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Abstract: Efficiently accessing the information contained in non-linear and high dimensional prob-
ability distributions remains a core challenge in modern statistics. Traditionally, estimators that
go beyond point estimates are either categorized as Variational Inference (VI) or Markov-Chain
Monte-Carlo (MCMC) techniques. While MCMC methods that utilize the geometric properties of
continuous probability distributions to increase their efficiency have been proposed, VI methods
rarely use the geometry. This work aims to fill this gap and proposes geometric Variational Inference
(geoVI), a method based on Riemannian geometry and the Fisher information metric. It is used
to construct a coordinate transformation that relates the Riemannian manifold associated with the
metric to Euclidean space. The distribution, expressed in the coordinate system induced by the trans-
formation, takes a particularly simple form that allows for an accurate variational approximation by
a normal distribution. Furthermore, the algorithmic structure allows for an efficient implementation
of geoVI which is demonstrated on multiple examples, ranging from low-dimensional illustrative
ones to non-linear, hierarchical Bayesian inverse problems in thousands of dimensions.

Keywords: variational methods; Bayesian inference; Fisher information metric; Riemann manifolds

1. Introduction

In modern statistical inference and machine learning it is of utmost importance to
access the information contained in complex and high dimensional probability distributions.
In particular in Bayesian inference, it remains one of the key challenges to approximate
samples from the posterior distribution, or the distribution itself, in a computationally
fast and accurate way. Traditionally, there have been two distinct approaches towards this
problem: the direct construction of posterior samples based on Markov Chain Monte-Carlo
(MCMC) methods [1–3], and the attempt to approximate the probability distribution with a
different one, chosen from a family of simpler distributions, known as variational inference
(VI) [4–7] or variational Bayes’ (VB) methods [8–10]. While MCMC methods are attractive
due to their theoretical guarantees to reproduce the true distribution in the limit, they
tend to be more expensive compared to variational alternatives. On the other hand, the
family of distributions used in VI is typically chosen ad hoc. While VI aims to provide
an appropriate approximation within the chosen family, the entire family may be a poor
approximation to the true distribution.

In recent years, MCMC methods have been improved by incorporating geometric
information of the posterior, especially by means of Riemannian manifold Hamilton Monte-
Carlo (RMHMC) [11], a particular hybrid Monte-Carlo (HMC) [12,13] technique that
constructs a Hamiltonian system on a Riemannian manifold with a metric tensor related to
the Fisher information metric of the likelihood distribution and the curvature of the prior.
For VI methods, however, the geometric structure of the true distribution has rarely been
utilized to motivate and enhance the family of distributions used during optimization. One
of the few examples being [14] where the Fisher metric has been used to reformulate the
task of VI by means of α-divergencies in the mean-field setting.
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In addition, a powerful variational approximation technique for the family of normal
distributions utilizing infinitesimal geometric properties of the posterior is Metric Gaussian
Variational Inference (MGVI) [15]. In MGVI the family is parameterized in terms of the
mean m, and the covariance matrix is set to the inverse of the metric tensor evaluated
at m. This choice ensures that the true distribution and the approximation obtain the
same geometric properties infinitesimally, i.e., at the location of the mean m. In this work
we extend the geometric correspondence used by MGVI to be valid not only at m, but
also in a local neighborhood of m. We achieve this extension by means of an invertible
coordinate transformation from the coordinate system used within MGVI, in which the
curvature of the prior is the identity, to a new coordinate system in which the metric of
the posterior becomes (approximately) the Euclidean metric. We use a normal distribution
in these coordinates as the approximation to the true distribution and thereby establish a
non-Gaussian posterior in the MGVI coordinate system. The resulting algorithm, called
geometric Variational Inference (geoVI) can be computed efficiently and is inherently
similar to the implementation of MGVI. This is not by mere coincidence: To linear order,
geoVI reproduces MGVI. In this sense, the geoVI algorithm is a non-linear generalization
of MGVI that captures the geometric properties encoded in the posterior metric not only
infinitesimally, but also in a local neighborhood of this point. We include an implementation
of the proposed geoVI algorithm into the software package Numerical Information Field
Theory (NIFTy [16]), a versatile library for signal inference algorithms.

Mathematical Setup

Throughout this work, we consider the joint distribution P(d, s) of observational data
d ∈ Ω and the unknown, to be inferred signal s. This distribution is factorized into the
likelihood of observing the data, given the signal P(d|s), and the prior distribution P(s). In
general, only a subset of the signal, denoted as s′, may be directly constrained by the likeli-
hood, such that P(d|s) = P(d|s′), and therefore there may be additional hidden variables in
s, that are unobserved by the data, but part of the prior model. Thus, the prior distribution
P(s) may posses a hierarchical structure that summarizes our knowledge about the system
prior to the measurement, and s represents everything in the system that is of interest to us,
but about which our knowledge is uncertain a priori. We do not put any constraints on
the functional form of P(s), and assume that the signal s solely consists of continuous real
valued variables, i.e., s ∈ X ⊂ RM. This enables us to regard s as coordinates of the space
on which P(s) is defined and to use geometric concepts such as coordinate transformations
to represent probability distributions in different coordinate systems. Probability densities
transform in a probability mass preserving fashion. Specifically let f : RM → X be an
invertible function, and let s = f (ξ). Then the distributions P(s) and P(ξ) relate via

∫
P(s) ds =

∫
P(ξ) dξ . (1)

This allows us to express P(s) by means of the pushforward of P(ξ) by f . We denote the
pushforward as

P(s) = ( f ? P(ξ))(s) =
∫

δ(s− f (ξ)) P(ξ) dξ =

(
P(ξ)

∣∣∣∣
∣∣∣∣
d f
dξ

∣∣∣∣
∣∣∣∣
−1
)∣∣∣∣∣

ξ= f−1(s)

. (2)

Under mild regularity conditions on the prior distribution, there always exists an f that
relates the complex hierarchical form of P(s) to a simple distribution P(ξ) [17]. We choose f
such that P(ξ) takes the form of a normal distribution with zero mean and unit covariance
and call such a distribution a standard distribution:

P(ξ) = N (ξ; 0,1) , (3)
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where N (ξ; m, D) denotes a multivariate normal distribution in the random variables ξ
with mean m and covariance D.

