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We have previously reported that RORγ expression was decreased in ER−ve breast cancer, and increased ex-
pression improves clinical outcomes. However, the underlying RORγ dependentmechanisms that repress breast
carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-β/
EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair. We demon-
strate that RORγ expression is: (i) decreased in basal-like subtype cancers, and (ii) inversely correlatedwith his-
tological grade and drivers of carcinogenesis in breast cancer cohorts. Furthermore, integration of RNA-seq and
ChIP-chip data reveals that RORγ regulates the expression of many genes involved in TGF-β/EMT-signaling,
DNA-repair and MaSC pathways (including the non-coding RNA, LINC00511). In accordance, pharmacological
studies demonstrate that an RORγ agonist suppresses breast cancer cell viability, migration, the EMT transition
(microsphere outgrowth) and mammosphere-growth. In contrast, RNA-seq demonstrates an RORγ inverse
agonist induces TGF-β/EMT-signaling. These findings suggest pharmacological modulation of RORγ activity
may have utility in breast cancer.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Metastatic breast cancers that acquire therapeutic resistance are as-
sociated with high rates of mortality (Gonzalez-Angulo et al., 2007;
Singh and Settleman, 2010). The mechanisms underlying the process
of metastatic dissemination remain poorly understood owing to the
complexity and heterogeneity of breast cancer (Perou et al., 2000). Fur-
thermore, triple negative breast cancers (TNBC) lacking estrogen recep-
tor (ER), progesterone receptor (PR) and HER2 expression (ER−/PR−/
HER2−) are notoriously resistant to hormonal therapy, and associated
with poor clinical outcome (Dent et al., 2007). Notably, mesenchymal
traits and self-renewal capacity arising from epithelial–mesenchymal
transition (EMT) and cancer stem cell (CSC) acquisition are a feature
of TNBC (Hennessy et al., 2009). Thus, the identification of new bio-
markers underlying mechanisms of tumor dissemination is of para-
mount importance for TNBC diagnosis and novel therapeutics.

Emerging reports reveal that aberrant expression and function of
other nuclear receptors (NRs) are involved in breast cancer (Doan
sland, Institute for Molecular

. This is an open access article under
et al., 2014; Muscat et al., 2013). Our previous study identified differen-
tial expression of the NR family in ER+ve and ER−ve breast tumors
relative to normal breast that underscored the discriminant therapeutic
and prognostic value of the NR signature. Importantly, the NR expres-
sion profiling study revealed that the expression of RORγ (RORC) was
decreased in ER−ve breast cancer andnegatively associatedwith histo-
logical grade. Moreover, low RORγ expression correlated with the de-
creased probability of distant metastasis free survival (DMFS),
implying the potential role of RORγ in suppressing advanced breast can-
cer (Oh et al., 2014). Despite potential evidence for the role of RORγ in
breast cancer, the exact molecular mechanisms underlying RORγ-
mediated regulation of breast cancer and/or potential pharmacological
utility have not been characterized and reported.

Interestingly, RORγ2 (RORγt), a highly related T-cell specific isoform
(that has identical DNA- and ligand-binding regions to RORγ1 with
minor differences in the N-terminal AB region) plays a critical and hierar-
chical role in Th17 cell differentiation (Ivanov et al., 2006; Yang et al.,
2008). Antagonists of RORγ display utility as anti-inflammatory com-
pounds and for Th17-dependent autoimmune diseases (Solt et al.,
2011). However, RORγ agonists are also gaining traction in the therapeu-
tic arena, compounds with increasing activity display pharmacological
value in immunotherapeutic approaches to fight cancer by stimulating
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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pro-inflammatory cytokine production and effector T cells (Carter et al.,
2015). These characteristics underscore the role of this NR at the nexus
of pathways effecting immune suppression (for autoimmune disease) in
contrast to activation (for immune-mediated tumor inhibition).

Our study has explored the function of RORγ in negative regulation
of metastasis and aggressive tumorigenicity in breast cancer. The study
utilizes pharmacological and genetic modulation of RORγ activity and
expression (in well-characterized ER+ve and ER−ve cell lines) and
demonstrates that (in vitro) induction of RORγ-dependent pathways
display anti-cancer efficacy independent of immunotherapeutic path-
ways. This has revealed that RORγ-dependent programs suppress path-
ways driving pro-metastatic, EMT and the acquisition of stemness
necessary for breast cancer progression and metastasis.

2. Materials and Methods

2.1. Cell Culture and Transfection

T-47D, MCF-7 and MDA-MB-231 cells were initially purchased from
ATCC and maintained in RPMI-1640 (for T-47D) or DMEM/F-12 (for
MCF-7 and MDA-MB-231) supplemented with 10% FBS. Cell lines were
genotyped using STR profiling and tested formycoplasma contamination.
For cells embedded in 3D Matrigel, MCF-7 and MDA-MB-231 cells were
grown in DMEM supplemented with 10% FBS and 10 μg/ml of insulin.
To knockdown RORγ expression, cells were transfected for 48 h with
stealth siRNAs (Invitrogen, HSS109300, HSS109301, HSS109302) that
were purchased from Life Technologies. A final concentration of 10 nM
of siRNAs was used with RNAiMAX (Invitrogen) following the
manufacturer's instruction. A stealth siRNA negative control Med GC
(Invitrogen, 12935-300) was used in parallel to normalize the back-
ground effect. For over-expression of RORγ, the cDNA vector (Origene,
SC121242) was used with Lipofectamin 2000 (Invitrogen), following
the manufacturer's guide.

2.2. RNA Isolation and RT-qPCR

RNA was isolated using the Trizol reagent to extract RNA, followed
by turbo DNase treatment and RNA clean up with RNeasy RNA column
as described previously (Dowhan et al., 2012; Oh et al., 2014). To syn-
thesize complementary DNA, 600 ng of total RNA was used with
Taqman reverse transcription from Invitrogen. RT-qPCRwas performed
using the ViiA7™ RT-qPCR system with primer sets. Primer sequences
were presented in Fig. S1. To determine the relative expression com-
pared to control, Ct values were normalized to RPLP0, and relative ex-
pression was calculated using the ΔΔCt method. For quantification of
LINC00511 expression in breast cancer cell lines, Ct values were normal-
ized to GAPDH, and relative expression was calculated using the ΔCt
method.

2.3. Breast Cancer Dataset Analysis

RORγ expression was extracted from the web database of TCGA
(TCGA-data-portal) with clinic data. UNC (Harrell et al., 2012) dataset
was established as described previously (Oh et al., 2014) and a custom
R script was used to retrieve mRNA expression data and phenotype
data fromUNCdataset. ProfilingRORγ expression in theGEObreast can-
cer collection was performed with GOBO (Ringner et al., 2011)
(co.bmc.lu.se/gobo/). Kaplan–Meier survival curves were generated
using the KMplot (Györffy et al., 2010) (kmplot.com). RORγ expression
in different breast cancer grades was extracted from NKI, UPP, MAINZ
and TRANSBIG datasets using a custom R script. The stratified data
were analyzed and plotted using the Prism software (version 6). To de-
termine the significance in human cohorts, non-parametric ANOVA
with the Kruskal Wallis test was performed in the Prism software. The
ChIP-chip data from the Kittler et al. 2013 study including the RORγ
(RORC) binding file (Bed format) is available from GSE41995 (GEO).
2.4. Library Preparation and RNA-seq Analysis

