficient locomotion rescue.

Drivers expressing in neurons of other pharmacological
types implicated in the central control of movement such
as ddc-GAL4 (dopamine decarboxylase in dopaminergic
neurons) or Tdc2-GAL4, (tyrosine decarboylase 2
in octopaminergic neurons) are not sufficient to direct
locomotion rescue. Expression of ADARs in muscles,
(How(Held-out wings)-GAL4) or in glia, (nrv(nervana)-
GAL4) do not give rescue of walking defects (data not
shown).

Human ADAR2 suppresses age-dependent
neurodegeneration in Adar mutant Drosophila

Adar1F4 flies undergo progressive vacuolization of the
synaptic neuropile from 30 to 50 days (14). As the
Adar5G1 deletion mutant is less viable than the Adar1F4

mutant strain it was hypothesized that the neuro-
degeneration in Adar5G1 would be more aggressive.
To characterize the neurodegeneration pattern of the
Adar5G1 mutant strain, Adar5G1 mutant males were aged,
and heads were sectioned at 30 days and stained with
haematoxylin and eosin (Figure 4). This revealed that
vacuolization occurred in the Adar5G1 mutant as it did in
the Adar1F4 mutant. However the neurodegeneration was
more aggressive in the Adar5G1 mutant, not only affecting
the retina (Figure 4D, compare to wild-type in B), but also
the paired mushroom body (MB) calyces on the dorsal
brain (Figure 4C, compare to wild-type in A). The
mushroom body calyces are neuropil which is comprised
of the dendrites of mushroom body Kenyon cells whose
haematoxylin-stained nuclei lie above the calyces, and the
axonal collaterals of projection neurons extending to them
from the paired olfactory glomeruli on the ventral brain
above the antennae.

To confirm that the neurodegeneration that had been
observed in aged Adar5G1 is due to the Adar deletion, the
UAS-Adar 3/4 transgenic line was crossed into Adar5G1;
Cha-GAL4. The Adar5G1mutant male rescued by expres-
sion of dAdar 3/4 in the cholinergic nervous system was
aged to 30 days and the MB calyces and retina were

analysed by haematoxylin and eosin staining of head
sections. The vacuolization of the neuropil of the MB
calyces and retina of the Adar5G1; Cha-GAL4 male
rescued with Adar 3/4 is significantly reduced compared
to the Adar5G1mutant strain at 30 days (Figure 4).
As neurodegeneration in the Adar5G1 mutant strain is

successfully suppressed by Cha-GAL4-driven expression
of dAdar, it was therefore possible to compare suppression
of this phenotype by human ADARs. We aged the trans-
genic flies to 30 days to visualize neurodegeneration
(Figure 5). Human ADAR2 suppresses neurodegeneration
of both the calyces of the mushroom body (Figure 5E) and
in the retina (Figure 5F) as effectively as Drosophila
ADAR in the Adar5G1 mutant background in flies aged
to thirty days. The suppression of neurodegeneration at
thirty days is weaker with the nuclear p110 form of human
ADAR1 (Figure 5A, ADAR1p110 calyx, Figure 5B,
ADAR1p110 retina) but is lacking entirely with the
cytoplasmically accumulating p150 isoform of ADAR1
(Figure 5C, ADAR1p150 calyx, Figure 5D,
ADAR1p150 retina), suggesting that suppression of
neurodegeneration is associated with nuclear localization
of the ADAR proteins. It appears that suppression of
neurodegeneration by ADAR proteins is easier to obtain
than rescue of the locomotion defect.