We may express the likelihood in terms of ξ as

P(d|ξ) ≡ P(d|s′ = f ′(ξ)) , (4)

where f ′ is the part of f that maps onto the observed quantities s′. In general, f ′ is a
non-invertible function and is commonly referred to as generative model or generative process,
as it encodes all the information necessary to transform a standard distribution into the
observed quantities, subject to our prior beliefs. Using Equation (4) we get by means of
Bayes’ theorem, that the posterior takes the form

P(ξ|d) = P(ξ, d)
P(d)

=
P(d|ξ) N (ξ; 0,1)

P(d)
. (5)

Using the push-forward of the posterior, we can recover the posterior statistics of s via

P(s|d) = ( f ? P(ξ|d))(s) , (6)

which means that we can fully recover the posterior properties of s, which typically has a
physical interpretation as opposed to ξ. In particular Equation (6) implies that if we are
able to draw samples from P(ξ|d) we can simply generate posterior samples for s since
s = f (ξ).

2. Geometric Properties of Posterior Distributions

In order to access the information contained in the posterior distribution P(ξ|d), in
this work, we wish to exploit the geometric properties of the posterior, in particular with
the help of Riemannian geometry. Specifically, we define a Riemannian manifold using
a metric tensor, related to the Fisher Information metric of the likelihood and a metric
for the prior, and establish a (local) isometry of this manifold to Euclidean space. The
associated coordinate transformation gives rise to a coordinate system in which, hopefully,
the posterior takes a simplified form despite the fact that probabilities do not transform in
the same way as metric spaces do. As we will see, in cases where the isometry is global,
and in addition the transformation is (almost) volume-preserving, the complexity of the
posterior distribution can be absorbed (almost) entirely into this transformation.

To begin our discussion, we need to define an appropriate metric for posterior dis-
tributions. To this end, consider the negative logarithm of the posterior, sometimes also
referred to as information Hamiltonian, which takes the form

H(ξ|d) ≡ − log(P(ξ|d)) = H(d|ξ) +H(ξ)−H(d) . (7)

A common choice to extract geometric information from this Hamiltonian is the Hessian C
ofH. Specifically

C(ξ) ≡ ∂2H(ξ|d)
∂ξ∂ξ ′

=
∂2H(d|ξ)

∂ξ∂ξ ′
+ 1 ≡ Cd|ξ(ξ) + 1 , (8)

where the identity matrix arises from the curvature of the prior (information Hamiltonian).
While C provides information about the local geometry, it turns out to be unsuited for our
approach to construct a coordinate transformation, as it is not guaranteed to be positive
definite for all ξ. An alternative, positive definite, measure for the curvature can be obtained
by replacing the Hessian of the likelihood with its Fisher information metric [18], defined as

Md|ξ(ξ) =

〈
∂H
∂ξ

∂H
∂ξ ′

〉

P(d|ξ)
=

〈
∂2H(d|ξ)

∂ξ∂ξ ′

〉

P(d|ξ)
=
〈
Cd|ξ(ξ)

〉
P(d|ξ)

. (9)
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The Fisher information metric can be understood as a Riemannian metric defined over
the statistical manifold associated with the likelihood [19], and is a core element in the
field of information geometry [20] as it provides a distance measure between probability
distributions [21]. Replacing Cd|ξ withMd|ξ in Equation (8) we find

M(ξ) ≡Md|ξ(ξ) + 1 =
〈
Cd|ξ(ξ)

〉
P(d|ξ)

+ 1 = 〈C(ξ)〉P(d|ξ) , (10)

which, from now on, we refer to as the metricM. As the Fisher metric of the likelihood is
a symmetric, positive-semidefinite matrix, we get thatM is a symmetric, positive-definite
matrix for all ξ. It is noteworthy that upon insertion, we find that the metricM is defined
as the expectation value of the Hessian of the posterior Hamiltonian C w.r.t. the likelihood
P(d|ξ). Therefore, in some way, we may regardM as the measure for the curvature in
case the observed data d is unknown, and the only information given is the structure of
the model itself, as encoded in P(d|ξ). This connection is only of qualitative nature, but
it highlights a key limitation ofM when used as the defining property of the posterior
geometry. From a Bayesian perspective, only the data d that is actually observed is of
relevance as the posterior is conditioned on d. Therefore a curvature measure that arises
from marginalization over the data must be sub-optimal compared to a measure conditional
to the data, as it ignores the local information that we gain from observing d. Nevertheless,
we find that in many practical applicationsM encodes enough relevant information about
the posterior geometry that it provides us with a valuable metric to construct a coordinate
transformation. It is noteworthy that attempts have been provided to resolve this issue via a
more direct approach to recover a positive definite matrix from the Hessian of the posterior
while retaining the local information of the data. e.g., in [22], the SoftAbs non-linearity
is applied to the Hessian and the resulting positive definite matrix is used as a curvature
measure. In our practical applications, however, we are particularly interested in solving
very high dimensional problems, and applying a matrix non-linearity is currently too
expensive to give rise to a scalable algorithm for our purposes. Therefore we rely on the
metricM as a measure for the curvature of the posterior, and leave possible extensions to
future research.

2.1. Coordinate Transformation

Our goal is to construct a coordinate system y and an associated transformation g, that
maps from ξ to y, in which the posterior metricM takes the form of the identity matrix 1.
The motivation is that ifM captures the geometric properties of the posterior, a coordinate
system in which this metric becomes trivial should also be a coordinate system in which
the posterior distribution takes a particularly simple form. For an illustrative example see
Figure 1. To do so, we require the Fisher metric of the likelihoodMd|ξ to be the pullback of
the Euclidean metric. Specifically we propose a function x(ξ) such that

Md|ξ
!
=

(
∂x
∂ξ

)T ∂x
∂ξ

, (11)

where T denotes the adjoint of a matrix. As outlined in Appendix A, for many practically
relevant likelihoods such a decomposition is possible by means of an inexpensive to
evaluate function x (Here with “inexpensive” we mean that applying the function x(ξ)
has a similar computational cost compared to applying the likelihood function P(d|ξ) to a
specific ξ). Given x, we can rewrite the posterior metricM as

M =

(
∂x
∂ξ

)T ∂x
∂ξ

+ 1 . (12)

In order to relate this metric to Euclidean space, we aim to find the isometry g that relates
the Riemannian manifold associated with the metricM to Euclidean space. Specifically
we seek to find an invertible function g satisfying
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M(ξ) =

(
∂x
∂ξ

)T ∂x
∂ξ

+ 1
!
=

(
∂g
∂ξ

)T ∂g
∂ξ

. (13)