Library preparation and sequencing were performed at the IMB Se-
quencing Facility of the University of Queensland. Total RNA sample li-
braries were generated using the Illumina TruSeq Stranded mRNA LT
sample preparation kit (Illumina, Part no. RS-122-2101 and RS-122-
2102), according to the standard manufacturer's protocol (Part no.
15031047 Rev. E October 2013). The mRNA denaturation and elution
were performedwith 0.1 μg to 0.2 μg of total RNA depending on amount
of sample available prior to a heat fragmentation step aimed at produc-
ing librarieswith an insert size between 120 and 200 bp. cDNAwas then
synthesized from the enriched and fragmented RNA using SuperScript II
Reverse Transcriptase (Invitrogen, Catalog no. 18064014) and random
primers. The resulting cDNA was converted into double stranded DNA
in the presence of dUTP to prevent subsequent amplification of the sec-
ond strand and thusmaintain the strandedness of the library. Following
3′ adenylation and adaptor ligation, librarieswere subjected to 15 cycles
of PCR to produce RNA-Seq libraries ready for sequencing. Prior to se-
quencing, RNA-Seq libraries were qualified via the Agilent Bioanalyzer
with the High Sensitivity DNA kit (Integrated Sciences, Part no.
4067–4626). Quantification of libraries for clustering was performed
using the KAPA Library Quantification Kit — Illumina/Universal (KAPA
Biosystems, Part no. KK4824) in combination with the Life technologies
Viia7™ RT-qPCR instrument. Sequencing was performed using the
Illumina NextSeq500 (NextSeq control software v1.2/Real Time Analy-
sis v2.1) platform. The library poolwas diluted and denatured according
to the standard NextSeq500 protocol and sequencingwas carried out to
generate single-end 76 bp reads using a 75 cycle NextSeq500 High
Output reagent Kit (Illumina, Catalog no. FC-404-1005). Reads were
mapped against the reference genome (GRCh38.p2) using STAR
(Dobin et al., 2013), and read counts for each gene in the Ensembl anno-
tation were generated using htseq-count in the HTSeq python package
(Anders et al., 2015) and the GENCODE annotation. Differential expres-
sion (n=3)was detected using theDESeq2 (Love et al., 2014) packages
in R. Coding genes and long non-coding genes were separated using the
reference of long non-coding genes (GENCODE). It should be noted that
there are two isoforms of RORγ, RORγt expression is restricted thymo-
cytes, and RORγ1 is the predominant isoform in other cells and tissues.
These isoforms have identical DNA and ligand binding domains, with
very minor differences in the N-terminal region. Examination of the
RNA-seq data indicates that RORγt expression is absent in the breast
cancer cell lines, however, the probes used to interrogate the human
breast cancer data sets (which are primarily derived from affymetrix
data) cannot discriminate between RORγt and RORγ1 expression.

2.5. Pathway Analysis, Survival (signature) Analysis and Cis-regulatory
Analysis

Pathway analysis was conducted utilizing the Ingenuity Pathway
Analysis (IPA) and the gene set enrichment analysis (GSEA). For IPA,
significantly and differentially expressed genes with fold changes
information were loaded into the IPA system (loss of function datasets;
FDR b 0.05, Fold changes N1.3 and gain of function dataset; FDR b 0.05,
fold changes N1.2). IPA computes an activation z-score of each path-
ways or annotations as previously described (Krämer et al., 2014). We
used bias-corrected activation z-score to avoid biased analysis outcome.
For GSEA, we downloaded the GSEA tool. All genes (N50,000) with nor-
malized counts information after DESeq2 was loaded into the GSEA and
ran in a default condition with the gene symbol annotation. HALLMARK
gene setwas used to determine the important pathways (top 5 positive-
ly or negatively enriched), using normalized enrichment score (NES).
For other gene set analysis, the target gene set was manually
downloaded and ran with RNA-seq data in a default condition. To inte-
grate ChIP-chip data to our RNA-seq study, we manually downloaded
the RORγ ChIP-chip data that was generated in MCF-7. The annotation
of hg18 was transformed into hg19 using the lift-over from the UCSC.

http://kmplot.com
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RORγ binding was shown using the UCSC web-browser, covisualizing
conservation scores (phyloP and phastCon) and histone marks
(H3K4Me1, H3K4Me3 and H3K27Ac from 7 cell lines of ENCODE). For
survival analysis with RORγ-dependent gene signature, we utilized
the genefu package in R as previously described (Oh et al., 2014). For
clarification, a low RORγ gene expression signature score indicates
that the (RORγ signature) genes significantly decreased in the RORγ
knockdown cells are up-regulated relative to the (RORγ signature)
genes significantly increased after RORγ knockdown cells. Accordingly,
a negative or low RORγ-dependent signature score is suggestive of rel-
atively higher RORγ expression levels and a positive or high RORγ-
dependent signature score is indicative of RORγ dysfunction (i.e.
lower RORγ expression levels). For cis-regulatory analysis, we utilized
the GREAT analysis as previously described (McLean et al., 2010).
GREAT computed RORγ binding sites information (hg19) to identify
cis-regulatory target genes, RORγ binding location from the TSS and
enriched pathways/termswith target genes. To examine the correlation
of lncRNA and coding genes, we also utilized the GREAT. Using the loca-
tion of lncRNA from T-47D, we identified the target coding genes and
generated the correlation plot showing both fold changes of lncRNAs
and target coding genes.

2.6. PPI Network Analysis

For protein–protein interaction, we utilized the Netgestalt previous-
ly described (Shi et al., 2013). We selected the iRef database as a net-
work view and uploaded differentially expressed genes of RNA-seq
outcomes with fold changes (log2 scale) in a single binary tract format.
The PPI network structure of highlighted pathways from RNA-seq anal-
ysis was visualized with fold changes in log2 scale.

2.7. Western Blot Analysis

Cells were lysed using RIPA buffer containing the protease inhibitor
(Roche). The concentration of protein samples was measured with the
BCA kit (Thermo Scientific). Appropriate amount of protein samples
was loaded onto SDS-PAGE and transferred to the PVDF membrane,
followed by blocking with 5% skimmilk. The membrane was incubated
with primary antibody overnight and detected using the ECL reagent,
Immobilon Western chemiluminescent horseradish peroxidase sub-
strate (Millipore). The film (Kodak) was exposed with the X-OMAT
2000 film developer (Kodak). Antibodies used for western blotting
are: RORγ (Merck Millipore, MABF81), c-MET (Cell Signaling Technolo-
gy, #8198), SMAD3 (Cell Signaling Technology, #9523), GAPDH (R&D,
2275-PC-100) and HRP anti-rabbit (Cell Signaling Technology, #7074)
and HRP anti-mouse (Zymed, 62-6520).

2.8. Immunohistochemistry

Formalin-fixed paraffin-embedded tissue sections of breast cancer
(14 ER−, 15 ER+) and normal breast tissues (13 cases) were obtained
from the Australian Breast Cancer Tissue Bank (abctb.org.au) and the
Victorian Cancer BioBank (viccancerbiobank.org.au). Tissue sections of
normal breast tissue biopsies were obtained from the Susan G. Komen
for the Cure Tissue Bank at the IU Simon Cancer Center. Normal tissues
were from women with no known history of breast disease and were
collected following reduction mammoplasty or from volunteers who
donated normal breast tissue biopsies. Breast cancer caseswere primary
invasive ductal carcinomas, with known hormone receptor status,
tumor grade and age at diagnosis (Muscat et al., 2013). All tissues
were obtained with informed consent from donors, and the use of tis-
sues received approval from the human research ethics committees of
the participating institutions. Immunoperoxidase staining was per-
formed using anti-RORγ (NR1F3) rabbit polyclonal antibody (Abcam,
Melbourne, Australia, ab78007). Tissues were first heat treated under
pressure in citrate buffer, as described previously (Mote et al., 1999),
to reveal epitopes. Primary antibody incubations were performed at
4 °C, overnight, in phosphate buffered saline (pH 7.5) containing 0.5%
Triton X-100. Primary antibody bindingwas revealed by subsequent in-
cubation 30min at room temperaturewith biotinylated goat anti-rabbit
secondary antibody (Dako Australia, Botany, Australia), then one hour,
room temperature incubation with streptavidin-horseradish peroxi-
dase conjugate (Dako Australia), followed by color development with
diaminobenzidine substrate solution (Dako Australia). Stained sections
were scanned using a Hamamatsu Nanozoomer digital slide scanner
using a 40× objective.