Insects have lost the ADAR1 gene

Human ADAR2 expressed in Drosophila matches the
target site specificity of dADAR and rescues mutant
phenotypes surprisingly well while human ADAR1 does
not. These data suggest that Drosophila Adar may be a
true orthologue of human ADAR2 rather than an inverte-
brate gene ancestral to both vertebrate ADARs. Because
the Drosophila genome harbours a single Adar gene, this
idea would imply that flies have lost an ADAR1 ortho-
logue. Sequence data from recent invertebrate genome
projects supports this idea. Many genes that were previous-
ly assumed to have first appeared only at the
separation of Chordates from invertebrates have now
been found in some of the simplest invertebrates like cni-
darians (25). Both the ADAR1 and ADAR2 genes are in
this category.
Figure 6 shows results of our searches for invertebrate

ADARs mapped onto the phylogeny of all Metazoans that
extend a previous report (38) (Supplementary Table S2).
For all putative ADAR sequences, the deaminase domain
was aligned with those from human ADAR1 and ADAR2.
In most cases each ADAR could be classified as an
orthologue of ADAR1 or ADAR2 with a high degree of
confidence (Supplementary Figures S2 and S3).
Surprisingly, having discrete ADAR1 and ADAR2 genes
is an ancient characteristic, present throughout the
Eumetazoa lineage, including its oldest phylum, the
Cnidaria. In a few cases, however, ADAR1 appears to
have been lost. For example, an ADAR1 orthologue was
not found in multiple insect and crustacean genomes. It
was found in some arachnids, indicating that it was not
lost in all arthropods. Among the cnidarians, hydrozoans
also seem to have lost ADAR1, although it was present in
anemones (its presence or absence in corals cannot be
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clearly inferred because no genome is available, only a
partial EST library). ADAR2 appears to be more ubiqui-
tous. In fact, the only genome that possibly lacks an
ADAR2 orthologue, but contains one for ADAR1, is
Aplysia. However, the apparent absence of an Aplysia
ADAR2 could be due to incomplete coverage of the
Aplysia genome. Interestingly, nematodes and flatworms
have neither a true ADAR1 nor ADAR2 orthologue. The
two Adr genes from Caenorhabditis elegans cannot be clas-
sified into either group (39).
Together the findings of an ancient Metazoan ADAR2

conserved between fly and human, and loss of an ancient
Metazoan ADAR1 in insects explain the results of the

rescue tests with human ADARs in fly and account for
the surprising similarity in target site preferences
between human ADAR2 and Drosophila ADAR.

DISCUSSION

We find that the target specificity of an ADAR2-type
protein is conserved from fly to human allowing effective
rescue of in vivo RNA editing, locomotion and neuro-
degenerative phenotypes in flies by human ADAR2.
Neither ADAR1p110 nor ADAR1p150 efficiently edit
critical sites in Drosophila transcripts nor rescue the
Adar mutant locomotion phenotype. This data was

Figure 4. Suppression of neurodegeneration in Adar5G1 mutant flies by Drosophila ADAR. (A and B). Haematoxylin and eosin stained frontal
sections of 30-day-old wild-type (w1118) heads show no neurodegeneration in the mushroom body calyces or in the eye. Scale bars: 20 mM. (C and D)
Frontal sections of 30 day-old Adar5G1 heads show vacuolization and loss of Mushroom Body calyx neuropil (C) and large vacuoles in the retina of
the eye (D) of Scale bars: 5mM. (E and F) Frontal sections of 30-day-old Adar5G1; Cha GAL4, UAS-Adar 3/4 heads show rescue of vacuolization in
the MB calyx and in the eye. Scale bars: 20 mM.
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obtained before the recent increase in vertebrate genome
sequences and is well explained by the identification of
ancient Metazoan ADAR1 and ADAR2 genes in inverte-
brate genomes. Previously these ADAR genes had been
identified only in Chordate genomes and not in
Drosophila and other insects. We find that ADAR2 is
conserved in Drosophila and that ADAR1 has been lost
from insects and crustaceans but is present in Arachnid
genomes. The data also show that the Drosophila Adar
mutant represents a very useful genetic model for
ADAR2 loss of function effects in human disease even
though different transcripts are edited in vertebrates and
flies. Restoration of ADAR activity in motor neurons, a
fundamental neuron type present in even the simplest
metazoans, is sufficient to rescue locomotion defects in
Adar mutant flies.