In general, i.e., for a general function x(ξ), however, this decomposition does not exist
globally. Nevertheless, there exists a transformation g(ξ; ξ̄) based on an approximative
Taylor series around an expansion point ξ̄, that results in a metric M̃(ξ) such that

M(ξ) ≈ M̃(ξ) ≡
(

∂g(ξ; ξ̄)

∂ξ

)T
∂g(ξ; ξ̄)

∂ξ
, (14)

in the vicinity of ξ̄. This transformation g can be obtained up to an integration constant
by Taylor expanding Equation (14) around ξ̄ and solving for the Taylor coefficients of
g in increasing order. We express g in terms of its Taylor series using the Einstein sum
convention as

g(ξ; ξ̄)i = ḡi + ḡi
,j
(
ξ − ξ̄

)j
+ ḡi

,jk
(
ξ − ξ̄

)j(
ξ − ξ̄

)k
+ . . . , (15)

where repeated indices get summed over, a,i denotes the partial derivative of a w.r.t. the ith
component of ξ, and s̄ denotes a (tensor) field s(ξ), evaluated at the expansion point ξ̄. We
begin to expand Equation (14) around ξ̄ and obtain for the zeroth order

M̄ij ≡ x̄α
,i x̄

α
,j + δij

!
= ḡα

,i ḡα
,j . (16)

Expanding Equation (14) to first order yields

x̄α
,ik x̄α

,j + x̄α
,i x̄

α
,jk

!
= ḡα

,ik ḡα
,j + ḡα

,i ḡ
α
,jk , (17)

and therefore
ḡi

,jk = M̄
iγ ḡβ

,γ x̄α
,β x̄α

,jk , (18)

where M̄ij =
(
M̄−1)

ij denotes the components of the inverse of M̄.
Thus, to first order in the metric (meaning to second order in the transformation) the

expansion remains solvable for a general x. Proceeding with the second order, however,
we get that

x̄α
,ikl x̄

α
,j + x̄α

,ik x̄α
,jl + x̄α

,il x̄
α
,jk + x̄α

,i x̄
α
,jkl

!
= ḡα

,ikl ḡ
α
,j + ḡα

,ik ḡα
,jl + ḡα

,il ḡ
α
,jk + ḡα

,i ḡ
α
,jkl , (19)

which does not exhibit a general solution for ḡi
,jkl in higher dimensions due to the fact

that the third derivative has to be invariant under arbitrary permutation of the latter three
indices jkl. However, in analogy to Equation (18), we may set

ḡi
,jkl = M̄

iγ ḡβ
,γ x̄α

,β x̄α
,jkl , (20)

which cancels the first and the last term of Equation (19), and study the remaining error
which takes the form

εijkl = x̄α
,ik x̄α

,jl + x̄α
,il x̄

α
,jk − ḡα

,ik ḡα
,jl − ḡα

,il ḡ
α
,jk

= x̄α
,ik x̄α

,jl + x̄α
,il x̄

α
,jk − x̄α

,ik x̄γ
,αM̄γδ x̄δ

,β x̄β
,jl − x̄α

,il x̄
γ
,αM̄γδ x̄δ

,β x̄β
,jk

= x̄α
,ik

(
δαβ − x̄γ

,αM̄γδ x̄δ
,β

)
x̄β

,jl + x̄α
,il

(
δαβ − x̄γ

,αM̄γδ x̄δ
,β

)
x̄β

,jk . (21)

Let Xi
j ≡ x̄i

,j, the expression in the parentheses takes the form

1− XM̄−1XT = 1− X
(
1+ XTX

)−1
XT =

(
1+ XXT

)−1
≡ M , (22)
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and thus Equation (21) reduces to

εijkl = x̄α
,ik Mαβ x̄β

,jl + x̄α
,il Mαβ x̄β

,jk . (23)

The impact of this error contribution can be qualitatively studied using the spectrum λ(M)
of the matrix M. This spectrum may exhibit two extreme cases, a so-called likelihood
dominated regime, where the spectrum λ(XXT)� 1, and a prior dominated regime where
λ(XXT) � 1. In the likelihood dominated regime, we get that λ(M) � 1 and thus the
contribution of the error is small, whereas in the prior dominated regime λ(M) ≈ 1 which
yields an O(1) error. However, in the prior dominated regime, the entire metricM is close
to the identity as we are in the standard coordinate system of the prior ξ and therefore
higher order derivatives of x are small. As a consequence, the error is of the order O(1)
only in regimes where the third (and higher) order of the expansion is negligible compared
to the first and second order. An exception occurs when the expansion point is close to a
saddle point of x, i.e., in cases where the first derivative of x becomes small (and therefore
the metric is close to the identity), but higher order derivatives of x may be large. For
the moment, we proceed under the assumption that the change of x, as a function of ξ, is
sufficiently monotonic throughout the expansion regime. We discuss the implications of
violating this assumption in Section 5.3.

−5 −4 −3 −2 −1 0

ξ1

−1

0

1

2

3

4

ξ 2

P (ξ|d)

g−1(y; ξ̄)

ξ̄

−3 −2 −1 0 1 2 3

y1

−3

−2

−1

0

1

2

3

y
2

P (y|d) = [g ? P (ξ|d)](y)

y = g(ξ; ξ̄)

Figure 1. Non-linear posterior distribution P(ξ|d) in the standard coordinate system of the prior distribution ξ (left) and the
transformed distribution P(y|d) (right) in the coordinate system y where the posterior metric becomes (approximately) the
identity matrix. P(y|d) is obtained from P(ξ|d) via the push-forward through the transformation g which relates the two
coordinate systems. The functional form of g is derived in Section 2.1 and depends on an expansion point ξ̄ (orange dot in
the left image), and g is set up such that ξ̄ coincides with the origin in y. To visualize the transformation, the coordinate lines
of y (black mesh grid on the right) are transformed back into ξ-coordinates using the inverse coordinate transformation
g−1 and are displayed as a black mesh in the original space on the left. In addition, note that while the transformed
posterior P(y|d) arguably takes a simpler form compared to P(ξ|d), it does not become trivial (e.g., identical to a standard
distribution) as there remain small asymmetries in the posterior density. There are multiple reasons for these deviations
which are discussed in more detail in Section 2.2 once we established how the transformation g is constructed.
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If we proceed to higher order expansions of Equation (14), we notice that a repetitive
picture emerges: The leading order derivative tensor ḡi

,j... that appears in the expansion
may be set in direct analogy to Equations (18) and (20) as

ḡi
,j... = M̄iγ ḡβ

,γ x̄α
,β x̄α

,j... , (24)

where . . . denotes the higher order derivatives. The remaining error contributions at each
order take a similar form as in Equation (23), where the matrix M reappears in between
all possible combinations of the remaining derivatives of x that appear using the Leibniz
rule. Note that for increasing order, the number of terms that contribute to the error also
increases. Specifically for the nth order expansion of Equation (14) we get m = ∑n−1

k=1 (
n
k)

contributions to the error. Therefore, even if each individual contribution by means of M is
small, the expansion error eventually becomes large once high order expansions become
relevant. Therefore the proposed approximation only remains locally valid around ξ̄.