2.9. Cell Viability Assay

Cellswere plated in quadruplicatewith the same confluence. In a fol-
lowing day, cells were treated with RORγ small molecules (10 μM of
SR1078/agonist and 5 μMof SR2211/antagonist) over several dayswith-
out changing themedia. Cell viabilitywasmeasuredwith theWST-8 (2-
(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-
2H-tetrazolium,monosodium salt) (SigmaAldrich, 96992-500TESTS-F),
following the manufacturer's instruction.

2.10. Wound Healing Assay

Wound healing assay was performed as previously described (Oh
et al., 2014). Cells were transfected with control-siRNA or RORγ-siRNA
for 24 h in a 6-well plate. Scratches were created across themonolayers
of cell lines using a sterilized yellow tip. Images ofwoundswere taken at
0-, 24-, and 48-h time points using a 4× objective of the Nikon Ti–U
inverted fluorescence microscope under bright field. Cell migration
(gap closure) of scratch wounds was measured using the ImageJ
software.

2.11. 3D-Organotypic Growth Assay

MCF-7 andMDA-MB-23 A cells were diluted in completemedia sup-
plemented with 5% growth reducedMatrigel (BD Bioscience) and seed-
ed onto solidifiedMatrigel cushions (150 μl/well) in 29 cm glass bottom
dishes (2× 104 cells/cm2). Cellmicrosphere outgrowthwas observed by
Nikon ECLIPSE Ti–U inverted phase contrast microscope. Longitudinal
cell growth was normalized to an initial reading taken 24 h after cell
plating and addition of SR1078 (10 μM).

2.12. Mammosphere Assay

Mammosphere assay was performed as previously described (Lo
et al., 2012). Material and reagent were prepared as followed; a 96-
well ultra low attachment plate (Corning) and DMEM/F12 media con-
taining 20 ng/ml epidermal growth factor (Sigma Aldrich), 10 ng/ml
basic fibroblast growth factor (Sigma Aldrich), 5 μg/ml insulin (Sigma
Aldrich), 50× B27 supplement (Life technologies) and 0.4% FBS
(Gibco). Cells were counted and seeded 200 cells (in 200 μl) per well
in the ultra low attachment plate with mixed mammosphere media.
For treatment, 10 replicates were seed and incubated with either
DMSO or RORγ small molecules for 6 days. Images were taken using
the Nikon Ti–U inverted fluorescence microscope under bright field.

2.13. Statistical Analysis

Statistical analysis was performed with Prism software version 6 of
GraphPad. All data was presented as mean of S.E.M. For two groups
comparison, the two-tailed student's t-test was used. When three or
more groups were compared, the one-way analysis of variance
(ANOVA) test was used to measure significant effect of one factor. For
the statistical analysis in wound healing assay and 3D-organotypic out-
growth assay, the two-way ANOVA was used to determine significant
effect of two factors. ANOVA test was followed by Tukey's post hoc
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test to correct familywise error-rate (FWER). For RORγ expression in
human data cohorts, non-parametric ANOVA with the Kruskal Wallis
test was performed in the Prism software. Pearson test was used to de-
termine the correlation between RORγ expression and target genes ex-
pression. Significance was denoted as NS, *, ** and ***, meaning not
significant, P b 0.05, P b 0.01 and P b 0.001, respectively.

3. Results

3.1. RORγ Expression is Decreased in Aggressive Basal-like and Grade 3
Breast Cancers

To explore the role of RORγ, we examined the RORγ expression in
different human breast cancer subtypes. We observed RORγ mRNA ex-
pression is more abundantly expressed in luminal A and B subtypes,
and poorly expressed in aggressive basal-like subtype in the TCGA and
UNC datasets (P b 0.001) (Fig. 1A and B). Assessment and correlation
of RORγ expression levels with intrinsic subtypes was performed
using the Hu et al. and PAM50 breast cancer datasets (1881 patients)
(Ringner et al., 2011). This analysis demonstrated significantly
(P b 0.00001) decreased RORγ expression in basal-like subtypes
(Fig. S2A and B). Furthermore, the curated expression data on RORγ in
the 51 breast cancer cell lines (Neve et al., 2006) verified that RORγ
mRNA expression is poorly expressed in the basal (A and B)-aggressive
cell lines relative to expression in the luminal lines (Fig. 1C).

Previously, we showed that increased RORγ expression improved
the probability of metastasis free survival (Oh et al., 2014). We subse-
quently explored the significance of RORγ expression on relapse free
survival (RFS). Utilizing Kaplan–Meier survival analysis and KMplot
(n N 3400), we determined that the patient groupwith higher RORγ ex-
pression displayed increased probability of RFS (Fig. 1D). In this context,
Fig. 1.DecreasedRORγ expression in aggressive basal-like subtype and grade 3 breast cancer. (A
(B) UNC. (C) Stratified RORγ mRNA expression in molecular subtypes of 51 breast cancer cell
groups with high and low RORγ expression.(E) Decreased RORγ expression in histological grad
we also observed that RORγ expression is negatively associated with
histological grade, i.e. RORγ is decreased in grade 3 breast cancer in sev-
eral human breast cancer cohorts, NKI (van't Veer et al., 2002), UPP
(Miller et al., 2005), MAINZ (Schmidt et al., 2008), TRANSBIG
(Desmedt et al., 2007) (Fig. 1E–H) and in the combined GEO datasets
(Fig. S2C). Furthermore, we confirmed that RORγ expression is signifi-
cantly decreased in ER−ve cases, compared to ER+ve breast cancer
in the combined GEO collection (Fig. S2D), and immunohistochemistry
validated RORγ protein expression is decreased in ER−ve breast cancer
relative to normal human breast (Fig. S2E). Together, these data under-
score decreased expression of RORγ is associated with aggressive basal-
like breast cancer and histological grade 3 breast cancer, in accord with
the protective effects of increased RORγ expression on clinical
outcomes.

3.2. RNA-seq Analysis Revealed that RORγ Negatively Regulates Oncogenic
Pathways

To identify and characterize RORγ-dependent gene expression and
signaling pathways relevant to breast carcinogenesis, we performed
RORγ siRNA-mediated knockdown and expression profiling in several
breast cancer cell lines, including (ER+ve) T-47D, MCF-7 and
(ER−ve) MDA-MB-231 cell lines expressing high to low levels of
RORγ mRNA. We obtained significant decreases (~90%) of RORγ
mRNA expression in all three cell lines (Fig. 2A–C). We also validated
the siRNA knockdown efficiency on RORγ protein expression by west-
ern analysis (Fig. 2D). In parallel, we over-expressed RORγ in MDA-
MB-231 (Fig. 2E).

We performed RNA-seq analysis in breast cancer lines (after gain
and loss of RORγ function) coupled with STAR (Dobin et al., 2013)-
DESeq2 (Love et al., 2014), differential expression (DE) pipeline. We
andB)RORγmRNAexpression acrossmolecular subtypes of breast cancer in (A) TCGA and
lines.(D) Kaplan–Meier survive curve depicting the RFS rate comparison between patient
e 3 cancer in four different breast cancer datasets.