The lack of RNA substrates from Drosophila with
defined ECS elements made it impossible to analyse the
activities of ADAR1 and ADAR2 at many Drosophila
editing sites in vitro. We find that RNA structures at
specific editing sites in Drosophila are often difficult to
predict from the genome sequence. Although vertebrate
editing sites show easily recognized pairings between
edited exons and editing site complementary sequence
(ECS) elements that exist as contiguous stretches of
sequence in nearby introns, some fly sites may have
shorter fragmented ECSs, as shown for the Drosophila
synaptotagmin1 (Syt1) transcript (40). To analyse rescue
at more editing sites we expressed the human ADAR

proteins in Drosophila and measured editing by these
proteins in Adar mutant flies. We focused on 26 edited
positions in four transcripts that were either constitutively
highly edited at all developmental stages or edited only or
predominantly in adult flies. We have also analysed other
edited positions in many other transcripts, though not in
such depth, and the overall pattern of editing at these
other positions with different ADARs did not vary from
our core set. Our data showed that the set of edited sites in
Drosophilamatch the specificity of an ADAR2 enzyme but
not an ADAR1 enzyme to a surprising extent, i.e. the fly
ADAR does not appear to represent an evolutionary pre-
cursor that might combine features of two descendant ver-
tebrate ADARs. This is consistent with greater sequence
conservation between Drosophila ADAR and vertebrate
ADAR2.
Human ADAR2 expressed in Drosophila mirrors the

function of the fly gene in many respects. We found that
actin 5C-GAL4 and other drivers that direct ubiquitous,
high level expression of ADAR2 in embryos and larvae or
Mef 2-GAL4 that directs similarly premature high level
expression in muscles and heart cause embryonic and
larval lethality. We have previously observed similar le-
thality with the edited dAdar S isoform that is the most
active Drosophila ADAR isoform (30). This is presumably
due to some transcripts being edited inappropriately early
in development. Expressing either an edited-equivalent
Drosophila UAS-ADAR 3/4 G isoform or UAS-ADAR2
G do not cause this lethality. Human ADAR2 also

Figure 5. Suppression of neurodegeneration at 30 days in Adar5G1 mutant flies by human ADAR2. (A and B): Haematoxylin and eosin stained
frontal sections of 30-day-old Adar5G1; Cha-GAL4, UAS-ADAR1p110 heads show rescue of neurodegeneration in the mushroom body (MB) calyces
of the Adar5G1 mutant. (A). Some small vacuoles remain in the retina (B). Arrows indicate vacuolization. (C and D): Frontal sections of 30-day-old
Adar5G1; Cha-GAL4, UAS-ADAR1p150 heads show lack of neurodegeneration rescue in the MB calyces of Adar5G1 (C) The retina degenerated
rapidly (D). (E and F): Frontal sections of 30-day-old Adar5G1; Cha-GAL4, UAS-ADAR2 heads show rescue of vacuolization of the MB calyces (E)
and the eye (F). Scale bars: 20 mM.
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rescues neurodegeneration in Adar mutant flies as does
dADAR 3/4.
Human ADAR2 does not rescue locomotion defects in

the Adar mutants as well as expected since in the
best-rescuing UAS-ADAR2 line sites in Drosophila tran-
scripts are edited more effectively than in the best-rescuing
dADAR 3/4 line (Tables 2 and 3). We do not know why
this is. Since ADAR2 is less active than dADAR 3/4 in
editing the dAdar exon 7 site in vitro (Figure 1B) it might
be expected that for ADAR2 to edit sites in vivo in
Drosophila more efficiently than dADAR 3/4 would
require a higher level of ADAR2 expression. We cannot
rule out that ADAR2 is more highly expressed than
dADAR 3/4 and has also some deleterious effect due to
a higher expression level that interferes with locomotion
rescue.