Nevertheless, we may proceed to combine the derivative tensors of g determined
above in order to get the Jacobian of the transformation g as

gi
,j(ξ) ≡ ḡi

,j + ḡi
,jk
(
ξ − ξ̄

)k
+

1
2

ḡi
,jkl
(
ξ − ξ̄

)k(
ξ − ξ̄

)l
+ . . .

= ḡi
,j + M̄iα ḡβ

,α x̄γ
,β

(
x̄γ

,jk(ξ − ξ̄)k +
1
2

x̄γ
,jkl(ξ − ξ̄)k(ξ − ξ̄)l + . . .

)
, (25)

or equivalently

ḡα
,ig

α
,j(ξ) = δij + x̄α

,i

(
x̄α

,j + x̄α
,jk(ξ − ξ̄)k +

1
2

x̄α
,jkl(ξ − ξ̄)k(ξ − ξ̄)l + . . .

)
. (26)

From the zeroth order, Equation (16), we get that ḡi
,j =

(√
M̄
)i

j
up to a unitary transfor-

mation, and we can sum up the Taylor series in x of Equation (26) to arrive at an index free
representation of the Jacobian as

∂g
∂ξ

=
√
M̄
−1


1+

(
∂x
∂ξ

∣∣∣∣
ξ̄

)T
∂x
∂ξ


 . (27)

Upon integration, this yields a transformation

g(ξ)− g(ξ̄) =
√
M̄
−1


ξ − ξ̄ +

(
∂x
∂ξ

∣∣∣∣
ξ̄

)T(
x(ξ)− x(ξ̄)

)

 . (28)

The resulting transformation takes an intuitive form: The approximation to the distance
between a point g(ξ) and the transformed expansion point g(ξ̄) consists of the distance
w.r.t. the prior measure

(
ξ − ξ̄

)
and the distance w.r.t. the likelihood measure

(
x(ξ)− x(ξ̄)

)
,

back-projected into the prior domain using the local transformation at ξ̄. Finally, the metric
at ξ̄ is used as a measure for the local curvature. Equation (28) is only defined up to an
integration constant, and therefore, without loss of generality, we may set g(ξ̄) = 0 to
obtain the final approximative coordinate transformation as

g(ξ; ξ̄) =
√
M̄
−1


ξ − ξ̄ +

(
∂x
∂ξ

∣∣∣∣
ξ̄

)T(
x(ξ)− x(ξ̄)

)

 ≡

√
M̄
−1

g̃(ξ; ξ̄) . (29)

2.2. Basic Properties

In order to study a few basic properties of this transformation, for simplicity, we first
consider a posterior distribution with a metric that allows for an exact isometry giso to
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Euclidean space. Specifically let giso be a coordinate transformation satisfying Equation (13).
The posterior distribution in coordinates y = giso(ξ) is given via the push-forward of P(ξ|d)
through giso as

P(y|d) ∝ (giso ? P(ξ|d))(y) =
(

P(ξ|d)
∣∣∣∣
∣∣∣∣
∂giso

∂ξ

∣∣∣∣
∣∣∣∣
−1
)∣∣∣∣∣

ξ=g−1
iso (y)

=
P(ξ|d)√
|M(ξ)|

∣∣∣∣∣
ξ=g−1

iso (y)

, (30)

and the information Hamiltonian takes the form

H(y|d) =
(
H(ξ|d) + 1

2
log(|M(ξ)|)

)∣∣∣∣
ξ=g−1

iso (y)
+H0 ≡ H̃(ξ = g−1

iso (y)) +H0 , (31)

where H0 denotes y independent contributions. We may study the curvature of the
posterior in coordinates y given as:

C(y) = ∂ξ

∂y

(
∂2H̃(ξ)

∂ξ∂ξ ′

)(
∂ξ ′

∂y′

)T

+
∂H̃(ξ)

∂ξ

∂2ξ

∂y∂y′
with (32)

ξ = g−1
iso (y) and ξ ′ = g−1

iso
(
y′
)

,

which we can use to construct a metricM(y) in analogy to Equation (10) by taking the
expectation value of the curvature w.r.t. the likelihood. This yields

M(y) =
∂ξ

∂y
M(ξ)

(
∂ξ ′

∂y′

)T
+

1
2

∂ξ

∂y

(
∂2 log(|M(ξ)|)

∂ξ∂ξ ′

)(
∂ξ ′

∂y′

)T
+

〈
∂H̃(ξ)

∂ξ

〉

P(d|ξ)

∂2ξ

∂y∂y′

≡ ∂ξ

∂y
M(ξ)

(
∂ξ ′

∂y′

)T
+R(y) = 1+R(y) . (33)

The first terms yields the identity, as it is the defining property of giso. Furthermore, in
case we are able to say that R(y) is small compared to the identity, we notice that the
quantityM(ξ) (Equation (10)), that we referred to as the posterior metric, approximately
transforms like a proper metric under giso. In this case we find that the isometry giso
between the Riemannian manifold associated withM(ξ) and the Euclidean space is also a
transformation that removes the complex geometry of the posterior. To further studyR(y),
we consider its two contributions separately, where for the first part, the log-determinant
(or logarithmic volume), we get that it becomes small compared to the identity if

M(ξ)
!
� 1

2

(
∂2 log(|M(ξ)|)

∂ξ∂ξ ′

)
. (34)

Therefore, the curvature of the log-determinant of the metric has to be much smaller then
the metric itself. To study the second term ofR(y), we may again split the discussion into
a prior and a likelihood dominated regime, depending on the ξ at which we evaluate the
expression. In a prior dominated regime we get that