Fig. 2. Identification of RORγ-dependent genes and pathways by RNA-seq coupled with RORγ gain and loss function. (A–C) Transfection of RORγ siRNA into (A) T-47D, (B) MCF-7 and
(C) MDA-MB-231 significantly decreases RORγ mRNA expression (n = 3). (D) Western blot analysis confirming depletion of RORγ expression. (E) Transfection of a RORγ expression
vector into MDA-MB-231 significantly increases RORγ mRNA expression (n = 3). (F) Numbers of significantly differentially expressed transcripts identified after RORγ gain and loss of
function in T-47D, MCF-7 and MDA-MB-231 (n = 3). (G) Overlapping and distinct RORγ-dependent genes (after RORγ siRNA transfection, i.e. loss of function) in T-47D, MCF-7 and
MDA-MB-231. (H) Ingenuity Pathway Analysis (IPA) exhibiting bias-corrected activation z-scores of RORγ-dependent functional pathways after RORγ gain and loss of function in
ER−ve MDA-MB-231 cells. (I and J) GSEA analysis showing top five positive and negative enriched modules derived from HALLMARK gene sets after (I) RORγ depletion and (J) over-
expression. (K) Long-term clinical outcome predicted from RORγ-dependent signature after Kaplan–Meier survival analysis in the UNC cohort depicting the survival rate comparison
between high and low RORγ-dependent signatures. (L) Correlation analysis between RORγmRNA expression and the RORγ-dependent signature scores in the UNC dataset.
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identified that 2000–6000 genes were differentially expressed in a sig-
nificant and robust manner (FDR b 0.05, Fold change N 1.3) in T-47D,
MCF-7 and MDA-μΒ-231 after RORγ knockdown (Fig. 2F). Fig. 2F dis-
plays the number of coding and noncoding genes that are differentially
(and significantly) up and down regulated after loss of RORγ function.
Moreover, the RNA-seq analysis identified RORγ-dependent genes
that were differentially expressed and common to both ER+ve and
ER−ve breast cancer cell lines (i.e. 1437 genes in T-47D, MCF-7 and
MDA-MB-231) (Fig. 2G). In addition, RNA-seq and DE analysis after
over-expression of human RORγ in MDA-MB-231 revealed that RORγ
over-expression induced the significant differential expression of ~800
genes (FDR b 0.05, Fold change N1.2) (see Fig. 2F).

Importantly, Ingenuity Pathway Analysis (IPA) functional analy-
sis shows the opposing effects of RORγ gain and loss of function.
For example, RORγ over-expression in MDA-MB-231 cells sup-
presses pathways that control cell survival, cell proliferation and
migration (Fig. 2H). In contrast, RORγ knockdown activates path-
ways that induce breast cancer, tumor incidence and metastasis
(Fig. 2H). Furthermore, GSEA (Subramanian et al., 2005) confirmed
that RORγ knockdown positively enriched transforming growth
factor-beta (TGF-β)/EMT signaling modules of hallmark gene sets
in MCF-7, T-47D and MDA-MB-231 (Figs. 2I, S3A and B). Conversely,
RORγ over-expression suppressed genes of EMT signaling module in
MDA-MB-231 cells (Fig. 2J). Notably, GSEA using the genes that were
regulated in common in all three cell lines by RORγ depletion
(Fig. 2G, n = 1437) still revealed the significantly positive enrich-
ment of TGF-β and EMT modules (Fig. S3C). Hence, these data indi-
cate that RORγ-dependent gene expression in breast cancer cells is
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associated with genetic programs and pathways that control critical
aspects of breast cancer progression and metastasis.

3.3. RORγ-dependent Gene Signature Displays Prognostic Value for Breast
Cancer Patient Survival

To extend our understanding of the role of RORγ-dependent genes
(i.e. a RORγ-dependent gene signature) on clinical outcome in breast
cancer, we utilized the previously applied bioinformatic survival analy-
sis with gene expression signatures (Dowhan et al., 2012; Oh et al.,
2014). Using RNA-seq data gene set from T-47D cells, we extracted ex-
pression levels of the RORγ-dependent genes from the microarray data
of individual patients in the human cohorts (Harrell et al., 2012; Sotiriou
et al., 2006). Thenwe generated the average score to reflect the gene ex-
pression changes by RORγ knockdown.With this average score, we sep-
arated patients into two groups as high average score and low average
score groups and performed Kaplan–Meier survival analysis. Survival
analysis shows that the group with higher average score (decreased
RORγ expression) has a poorer clinical outcome in the UNC (Harrell
et al., 2012) dataset (Fig. 2K). Consistently, we found that in the
human cohort, UNT (Sotiriou et al., 2006), there was a similar survival
pattern with the RORγ-dependent gene set (Fig. S3D). In keeping with
this notion, we observed a significant inverse correlation between the
RORγ gene expression levels and RORγ-dependent signature average
scores in the UNC (Fig. 2L) and UNT (Fig. S3E) breast cancer data sets.
In summary, the RORγ-dependent signature also displays prognostic
power in human cohorts.

3.4. RORγ Negatively Modulates TGF-β/SMAD Signaling and EMT Process-
es: RORγ Directly Targets Critical Genes

We examined the negative association of RORγ and TGF-β/EMT sig-
naling in more detail. Canonical pathway analysis demonstrated that
RORγ over-expressionwas significantly associatedwith a negative acti-
vation score, indicating suppression of the TGF-β signaling annotation
inMDA-MB-231 cells (Fig. 3A). Conversely, RORγ knockdownwas asso-
ciatedwith an increased activation score, showing induction of the TGF-
β signaling annotation (Fig. 3A). Subsequently, we utilized GSEA to
mine the RNA-seq data and GSEA clearly demonstrated that the
RORγ-dependent gene signature (after depletion of RORγ) increased
the enrichment score for the KEGG TGF-β module in MCF-7, T-47D
cells, and MDA-MB-231 cells (Fig. 3B). In contrast, GSEA analysis with
RORγ over-expression data in MDA-MB-231 identified the inactivation
of TGF-β signaling modules (Fig. 3C). This is underscored by the GSEA
analysis in MDA-MB-231 cells that identified two well-documented
EMT gene signatures (Anastassiou et al., 2011; Liberzon et al., 2011)
(Fig. 3C). These observations were further highlighted by the heatmap
of increased and decreased expression of EMT-related genes and
tumor microenvironment-modifying genes in MDA-MB-231 after
RORγ knockdown and over-expression, respectively (Fig. 3D).

We endeavored to gain additional insights into the underlying mo-
lecular mechanisms involved in the association between RORγ and
TGF-β signaling/EMT transitions. Hence, we utilized RORγ binding in-
formation from the previous ChIP-chip study (Kittler et al., 2013) and
performed cis-regulatory analysis using the GREAT (McLean et al.,
2010). RORγ binding sites (total 3140) from MCF-7 cells were deter-
mined with the default region-gene association rule (5 kb upstream
and 1 kb downstream, up to 1mbmax extension). Numbers of associat-
ed genes (0 to 8) per individual region were identified (Fig. S4A). The
total associations between regions and genes were determined and
presented by orientation and distance to transcription start sites
(TSS), showing RORγ binding sites are primarily located 50–500 kb
(Fig. S4B). Furthermore, we identified that total associations hold
2122 genes and the overlap of 418 genes which were differentially
expressed after knockdown of RORγ in MCF-7 cells (194 genes were
down-regulated and 224 genes were up-regulated) between RNA-seq
andGREAT analysis (Fig. 3E). Importantly, theGREAT analysis highlighted
13 significant pathways in the MSigDB perturbation section (FDR b 0.05
in binomial and hypergeometric tests, fold enrichment N2) (Fig. 3F).
Surprisingly, many breast cancer-related terms were predicted as
associated with direct RORγ target genes. For example, TAMOXIFEN_
RESISTANCE_UP and ENDOCRINE_THERAPY_RESISTANCE_5 modules
were enriched (Fig. 3F), and GO analysis of the GREAT data further impli-
cated RORγ in the regulation of mesenchyme development and epitheli-
al–mesenchymal transition (Fig. S4C). Significantly, we found that RORγ
binding was associated with several TGF-β-related genes. For example,
the ChIP-chip study (from Kevin White and colleagues, Kittler et al.
2013) suggests that RORγ is bound to the conserved regions of TGFB2
and SMAD3 loci (Fig. 3G). This evidence implies that RORγmaypotential-
ly be involved in the direct transcriptional regulation of TGFB2 and
SMAD3. However, it iswell known that there are inconsistencies between
ChIP binding data and the significantly decreased amount of primary ef-
fects of specific transcription factors on gene regulation/transcript expres-
sion (after functional reporter gene analysis). Together, the pathway and
integration of RNA-seq and ChIP-chip data analysis suggests that RORγ is
involved in the transcriptional regulation of these critical genes in TGF-β
signaling.