We do not understand why ADAR1p110 also rescues
neurodegeneration but the finding suggests that rescue of
neurodegeneration may not be dependent on rescue of
site-specific RNA editing. ADAR proteins may have
dosage-sensitive effects independent of their RNA
editing specificities since ADAR1p110 is able to rescue
neurodegeneration even though it does not edit correctly.
The ability to rescue neurodegeneration correlates with
predominant localization to the nucleus. It does not
appear likely that rescued RNA editing of a subset of
the Drosophila sites is the reason that ADAR1p110
rescues neurodegeneration, since ADAR1p150 edits most
of the same sites to some extent, but we cannot rule out
this possibility. Editing independent effects of ADARs ex-
pressed in motor neurons might also account for the small
improvements in locomotion seen when ADAR1 isoforms

Figure 6. Occurrence of ADAR1 and ADAR2 genes in the Metazoa. The phylogenetic tree of species was obtained from Taxonomy Common Tree
NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi). Species names at the ends of branches highlighted in yellow represent
available genomes that were searched for ADAR1 or ADAR2 orthologues. Species names highlighted in purple were cases where ADARs were
identified by direct cloning (cephalopods) or searching EST resources (coral). Positive identification of ADAR1 or ADAR2 is coloured in red and
blue, respectively. ADARs that cannot be classified as either ADAR1 or ADAR2 are coloured in green.
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or inactive dADAR 3/4 EA are expressed in Adar mutant
flies and might also contribute to the toxicity of high level
ADAR1 isoform expression.

Ironically, even though the target specificity of
ADAR2-like proteins is well conserved and Drosophila
has many edited transcripts, there is no evidence that
any editing sites are conserved between Drosophila and
vertebrates. There is no evidence for editing of transcripts
encoding ionotropic glutamate receptor subunits in
Drosophila even though this family of genes is conserved
with vertebrates; vertebrate glutamate receptor editing
appears to have first evolved in fish. None of the many
editing sites in Drosophila transcripts can be related to
known editing sites in vertebrate homologues and the
one known case where a fly and vertebrate transcript are
edited at the equivalent codon appears to have arisen by
convergent evolution rather than by conservation of the
underlying dsRNA target structure (41). This makes more
impressive the finding that human ADAR2 has retained
specificity and rescues the Drosophila Adar mutant.

As Drosophila has lost ADAR1, the possibility existed
that certain sites would remain ADAR1-preferred sites
since dADAR may have a higher specific activity or a
slightly broader specificity than the vertebrate ADARs
(Figure 1B and C). However this has not occurred and
the tested editing sites in Drosophila are all preferentially
edited by ADAR2. RNA editing sites at sites once edited
by ADAR1 may have adjusted to conform better with the
ADAR2-like target specificity after ADAR1 was lost in
insects and crustaceans. Now that so many RNA editing
events have been detected in Drosophila (4), evolutionary
comparisons across invertebrates may be able to establish
whether some RNA editing events are conserved since the
insects diverged from crustaceans or arachnids or more
distant groups and perhaps also determine which
ADARs edited these sites in more primitive invertebrates.
We cannot exclude the possibility that human ADAR1
edits some completely unknown sites in RNA duplexes
in Drosophila transcripts that might represent relics of
ancient ADAR1 editing events. This could provide one
explanation for the reduced viability associated with
highly expressing ADAR1 isoforms but we did not see
any evidence for new human ADAR1 RNA editing
events close to the Drosophila editing sites examined in
rescue lines in vivo. ADAR1-type sites retained in
Drosophila might not be edited by Drosophila ADAR
and it would require a genome-wide search by RNA
Sequencing in ADAR1-expressing flies to detect them, if
they are still present. It is not clear however that ADAR1
editing sites would be conserved since the beginning of
modern insects. Whole genome sequences are available
for only a limited number of insect and crustacean
species so there could be some insects and crustaceans
that do still have ADAR1. With the full extent of editing
in humans still to be determined, 4% of Drosophila tran-
scripts affected and indications that RNA editing may be
even more widespread in squid studies on the evolutionary
origins of RNA editing sites and the selective forces main-
taining them will expand our understanding of the role of
RNA in gene expression.

What is most surprising is that ADAR1, an essential
gene in mammals, has been lost in some invertebrates. Is
there a biological role of ADAR1 other than site-specific
editing that became dispensable?

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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