∂2ξ

∂y∂y′
≈ 0 , (35)

as the metric is close to the identity in this regime (and therefore ξ ≈ y). In a likelihood
dominated regime we get that H̃ ≈ H(d|ξ) and therefore

〈
∂H̃(ξ)

∂ξ

〉

P(d|ξ)
≈
〈

∂H(d|ξ)
∂ξ

〉

P(d|ξ)
= −

〈
1

P(d|ξ)
∂P(d|ξ)

∂ξ

〉

P(d|ξ)
= 0 . (36)

So at least in a prior dominated regime, as well as a likelihood dominated regime, the
posterior Hamiltonian transforms in an analogous way as the manifold, under the transfor-
mation giso, if Equation (34) also holds true.
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For a practical application, however, in all but the simplest cases the isometry giso is not
accessible, or might not even exist. Therefore, in general, we have to use the approximation
g(ξ; ξ̄), as defined in Equation (29), instead. We may express the transformation of the
metric using g(ξ; ξ̄), and find that

M(y) =
√
M̄
(
1+

(
∂x
∂ξ

)T ∂x
∂ξ

∣∣∣∣
ξ̄

)−1(
1+

(
∂x
∂ξ

)T ∂x′

∂ξ ′

)
1+

(
∂x
∂ξ

∣∣∣∣
ξ̄

)T
∂x′

∂ξ ′



−1
√
M̄

+ R̃(y) , (37)

now with ξ = g−1(y; ξ̄
)

and analogous for ξ ′. R̃ is defined by replacing giso with g for
the entire expression ofR. We notice that this transformation does not yield the identity,
except when evaluated at the expansion point ξ = ξ̄. Therefore, in addition to the error
R̃ there is a deviation from the identity related to the expansion error as one moves away
from ξ̄.

At this point we would like to emphasize that the posterior HamiltonianH and the
Riemannian manifold constructed fromM are only loosely connected due to the errors
described by R̃ and the additional expansion error. They are arguably small in many cases
and in the vicinity of ξ̄, but we do not want to claim that this correspondence is valid in
general (see Section 5.3). Nevertheless, we find that in many cases this correspondence
works well in practice. Some illustrative examples are given in Section 3.1.2.

3. Posterior Approximation

Utilizing the derived coordinate transformation for posterior approximation is mainly
based on the idea that in the transformed coordinate system, the posterior takes a simpler
form. In particular we aim to remove parts (if not most) of the complex geometry of the
posterior, such that a simple probability distribution, e.g., a Gaussian distribution, yields a
good approximation.

3.1. Direct Approximation

Assuming that all the errors discussed in the previous section are small enough,
we may attempt to directly approximate the posterior distribution via a unit Gaussian
in the coordinates y as in this case the transformed metricM(y) is close to the identity.
As the coordinate transformation g, defined via Equation (29), is only known up to an
integration constant by construction, the posterior approximation is achieved by a shifted
unit Gaussian in y. This shift needs to be determined, which we can do by maximizing the
transformed posterior distribution

P(y|d) ∝

(
P(ξ, d)

∣∣∣∣
∣∣∣∣
∂g
∂ξ

∣∣∣∣
∣∣∣∣
−1
)∣∣∣∣∣

ξ=g−1(y;ξ̄)

, (38)

w.r.t. y. Here g−1(y; ξ̄) denotes the inverse of g(ξ; ξ̄) w.r.t. its first argument. Equivalently
we can minimize the information HamiltonianH(y|d), defined as

H(y|d) ≡ − log(P(y|d)) =
(
H(ξ, d) +

1
2

log
(∣∣M̃

∣∣)
)∣∣∣∣

ξ=g−1(y;ξ̄)
≡ H̃(ξ = g−1(y; ξ̄)) . (39)

MinimizingH(y|d) yields the maximum a posterior solution y∗ which, in case the posterior
is close to a unit Gaussian in the coordinates y, can be identified with the shift in y. As g
is an invertible function, we may instead minimize H̃ w.r.t. ξ and apply g to the result in
order to obtain y∗. Specifically

y∗ ≡ argmin
y

(H(y|d)) = g

(
argmin

ξ

(
H̃(ξ)

)
)

. (40)
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Therefore we can circumvent the inversion of g at any point during optimization. Now
suppose that we use any gradient based optimization scheme to minimize for ξ, starting
from some initial position ξ0. If we set the expansion point ξ̄, used to construct g, to be
equal to ξ0, we notice that

M̃(ξ̄) =M(ξ̄) (41)

∂M̃
∂ξ

∣∣∣∣
ξ=ξ̄

=
∂M
∂ξ

∣∣∣∣
ξ=ξ̄

, (42)

as the expansion of the metric is valid to first order by construction. Therefore if we set
the expansion point ξ̄ to the current estimate of ξ after every step, we can replace the
approximated metric M̃ with the true metricM and arrive at an optimization objective of
the form

ξ̄ = argmin
ξ

(
H(ξ, d) +

1
2

log(|M(ξ)|)
)

. (43)

Note that g(ξ̄; ξ̄) = 0 by construction, and therefore y∗ = 0, as there is a degeneracy
between a shift in y and a change of the expansion point ξ̄. Once the optimal expansion
point ξ̄ is found, we directly retrieve a generative process to sample from our approximation
to the posterior distribution. Specifically

P(y|d) ≈ N (y; 0,1) (44)

ξ = g−1(y; ξ̄) , (45)

where g−1 is only implicitly defined using Equation (29) and therefore its inverse applica-
tion has to be approximated numerically in general.