3.5. RORγ Expression Inversely Regulates Pro-metastatic c-MET Expression

Further analysis of the RNA-seq data revealed RORγ knockdown re-
markably increased several other pro-metastatic markers including c-
MET (proto-oncogene, receptor tyrosine kinase), and the chemokine
and chemokine receptor, CXCL12 and CXCR4 respectively (Fig. 3D).
We validated RNA-seq data, and we examined expression of c-MET,
CXCR4 and CXCL12 expression by RT-qPCR in the three breast cancer
cell lines after RORγ-knockdown (Fig. 4A–C). To demonstrate this is
not an off target effect, we also performed RT-qPCR after transfection
of two additional RORγ siRNAs, siRORγ-1 and siRORγ-2, into MCF-7
cells (Fig. 4D). This analysis demonstrated that RORγ knockdown by
three independent siRNAs increased c-MET expression robustly and sig-
nificantly in the three breast cancer cell lines. Furthermore,we validated
increased c-MET expression after RORγ knockdown inMCF-7 and T-47D
breast cancer cells bywestern analysis (Fig. 4E and F). Significant chang-
es in CXCL12 and CXCR4 were cell line specific.

Interestingly, we observed a significant inverse correlation between
c-MET and RORγ expression in the TCGA human breast cancer cohort
(Fig. 4G). Moreover, we found a significant correlation between in-
creased c-MET and decreased RORγ expression in basal-like aggressive
cancers (Fig. 4G). We observed the significant inverse correlation of
RORγ and the expression of several other EMT-related genes, including
CXCR4, SNAI1 and HMGA2 (Fig. 4H–J), in the TCGA human breast cancer
cohort. These genes have been documented to significantly affect clini-
cal survival outcomes (Ponzo et al., 2009; Smith et al., 2004). These sug-
gest that RORγ functions as a negative regulator that controls tumor
biology in human breast cancer.

3.6. RORγ Regulates the Genetic Program Controlling DNA-repair

We observed that GSEA also identified enrichment of the gene signa-
ture associated with the control of DNA-repair in the DE genes of the
RNA-seq datasets (see Fig. 2J). The heatmap (Fig. 5A) clearly demonstrat-
ed that RORγ depletion and over-expression in the ER+ve and ER−ve
breast cancer cell lines modulated the genes associated with DNA-repair
pathways (Fig. 5A). The GSEA analysis demonstrated the negative enrich-
ment of a hallmark DNA-repair signature after RORγ knockdown in three
cell lines (Fig. 5B), and the positive enrichment after RORγ over-
expression in the aggressive MDA-MB-231 cells (Fig. 5C). The heatmap
highlights the differential expression of transcripts involved in DNA-
repair including BRCA1, BRCA2, RAD51, several Fanconi anemia genes
and other DNA-repair genes involved in the BRCA1 and Fanconi DNA-
repair pathway, that was also highlighted by protein–protein interaction



Fig. 3. RORγ expression regulates the TGF-β, EMT and pro-metastatic pathways in breast carcinogenesis. (A) IPA showing a decreased (negative) and increased (positive) activation score
for the TGF-β signaling pathway after RORγ gain and loss of function, respectively, inMDA-MB-231. (B) GSEA analysis identifies positively enriched TGF-β signalingmodules inMCF-7, T-
47D and MDA-MB-231 cells after RORγ depletion. (C) GSEA analysis identifies negatively enriched TGF-β and EMT modules in MDA-MB-231 cells after RORγ over-expression.
(D) Heatmap representation of differentially expressed genes associated with EMT and malignant breast cancer. (E) Overlap between differentially expressed genes after RORγ
knockdown (MCF-7 cells, FDR b 0.05, Fold change N1.3) and direct RORγ target genes derived from GREAT analysis with RORγ ChIP-chip data from MCF-7. (F) GREAT analysis of ChIP-
chip data significantly highlighted 13 terms of MSigDB perturbation, and identified many breast cancer-related pathways (associated with direct RORγ action). (G) RORγ binding sites
identified in the regulatory regions of the TGFB2 and SMAD3 genome loci. Conservation score in mammal and vertebrate was presented using the UCSC web browser.
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(PPI) network analysis (Fig. 5D and Fig. S5A). The importance of these
pathways and the effects of RORγ loss of functionon theDNA-repair path-
way were validated by RT-qPCR (Fig. 5E).

Subsequently, we utilized RORγ binding information from the previ-
ous ChIP-chip (Kittler et al., 2013) study and performed GREAT analysis
(McLean et al., 2010). We identified several critical genes in the DNA-
repair pathways that were also differentially expressed after RORγ gain
and loss of function, and associated with RORγ binding including
BRCA2, RAD51C, RAD52, FANCB, FANCC, FANCD2, and FANCI (Fig. S5B).
For example, RORγ directly binds conserved regions of FANCD2
(Fig. 5F). In summary, the data clearly implicate RORγ-dependent signal-
ing as a critical regulator of DNA-repair genes.



Fig. 4. Inverse correlation between the expression of RORγ and the proto-oncogene, c-MET and other pro-metastatic markers. (A–C) Significant induction of c-MET expression and cell
specific changes in chemokine components (CXCR4 and CXCL12) after RORγ depletion in (A) MCF-7, (B) T-47D and (C) MDA-MB-231 (n = 3). (D) Validation of increased c-MET
expression after RORγ depletion with two additional and independent stealth siRNAs targeting RORγ (n = 3). (E) Western analysis of c-MET protein expression after RORγ
knockdown in MCF-7. (F) Western analysis of c-MET and SMAD3 protein expression after RORγ knockdown in T-47D. (G) Inverse correlation of RORγ and c-MET in TCGA human
cohort depicting lower RORγ expression and higher c-MET expression in basal-like breast cancer subtype (red) compared to other subtypes (gray). (H–J) Negative association between
expression of RORγ and other oncogenes including (H) CXCR4, (I) SNAI1 and (J) HMGA2 in the TCGA breast cancer cohort.
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3.7. RORγ is a Primary Transcriptional Regulator of theMammary StemCell
Pathway

Unexpectedly, we observed that GSEA identified the negative corre-
lation betweenRORγ expression and the gene signature associatedwith
the acquisition of self-renewal (i.e. mammary stem cell capacity) after
RORγ over-expression (i.e. RORγ gain of function) (Fig. 6A). The GSEA
clearly showed the significant negative enrichment of genes in the
MaSC_up module, suggesting that increased expression of RORγ sup-
pressed the MaSC_upmodule. In contrast, knockdown of RORγ expres-
sion positively enriched the MaSC_up module (Fig. 6B). Notably, we
observed that the transcriptome study (Lim et al., supplementary
data) comparing MaSC, progenitor and matured luminal cells in
human and mouse exhibited loss of RORγ expression in MaSC relative
to mature luminal cells (Lim et al., 2010).

We extended this analysis by integrating our RNA-seq datasets to
RORγ binding information. GREAT analysis also predicted that N60 of
these genes are enriched in the MaSC gene module. In doing so, we
identified the common genes that were enriched in both the RNA-seq/
GSEA and ChIP-chip/GREAT analysis (Fig. 6C-i). We identified 24
genes including for example, NRCAM, CALU, and PRICKLE2, etc. in
both analyses and the heatmap (Fig. 6C-ii and iii) displays the fold
changes (increased) in these RORγ-dependent genes in RORγ-
knockdown vs RORγ-control dataset in our study (Fig. 6C-ii), and
MaSC vs mature luminal from the Lim et al. dataset (Lim et al., 2010)
(Fig. 6C-iii). The comparative data shows similar gene expression pat-
terns between the RORγ-dependent genes and the up-regulated MaSC
gene subset, strongly inferring the regulatory role of RORγ signaling in
modulating stemness capacity of breast cancer cells.

In this context, we examined the expression of themRNAs encoding
CD44 and CD24 in RORγ-depleted (MCF-7 and T-47D) cells. The pheno-
type of basal subpopulation displaying increased CD44 and reduced
CD24 expression has been linked to poor prognosis and exhibited im-
proved self-renewal capacity (Al-Hajj et al., 2003). Hence, our RT-
qPCR showed that loss of RORγ resulted in the increased expression of
CD44 and decreased expression of CD24 antigen markers in breast can-
cer cells (Fig. 6D).We also observed that CD44v6, the stem cell enriched
CD44 variant (Todaro et al., 2014), was increased by RORγ knockdown
(Fig. 6D).

Furthermore, RNA-seq analysis revealed that RORγ expression con-
trols the expression of the long non-coding RNAs (lncRNA) (see Fig. 2F).
We identified that RORγ-dependent lncRNAs are mainly comprised of
antisense and long intervening non-coding RNAs (lincRNAs) (Fig. 6E).
Moreover, we took the advantage of RNA-seq by comparing control



Fig. 5. RORγ regulates the DNA-repair pathways in ER+ve and ER−ve breast cancer cells. (A) Heatmap representation of the differentially expressed genes associated with DNA-repair
after RORγ knockdown and RORγ over-expression (n = 3) in MCF-7, T-47D and MDA-MB-231 cells. (B) GSEA analysis demonstrates negative enrichment of the hallmark DNA-repair
module in MCF-7, T-47D and MDA-MB-231 after RORγ depletion. (C) GSEA analysis demonstrates positive enrichment of the hallmark DNA-repair module after RORγ over-expression
in MDA-MB-231. (D) Protein–protein interaction network of the DNA-repair pathway. Netgestalt (iRef database) was used for the PPI network, visualizing fold changes in log2 scale.
(E) Relative mRNA expression of DNA-repair related genes in MCF-7, T-47D and MDA-MB-231 after RORγ depletion (n = 3). (F) Direct RORγ binding sites associated with the
FANCD2 genomic locus.
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data of three cell lines and defined an MDA-MB-231-specific subset of
coding and lncRNA transcripts (by applying a stringent cutoff,
FDR b 0.01, Fold change N 2) (Fig. S6). A total of 9743 genes of MDA-
MB-231were differentially expressed against T-47D (controls). Similar-
ly, MDA-MB-231 cells exhibit distinctive expression of 9779 genes com-
pared toMCF-7 (controls), highlightingdecreased RORγ expression, but
increased (previously described) oncogene expression of c-MET,
CXCR4, TGF-β, SMAD3, etc. (Fig. S6). This approach also identified the
lncRNA, LINC00511, as highly ranked differentially expressed transcript
in ER−ve MDA-MB-231 cells relative to the ER+ve T-47D and MCF-7
cells (Fig. S6). Notably, RNA-seq data from RORγ depleted MCF-7 and
T-47D cells revealed that LINC00511 expression was also increased.
We further validated this observation in cell lines by RT-qPCR and ob-
served that LINC00511 expression was significantly increased in the
metastatic basal breast cancer cell lines (for example, MDA-MB-231
cells), relative to T-47D andMCF-7 luminal cells (Fig. 6F). Underscoring
the significance of our in vitro observation, we extracted the LINC00511
data from the TCGA human dataset (Su et al., supplemental data) (Su
et al., 2014) and we demonstrated that LINC00511 is highly expressed
in the aggressive basal-like breast cancer subtype (Cluster 1 in Su's
study) (Fig. 6G).

Recent studies showed that lncRNAs regulate the transcriptional
process (Ørom et al., 2010; Yang et al., 2013). Therefore, we identified
the adjacent coding genes by utilizing GREAT analysis with locations
of RORγ-dependent lncRNAs, and examined the distance between
RORγ-dependent lncRNAs and adjacent coding genes (Fig. 6H). Inter-
estingly, scatter plot analysis of correlation between lncRNAs and adja-
cent coding genes in our RNA-seq dataset identified a significant (and
positive) correlation between the increased expression of transcripts
encoding LINC00511 and the coding gene, SOX9 amongmany other cor-
relations between lncRNAs and adjacent coding genes (Fig. 6I,
P b 0.0001). Furthermore, we found a strong positive correlation (Pear-
son correlation score=0.473, P b 0.0001) between LINC00511 and SOX9
expression in the TCGA breast cancer data (Fig. 6J) after interrogating
the TANRIC lncRNA database (Li et al., 2015).

This correlation was further pursued, as SOX9 is involved in the de-
termination ofmammary stem cell fate (Guo et al., 2012; Ye et al., 2015)
and increased expression implicated in poorer breast cancer survival
outcomes (Pomp et al., 2015). In this context, we observed both in-
creased LINC00511 and SOX9 expression in ER+ve, T-47D and MCF-7
cells, but not in ER−ve cells from RORγ knockdown data of RNA-seq
(Fig. 6K). Accordingly, we confirmed the increased expression of SOX9
expression by RT-qPCR after RORγ depletion (Fig. 6L), and decreased
SOX9 expression after RORγ over-expression in MDA-MB-231 cells
(Fig. 6M). Importantly, studies have identified two transcription factors
that determinemammary stem cell fate, SOX9 and SNAI2 (Slug), which
suffice to induce MaSCs from differentiated luminal cells (Guo et al.,
2012). This potentially suggests that RORγ plays a critical role on the
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negative regulation of SOX9 expression in breast cancer cells (see Fig. 6L
and M).

Finally, we further examined whether RORγ is a potential primary
(and direct) regulator of LINC00511 or SOX9 transcription by exploiting
the ChIP-chip data. To do so, we utilized the GREAT with RORγ binding
sites and found the location of RORγ_1402 is in the LINC00511 locus,
suggesting RORγ directly binds to cis-regulatory region of SOX9. In ad-
dition, we found that RORγ binding site on LINC00511 is highly
conserved (Fig. 6N). This observation identifies a probable role of
RORγ in the regulation of SOX9 through LINC00511. In summary, the
data provide supporting evidence for RORγ-dependent regulation of
coding (and long non-coding) RNAs involved in MaSC fate/mammary
stem cell capacity, major pathways in the progression of breast carcino-
genesis. Significantly, the majority of the coding genes and the lncRNAs
associated with the stemness signature and determinants of MaSC ca-
pacity have been potentially implicated as targets (and sites) of RORγ
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binding in the ChIP-chip study. However, as discussed for the TGF-β
pathway, definitive evidence for RORγ as a direct transcriptional regula-
tor awaits further functional analysis.

3.8. In Vitro Studies Suggest RORγ Agonists Display Pharmacological Utility
in Breast Cancer Cell Lines

We utilized the well-characterized RORα/γ dual agonist, SR1078, to
demonstrate that pharmacological modulation of RORγ activity plays a
significant role in modulating breast cancer cell malignancy (Wang
et al., 2010). We treated T-47D and MCF-7 cells with the RORγ agonist,
SR1078 (10 μM). For example, we examined the effect of the agonist on
the expression of the chemokine receptor and ligand, CXCR4 and
CXCL12 that significantly influence breast cancer clinical outcomes
(Holland et al., 2013). We observed that SR1078 decreased the expres-
sion of these components of the chemokine system (Figs. 7A and S7A).
We observed that SR1078 significantly decreased cell viability in both
MCF-7 andMDA-MB-231 cell lines (Fig. 7B and C). Further confirmation
of the selective and specific effect of RORγ expression on cell viability
was provided by the demonstration that RORγ over-expression in
MDA-MB-231 significantly reduced cell viability (Fig. 7D). These phar-
macological and genetic gains of function experiments demonstrated
the important role of RORγ in the regulation of cell growth and viability.