3.1.1. Numerical Approximation to Sampling

Recall that
y = g(ξ; ξ̄) =

√
M̄
−1

g̃(ξ; ξ̄) . (46)

To generate a posterior sample for ξ we have to draw a random realization for y from a
unit Gaussian, and then solve Equation (46) for ξ. To avoid the matrix square root of M̄,
we may instead define

z ≡
√
M̄ y = g̃(ξ; ξ̄) with P(z) = N (z; 0,M̄) . (47)

Sampling from P(z) is much more convenient then constructing the matrix square root, since

M̄ = 1+

((
∂x
∂ξ

)T ∂x
∂ξ

)∣∣∣∣∣
ξ̄

, (48)

and therefore a random realization may be generated using

z = η1 +

(
∂x
∂ξ

∣∣∣∣
ξ̄

)T

η2 with ηi ∼ N (ηi; 0,1) , i ∈ {1, 2} . (49)

Finally, a posterior sample ξ is retrieved by inversion of Equation (47). We numeri-
cally approximate the inversion by minimizing the squared difference between z and
g̃(ξ). Specifically,

ξ = argmin
ξ

(
1
2
(z− g̃(ξ))T(z− g̃(ξ))

)
. (50)

Note that if g is invertible then also g̃ is invertible as M̄ is a symmetric positive definite
matrix. Therefore the quadratic form of Equation (50) has a unique global optimum at zero
which corresponds to the inverse of Equation (47).
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In practice, this optimum is typically only reached approximately. For an efficient
numerical approximation, throughout this work, we employ a second order quasi-Newton
method, named NewtonCG [23], as implemented in the NIFTy framework. Within the
NewtonCG algorithm, we utilize the metric M̃(ξ) as a positive-definite approximation to
the curvature of the quadratic form in Equation (50). Furthermore, its inverse application,
required for the second order optimization step of NewtonCG, is approximated with
the conjugate gradient (CG) [24] method, which requires the metric to be only implicitly
available via matrix-vector products. In addition, in practice we find that the initial position
ξ0 of the minimization procedure can be set to be equal to the prior realization η1 used to
construct z (Equation (49)) in order to improve convergence as ξ = η1 is the solution of
Equation (47) for all degrees of freedom unconstrained by the likelihood. Alternatively, for
weakly non-linear problems, initializing ξ0 as the solution of the linearized problem

z = g̃(ξ; ξ̄)
∣∣
ξ=ξ̄

+
∂g̃
∂ξ

∣∣∣∣
ξ=ξ̄

(
ξ − ξ̄

)
=

(
1+

(
∂x
∂ξ

)T ∂x
∂ξ

)∣∣∣∣∣
ξ=ξ̄

(
ξ − ξ̄

)
, (51)

can significantly improve the convergence. The full realization of the sampling procedure
is summarized in Algorithm 1.

Algorithm 1: Approximate posterior samples using inverse transformation

1 Function drawSample(Location ξ̄, Transformation x(ξ), Jacobian ∂x
∂ξ ):

2 A← ∂x
∂ξ

∣∣∣
ξ=ξ̄

3 η1 ∼ N (η1; 0,1)
4 η2 ∼ N (η2; 0,1)
5 z← η1 + ATη2

6 ξ0 ← η1 or ξ0 ← Solve(z =
(
1+ AT A

)(
ξ0 − ξ̄

)
) for ξ0 (see Equation (51))

7 Function Energy(ξ):
8 g̃← ξ − ξ̄ + AT(x(ξ)− x(ξ̄)

)

9 return 1
2 (z− g̃)T(z− g̃)

10 ξ∗ ← NewtonCG(Energy, ξ0)
11 return ξ∗

3.1.2. Properties

We may qualitatively study some basic properties of the coordinate transformation
and the associated approximation using illustrative one and two dimensional examples. To
this end, consider a one dimensional log-normal prior model with zero mean and standard
deviation σp of the form

s(ξ) = eσpξ with P(ξ) = N (ξ; 0, 1) , (52)

from which we obtain a measurement d subject to independent, additive Gaussian noise
with standard deviation σn such that the likelihood takes the form

P(d|ξ) = N (d; s(ξ), σ2
n) . (53)

The posterior distribution is given as

P(ξ|d) ∝ P(d|ξ) P(ξ) = N (d; s(ξ), σ2
n) N (ξ; 0, 1) , (54)

and its metric takes the form

M(ξ) =

(
1
σn

∂s(ξ)
∂ξ

)2

+ 1 =

(
σp

σn

)2
e2σpξ + 1 . (55)
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In this one dimensional example we can construct the exact transformation giso
that maps from ξ to the transformed coordinates y, by integrating the square root of
Equation (55) over ξ. The resulting transformation can be seen in the central panel of
Figure 2, for an example with σp = 3 and σn = 0.3 and measured data d = 0.5. In ad-
dition, we depict the approximated transformation g(ξ; ξ̄) for multiple expansion points
ξ̄ ∈ {−1,−0.6,−0.2}. We see that the function approximation quality depends on the
choice of the expansion point ξ̄ as the approximation error is smallest in the vicinity of ξ̄.
In order to transform the posterior distribution P (Equation (54)) into the new coordinated
system, not all parts of the transformation are equally relevant and therefore different
expansion points result in more/less complex transformed distributions (see top panel
of Figure 2). Finally, if we use a standard distribution in the transformed coordinates y
and transform it back using the inverse transformations g−1(y; ξ̄), we find that the ap-
proximation quality of the resulting distributions Qξ̄ depends on ξ̄. The distributions are
illustrated in the left panel of Figure 2 together with the Kullback–Leibler divergence KL
between the true posterior distribution P and the approximations Qξ̄ . We also illustrate the
“geometrically optimal” approximation using a standard distribution in y and the optimal
transformation giso and find that while the approximation error becomes minimal in this
case, it remains non-zero. Considering the discussion in Section 2.2, this result is to be
expected due to the error contribution from the change in volume associated with the
transformation g. As a comparison we also depict the optimal linear approximation of P,
that is a normal distribution in the coordinates ξ with optimally chosen mean and standard
deviation. We see that even the worst expansion point ξ̄ = −0.2, that is far away from the
optimum, still yields a better approximation of the posterior.

As a second example we consider the task of inferring the mean m and variance v of a
single, real valued Gaussian random variable d. In terms of s = (m, v), the likelihood takes
the form

P(d|s) = N (d; m, v) . (56)