Subsequently, we investigated the effect of modulating RORγ activ-
ity and expression on several different aspects of carcinogenesis includ-
ing cell migration, cell outgrowth and self-renewal. Initially, we
performed wound healing assays with SR1078, and observed that
SR1078 significantly inhibited cell migration in MDA-MB-231 cells
(Fig. 7E and F). In contrast, we demonstrated that depletion of RORγ
function by RORγ siRNA increased the rate of cell migration in MDA-
MB-231 cells, confirming the specific role of RORγ in this process
(Fig. S7B). We then examined the effect of SR1078 on tumor cell inva-
siveness. For this, we embedded MCF-7 cells in Matrigel and measured
their ability to invade from microspheres into the surrounding matrix.
Cell outgrowth from microspheres was significantly deceased by
48–96 h treatmentwith SR1078 treatment compared to DMSO controls
(2-way ANOVA, n = 3) (Figs. 7G and H, and S7C). Similarly, SR1078
treatment in MDA-MB-231 cells over 96 h demonstrated that the drug
decreased cell number (Fig. S7D). Furthermore, we evaluated the effect
of pharmacologicalmodulation of RORγ activity on self-renewal (i.e. the
acquisition of mammary stem cell activity) utilizing mammosphere as-
says on an ultra low attachment plate (Fig. 7I). Increasing RORγ activity
inMCF-7 cells has a dramatic inhibitory effect on the self-renewal activ-
ity of MCF-7 cells in the mammosphere assay.

Finally, treatment of cells with a selective and specific RORγ inverse
agonist, SR2211 (Kumar et al., 2012), followed by RNA-seq and pathway
analysis demonstrated that treatmentwith RORγ inverse agonist result-
ed in the positive and significant enrichment of the TGF-β signaling
pathway (Fig. 7J), but the negative and significant enrichment of DNA-
repair (Fig. 7K). Consistently, IPA showed that RORγ inverse agonist
led to positive activation scores on oncogenic annotations including in-
vasion of cells, cell movement and malignancy (Fig. 7L). In contrast, the
selective inverse agonist significantly repressed activation scores for
DNA repair and Homologous recombination annotations. Moreover,
Fig. 6. RORγ regulates the expression of themammary stem cell gene signature. (A) GSEA analy
inMDA-MB-231. (B) GSEA analysis demonstrates RORγ depletion induces positive enrichment
theMaSC upmodule (inMCF-7 cells, FDR b 0.05, Fold change N1.3) and direct RORγ target gene
RORγ binding in MCF-7 cells after RORγ depletion (C-ii) and in the MaSC_up module (C-iii). (D
depletion in MCF-7 and T-47D (n= 3). (E) Classification of RORγ-dependent long non-coding
RNA expression in five different breast cancer cell lines. (G) Increased expression of LINC00511 R
(Xu et al. supplementary). (H) Distance of long non-coding RNAs to nearest TSS (i.e. adjacent g
after RORγ depletion identified from scatter plot expression analysis examining correlation betw
fold change scale). (J) A positive correlation between LINC00511 and SOX9 expression in TCGA
2015). (K) Expression of LINC00511 and SOX9 in T-47D,MCF-7 andMDA-MB-231 extracted from
M) Expression of SOX9mRNA in T-47D andMCF-7 after RORγ knockdown and RORγ over-expr
with the LINC00511 genome locus.
RNA-seq analysis after SR2211 treatment identified the specific induc-
tion of SMAD3mRNA expression (a critical mediator of TGF-β signaling)
and decreased expression of the mRNAs encoding BRCA1 and 2, that
were also validated by RT-qPCR (Fig. 7M).

Together, the effect of (in vitro) pharmacological and genetic modu-
lation of RORγ activity and expression in well-characterized ER+ and
ER− cell lines on cell migration, the EMT (using microsphere out-
growth assays), and stem cell activity (utilizing mammosphere assays)
provides insights into the pharmacological manipulation of RORγ
signaling. The role of RORγ in the control of pathways that regulate out-
growth fromsuppressive and tightly organized epithelialmicroenviron-
ments and self-renewal activity is fundamental to tumor initiation and
metastasis (Fig. 7N), and suggest this NR has therapeutic potential in
the treatment of breast cancer.

4. Discussion

In this study, we report on the role of RORγ in the regulation of ge-
netic programs and pathways promoting breast carcinogenesis. The
current study evolved from the previous analysis focused on the role
of the NR coregulator, PRMT2 (an epigenetic factor) in breast cancer
(Oh et al., 2014). The study revealed PRMT2 and RORγ expression
were associated with checkpoint control and DNA-repair genes. In-
creased RORγ expression was associated with the higher probability
of metastasis-free survival. Hazard ratio analysis (using Cox regression)
revealed in several independent breast cancer datasets a very low haz-
ard (odds) ratio for RORγ, indicating expression is associated with im-
proved clinical outcomes (Oh et al., 2014). Hence, our current
investigation was focused on elucidating the protective nature of
RORγ signaling in breast cancer. In this context, we observed that
RORγ expression is decreased in aggressive basal-like breast cancer
and negatively associated with histological grade in several human co-
horts that is consistent with our previous observation (Muscat et al.,
2013). Furthermore, assessment and correlation of RORγ expression
levels with intrinsic breast cancer subtypes assessed using the Hu
et al. and PAM50 gene signatures (Ringner et al., 2011) demonstrated
(significantly) decreased RORγ expression in basal-like subtypes (ER,
PR and HER2 negative). Notably, bioinformatic analysis of all the
human breast cancer cell lines demonstrated that the expression of
RORγ is decreased in basal-like cell lines, implying that RORγ expres-
sion is inversely correlated with breast cancer malignancy.

RNA-seq and bioinformatics analysis of expression data after genetic
and pharmacological modulation of RORγ identified roles in EMT and
mammary stem cell activity, indicating that RORγ is a fundamental regu-
lator of tumor initiation and metastasis. Specifically, we showed that
RORγ attenuates TGF-β/EMT signaling in breast cancer. TGF-β plays a
key role in inducing EMT that has been linked to the aggressive breast
cancer phenotype (Scheel et al., 2011). Moreover, our study identified
that key genes in this pathway, for example, TGF-β and SMAD3, are direct
targets of RORγ. To our best knowledge, our study reports for the first
time the suppression of TGF-β/EMT signaling by the DNA-binding tran-
scription factor, RORγ, in accord with its effects on survival outcomes. In
addition, RORγ depletion in the human breast cancer cell lines resulted
in the induction of the CXCR4 chemokine receptor, the chemokine
sis demonstrates negative enrichment of theMaSC upmodule after RORγ over-expression
of theMaSC upmodule inMCF-7. (C) Overlap between DE genes after RORγ knockdown in
s derived fromGREAT analysis of RORγ ChIP-chip data (C-i). Expression of direct targets of
) Relative mRNA expression of CD44, CD44v6 and CD24measured by RT-qPCR after RORγ
RNA expression in T-47D, MCF-7 and MDA-MB-231. (F) Relative expression of LINC00511
NA in basal-like breast cancer relative to other subtypes derived from TCGA human cohort
enes) defined by GREAT analysis. (I) Correlation between LINC00511 and SOX9 expression
een long non-coding RNA (x-axis) and adjacent coding gene (y-axis) in T-47D cells (log2

breast cancer data set. Data were downloaded from the TANRIC lncRNA database (Li et al.,
RNA-seq analysis after RORγ depletion (Normalized count ratio to controls, n=3). (L and

ession in breast cancer cells, respectively (n= 3). (N) Direct RORγ binding sites associated