Furthermore we assume a prior model for s by means of a generative model of the form

m = ξ1 and vs. = exp[3(ξ2 + 2ξ1)] , (57)

where ξ1 and ξ2 follow standard distributions a priori. This artificial model results in
a linear prior correlation between the mean and the log-variance and thus introduces a
non-linear coupling between m and v. The resulting two dimensional posterior distribution
P(ξ1, ξ2) can be seen in the left panel of Figure 3, together with the two marginals P(ξ1)
and P(ξ2) for a given measurement d = 0. We approximate this posterior distribution
following the direct approach described in Section 3.1, where the expansion point ξ̄ is
obtained from minimizing the sum of the posterior Hamiltonian and the log-determinant of
the metric (see Equation (43)). The resulting approximative distribution QD is shown in the
right panel of Figure 3, where the location of ξ̄ is indicated as a blue cross. In comparison to
the true distribution, we see that both, the joint distribution as well as the marginals are in a
good agreement qualitatively, which is also supported quantitatively by a small difference
of the KL between P and QD (see Figure 3). The difference between P and QD appears to
increase in regions further away from the expansion point, which is to be expected due to
the local nature of the approximation. However, non-linear features such as the sharp peak
at the “bottom” of P (Figure 3), are also present in QD, although slightly less prominent.
This demonstrates that relevant non-linear structure can, to some degree, be captured by
the coordinate transformation g derived from the metricM of the posterior.
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g−1(y; ξ̄ = −0.2)

mopt + σopty

KL (P ;Qiso) = 0.0333

KL
(
P ;Qξ̄=−1.0

)
= 0.0582

KL
(
P ;Qξ̄=−0.6

)
= 0.0489

KL
(
P ;Qξ̄=−0.2

)
= 0.1557

KL (P ;QNormal) = 0.2864

Figure 2. Illustration of the coordinate transformation for the one-dimensional log-normal model (Equation (54)). The true
posterior P(ξ|d), displayed as the black solid line in the left panel, is transformed into the coordinate system y using the
optimal transformation giso (blue), as well as three approximations g thereof with expansion points ξ̄ ∈ {−1,−0.6,−0.2}
(orange, green, red). The resulting distributions P(y|d) are displayed in the top panel of the figure as solid lines, color
coded according the used transformation g (or giso in case of blue). The black, dashed line in the top panel displays a
standard distribution in y. The location of the expansion point ξ̄, and its associated point in y, is highlighted via the color
coded, dotted lines. Finally, the direct approximations to the posterior associated with the transformations, meaning the
push-forwards of the standard distribution in y using the inverse of the various transformations g−1, are displayed in
the left panel as dashed lines, color coded according to their used transformation. As a comparison, the “optimal linear
approximation” (black dotted line in the central panel), which corresponds to the optimal approximation of the posterior
with a normal distribution in ξ (black dotted line in left panel), is displayed as a comparison. To numerically quantify the
information distance between the true distribution P and its approximations Q•, the Kullback–Leibler (KL) divergences
between P and Q• are displayed in the top left of the image. The numerical values of the KL are given in nats (meaning the
KL is evaluated in the basis of the natural logarithm).
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Figure 3. Left: posterior distribution P in the standard coordinates ξ1/2 for the inference of the mean and variance of a
normal distribution (Equations (56) and (57)). The central panel shows the two dimensional density and the red dashed
lines are logarithmically spaced contours. The top and left sub-panels display the marginal posterior distributions for ξ1

and ξ2, respectively. Right: Approximation QD to the posterior distribution using the direct method (Section 3.1). As a
comparison, the contours (red dashed) and the marginal distributions (red solid) of the true posterior distribution P are
displayed in addition to the approximation. The blue cross in the central panel denotes the location of the expansion point
used to construct QD. Above the panel we display the optimal (KL(P; QD)) and variational (KL(QD; P)) Kullback–Leibler
divergences between P and QD.

Although these low-dimensional, illustrative examples appear promising, there re-
mains one central issue left to be addressed before the approach can be applied to high-
dimensional problems. In particular, the direct approach possesses a substantial additional
computational burden compared to, e.g., a maximum a posteriori (MAP) estimate in ξ
which is obtained by minimizing the posterior HamiltonianH. For the direct approach, the
optimization objective Equation (43) consists not only ofH, but also of the log-determinant
of the metricM. In all but the simplest examples this term cannot be computed directly
but has to be approximated numerically as in high dimensions an explicit representation of
the matrix becomes infeasible andM is only implicitly accessible through matrix vector
products (MVPs). There are a variety of stochastic log-determinant (more specifically
trace-log) estimators based on combining Hutchinsons’ trace-estimation [25] with approxi-
mations to the matrix logarithm using, e.g., Chebychev polynomials [26], Krylov subspace
methods [27], or moment constrained estimation based on Maximum Entropy [28]. While
all these methods provide a significant improvement in performance compared to directly
computing the determinant, they nevertheless typically require many MVPs in order to
yield an accurate estimate. For large and complex problems, evaluating an MVP ofM is
dominated by applying the Jacobian of x, more precisely of the generative process s′(ξ),
and its adjoint to a vector. Similarly, evaluating the gradient ofH is also dominated by an
MVP that invokes applying the adjoint Jacobian of s′(ξ). Therefore the computational over-
head compared to a MAP estimate in ξ is, roughly, multiplicative in the number of MVPs.
For large, non-linear problems, this quickly becomes infeasible as nonlinear optimization
typically requires many steps to reach a sensible approximation to the optimum.

Nevertheless there remain some important exceptions, in which a fast and scalable
algorithm emerges. In particular recall that

log(|M|) = tr

(
log

(
1+

(
∂x
∂ξ

)T ∂x
∂ξ

))
= tr

(
log

(
1+

∂x
∂ξ

(
∂x
∂ξ

)T
))

, (58)

where the last equality arises from applying the matrix determinant lemma. Therefore
in cases where the dimensionality of the so-called data-space (i.e., the target space of x)
is much smaller then the dimensionality of the signal space (the domain of ξ), the latter
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representation of the metric is of much smaller dimension. Thus, in cases where either
the signal- or the data-space is small, or in weakly non-linear cases (i.e., ifM is close to
the identity), the log-determinant may be approximated efficiently enough to give rise
to a fast and scalable algorithm. For the (arguably most interesting) class of problems
where neither of these assumptions is valid, however, the direct approach to obtain the
optimal expansion point becomes too expensive for practical purposes as none of the
log-determinant estimators scale linearly with the size of the problem in general.