Fig. 7.Anti-cancer activity of RORγ agonist and oncogenic effect of RORγ inverse agonist in breast cancer cells. (A) Treatment (24 h) of T-47D cells with the RORγ agonist, SR1078 (10 μM)
decreased expression of themRNAs encodingCXCR4 and CXCL12 (n=3). (B and C) SR1078 (10 μM) treatment decreased cell viability in (B)MCF-7 and (C)MDA-MB-231 cells (average of
absorbance values from 3 independent experiments in triplicate). (D) RORγ over-expression decreases cell viability of MDA-MB-231 cells (n = 3). (E and F) SR1078 (10 μM) treatment
attenuates cell migration inMDA-MB-231 cells (n= 3). (G) SR1078 (10 μM) treatment decreasesmicrosphere outgrowth inMCF-7 cells in 3DMatrigel invasion assay (n= 3). (H)Mean
of outgrowth percentage betweenDMSOandSR1078 treatedMCF-7 cells (n=3). (I) SR1078 (10 μM) treatment decreasesmammosphere growth (n=3). (J) GSEA analysis demonstrates
that SR2211 (5 μM) treatment (a RORγ selective inverse agonist) ofMCF-7 cells positively enriched the TGF-βmodule after RNA-seq analysis. (K) GSEA analysis demonstrates that SR2211
(5 μM) treatment negatively enriched the DNA-repair module in MCF-7 cells after RNA-seq analysis. (L) Ingenuity Pathway Analysis of RNA-seq data derived from SR2211 treatment of
MCF-7 cells highlighting positive activation of oncogenic pathways, but showing negative activation of the DNA-repair pathways. (M) Treatment (24 h) of MCF-7 cells with the selective
RORγ inverse agonist, SR2211 (5 μM) increased the mRNA expression of SMAD3 and decreased the expression of mRNAs encoding BRCA1 and BRCA2 (n = 3). (N) Schematic graph
illustrating the probable function of RORγ in breast cancer.
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CXCL12 (in selected cell lines) and the induction of c-MET,whereas RORγ
agonist treatment significantly decreased CXCR4 and CXCL12 expression
in breast cancer cells. Targeting these factors has demonstrated utility in
the treatment of basal-like and triple negative breast cancers (Comoglio
et al., 2008; Zou et al., 2007). The effect of genetic and pharmacological
modulation of RORγ on c-MET and the chemokine system further under-
scores the significant role of RORγ in regulating the expression of factors
controlling metastasis and clinical outcomes.
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One unexpected and very exciting aspect of our work was that gain
and loss of RORγ function resulted in the negative and positive enrich-
ment of the mammary stem cell signature, respectively, in several
breast cancer cell lines. Moreover, the effect of RORγ depletion on the
positive enrichment of the stemness signature is underscored by the
dramatic effect of increasing RORγ activity (by agonist treatment) on
mammosphere growth. These observations are in concordance with
the correlations between RORγ expression and survival, and the impor-
tant links to breast cancer risk and the acquisition of the stem cell-like
phenotype. GSEA identified that N25% of the genes in the MaSC_up sig-
nature are enriched by genetic modulation of RORγ. We subsequently
integrated the (very significant) expression changes after RNA-seq
(~60 genes) and the RORγ binding sites, and demonstrated RORγ di-
rectly regulates/binds over 20 critical genes in the MaSC module.

The critical role of RORγ signaling in the acquisition of mammary
stemness was further underscored by our observation of the dramatic in-
duction of both the non-coding RNA (LINC00511) and its adjacent gene
(SOX9) after RORγdepletion.We showed that LINC00511 expression is in-
creased in the aggressive basal-like breast cancer subtype, and the corre-
lation between LINC00511 and SOX9 RNA expression in breast cancer
cells and the human TCGA breast cancer cohort (in the TANRIC lncRNA
database) (Li et al., 2015). Although the exact mechanism of how
LINC00511 controls SOX9 transcription still requires further investigation,
our study importantly showed that RORγ potentially binds to the
LINC00511 RNA and adjacent of the cis-regulatory region of SOX9. The
role of SOX9 has been shown in determining mammary stem cell fate,
driving metastasis and its association with poorer survival outcomes
(Guo et al., 2012). Our study excitingly provides a link between RORγ ex-
pression and SOX9 through the regulation of the non-coding RNA,
LINC00511, and provides molecular and cellular evidence highlighting
the critical role of RORγ in the regulation of MaSC signature.

DNA-repair is a central system for maintaining genome stability and
correctingDNAdamage. In our study, bothGSEA and IPA analysis (includ-
ingRT-qPCRvalidation in three cell lines) significantly highlighted the im-
portance of RORγ signaling in the DNA-repair pathways. Furthermore,
RNA-seq coupled with the treatment of the RORγ antagonist SR2211,
demonstrated that functional antagonism of RORγ suppressed themajor-
ity pathways, and specifically decreased expression of BRCA1&2 mRNA
expression (as validated by RT-qPCR), supporting our loss of RORγ func-
tion data (i.e. requirement of RORγ for DNA-repair gene expression).
We further identified potential RORγ binding to genomic regions of criti-
cal genes (including BRCA2), implying the transcriptional (and direct)
role of RORγ in DNA-repair. In accord with our previous study (Oh
et al., 2014), we identified the inverse relationship between the expres-
sion of the histone methyltransferase, PRMT2, and RORγ in breast cancer
cells and human cohorts.We demonstrated PRMT2 knockdown increases
nucleotide excision repair of UV-inducedDNA lesion, and homologous re-
combination repair of double stranded breaks. This improvement in DNA
repair was associated with an ~14-fold increase in RORγmRNA expres-
sion (RORγmRNA induction is one of the top ten changes in differential
expression after PRMT2 depletion) (Oh et al., 2014).

Identification of potential target genes after integration of the RNA-
seq and ChIP-chip data implicates RORγ signaling in the direct transcrip-
tional regulation of these genes and pathways. Clearly, this is not suffi-
cient to demonstrate that the genes we have highlighted are definitively
direct targets of RORγ action. However, we have identified several of
the RORγ binding regions (for example in SMAD3) that occur in a regula-
tory binding region of other transcription factor binding sites (Fig. S7E).
These domains often correlate with functional (bona fide) recruitment
of DNA binding factors and significant sites of gene regulation.

In the context of the other RORγ isoform, the role of RORγt in differ-
entiating T 17 cells has been well established and the potential anti-
cancer effect of agonists with targeting this mechanism of T 17 cells is
emerging as an immunotherapy (Carter et al., 2015; Zou and Restifo,
2010). However, our study focused on the function of RORγ (indepen-
dent of RORγt) in suppressing breast cancer malignancy. A recent
RORγ study (in adenomas) has shown that decreased RORγ expression
in patients with somatotroph adenomas is associated with poor clinical
recovery after treatment of somatostatin analogs (Lekva et al., 2013)
which supports our hypothesis. This correlates with our observation
that RORγ negatively regulates EMT. Furthermore, this indicates that
the inhibitory regulation of RORγ on TGF-β/EMT can be applicable in
other cancer cases. We have explored the role of RORγ in breast cancer
biology and identified suppressive effect of RORγ on TGF-β/EMT and
mammary stemness and positive regulation on DNA-repair, indicating
the critical role of RORγ in breast carcinogenesis.

The pharmacological studies targeting RORγ activity were in accord
with the extensive analysis of human datasets, and the human breast
cancer cell lines. Future studies in breast cancer cells andmousemodels
would benefit from (well characterized) RORγ specific agonists rather
than the ROR dual agonist to further evaluate the pharmacological util-
ity of this target gene. The cholesterol metabolite, desmosterol has been
described as anRORγ agonist (Hu et al., 2015), however, it also activates
LXR signaling (Yang et al., 2006) and has not been utilized by other
groups. Overall, our study suggests that RORγ agonists have pharmaco-
logical utility in vitro, and these compounds may have anti-cancer effi-
cacy against several different critical processes that drive progression of
breast cancer.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2016.02.028.
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