3.2. Geometric Variational Inference (geoVI)

As we shall see, it is possible to circumvent the need to compute the log-determinant
of the metric at any point, if we employ a specific variant of a variational approximation to
obtain the optimal expansion point. To this end, we start with a variational approximation
to the posterior P, assuming that the approximative distribution Q̃ is given as the unit
Gaussian in y transformed via g. To this end let

Q̃(ξ|ξ̄) = N
(

g(ξ; ξ̄); 0,1
)∣∣∣∣
∣∣∣∣
∂g(ξ; ξ̄)

∂ξ

∣∣∣∣
∣∣∣∣ , (59)

denote the approximation to the posterior conditional to the expansion point ξ̄. The
variationally optimal ξ̄ can be found by optimization of the forward Kullback–Leibler
divergence between Q̃ and P, as given via

KL
(
Q̃|P

)
≡
∫

log
(

Q̃(ξ|ξ̄)
P(ξ|d)

)
Q̃(ξ|ξ̄)dξ

= 〈H(ξ|d)〉Q̃(ξ|ξ̄) −
〈
HQ̃(ξ|ξ̄)

〉
Q̃(ξ|ξ̄)

= 〈H(ξ|d)〉Q̃(ξ|ξ̄) +
1
2
〈
log
(∣∣M̃(ξ)

∣∣)〉
Q̃(ξ|ξ̄) + KL0 , (60)

where KL0 denotes contributions independent of ξ̄, andH(ξ|d) andHQ̃ denote the Hamil-
tonians of the posterior and the approximation, respectively. We notice that in this form, a
minimization of the KL w.r.t. ξ̄ does not circumvent a computation of the log-determinant
of the metric. Within the KL, this term arises from the entropy of the approximation
Q̃, and can be understood as a measure of the volume associated with the distribution.
In order to avoid this term, our idea is to propose an alternative family of distributions
Qm(ξ|ξ̄), defined as a shifted version of Q̃. Specifically we let ξ → m + ξ − ξ̄ such that the
distribution may be written as

Qm(ξ|ξ̄) = Q̃(ξ|ξ̄)
∣∣
ξ=ξ+ξ̄−m ≡ Q(r|ξ̄)

∣∣
r=ξ−m with r = ξ − ξ̄ , (61)

where we also introduced the residual r, which measures the deviations from ξ̄, and the
associated distribution Q(r|ξ̄). In words, Qm(ξ|ξ̄) is the distribution using the residual
statistics r, around an expansion point ξ̄, but shifted to m. One can easily verify that
the entropy related to Qm becomes independent of m, as shifts are volume-preserving
transformations. Therefore we may use some fixed expansion point ξ̄, and find the optimal
shift m using the KL which now may be written as

KL(Qm|P) = 〈H(ξ = m + r, d)〉Q(r|ξ̄) +
1
2

〈
log
(∣∣M̃(ξ)

∣∣)∣∣
ξ=ξ̄+r

〉
Q(r|ξ̄)

+ KL0

K̂L = 〈H(ξ = m + r, d)〉Q(r|ξ̄) , (62)

where K̂L denotes the KL up to m independent contributions. After optimization for m, we
can update to a new expansion point, and use it to define a new family of distributions Qm
which are a more appropriate class of approximations. In general, the expectation value in
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K̂L cannot be computed analytically, but it can be approximated using a set of N samples{
r∗i
}

i∈{1,...,N}, drawn from Q(r|ξ̄), which yields

K̂L(Qm|P) ≈
1
N

N

∑
i=1
H(ξ = m + r∗i , d) with r∗i ∼ Q(r|ξ̄) . (63)

Sampling from Q(r|ξ̄) is defined as in Section 3.1.1, where the sampling procedure for
Q̃(ξ|ξ̄) is described, with the addition that a sample r∗ is is obtained from a sample for ξ∗

as r∗ = ξ∗ − ξ̄.
Optimizing K̂L w.r.t. m yields the variational optimum for the distribution Qm(ξ|ξ̄),

given a fixed, predetermined expansion point ξ̄. In order to move the expansion point ξ̄
towards the optimal point, its location is updated subsequently and the KL is re-estimated
using novel samples from Q(r|ξ̄) with an updated ξ̄. Specifically, we initialize the optimiza-

tion algorithm at some position m0, set ξ̄ = m0 to obtain a set of samples
{

r∗i
}(0)

i∈{1,...,N}, and
use this set to approximate the KL. This approximation is then used to obtain an optimal
shift m1. Given this optimal shift, a new expansion point ξ̄ = m1 is defined and used
to obtain a novel set of samples

{
r∗i
}(1)

i∈{1,...,N} which defines a new estimate for the KL.
This estimate is furthermore used to obtain a novel optimal m, and so on. An illustrative
view of this procedure is given in Figure 4. Finally, the entire procedure of optimizing
the KL for m and re-estimation of the KL via a novel expansion point is repeated until
the algorithm converges to an optimal point m∗ = ξ̄∗. To optimize K̂L for m, we again
employ the NewtonCG algorithm, and use the average of the metricM as a proxy for the
curvature of K̂L to perform the optimization step. Specifically we use
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Figure 4. (1)–(4): Visualization of the geoVI steps. (1): A randomly initialized shift m (green cross) is used to set the initial
expansion point ξ̄ (orange dot) which in turn defines the initial approximation Qm(ξ|ξ̄ (blue dashed contours) used to
generate a set of samples ξ∗ (red dots). (2): The KL (Equation (63)), estimated from the samples, is used to optimize for m,
which results in a shift of Qm(ξ|ξ̄ away from the expansion point ξ̄. The residual statistics r∗ derived from the geometry
around ξ̄, however, remains unchanged during this shift and therefore, at the new location m, becomes a bad representation
of the local geometry. Thus, in (3), the expansion point is set to the current estimate of m, which yields an update to the
approximation Qm(ξ|ξ̄. Finally, we generate samples from this update and use them to optimize the re-estimated KL for m
which again results in a shift as seen in (4). Within the full geoVI algorithm this procedure is iterated until convergence.
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M̂(m) =
1
N

N

∑
i=1
M(ξ = m + r∗i ) , (64)

as the metric of K̂L. We call this algorithm the geometric Variational Inference (geoVI) method.
A pseudo-code summary of geoVI is given in Algorithm 2.

Algorithm 2: Geometric Variational Inference (geoVI)

Input: LikelihoodH(d|ξ), Transformation x(ξ), Jacobian ∂x
∂ξ

1 Function Energy(ξ):
2 returnH(d|ξ) + 1

2 ξTξ
3 m ∼ N (m, 0,1)
4 while m not converged do
5 ξ̄ ← m
6 samples← empty list
7 for i = 1 to N do
8 ξ∗ ← drawSample(ξ̄, x, ∂x

∂ξ ) (see Algorithm 1)
9 r∗ ← ξ∗ − ξ̄

10 Insert r∗ into samples
11 end
12 Function geoKL(ξ):
13 kl← 0
14 for r∗ in samples do
15 kl← kl + Energy(ξ + r∗)
16 end
17 return 1

N kl
18 m∗ ← NewtonCG(geoKL, m)
19 m← m∗

20 end
21 posteriorSamples← empty list
22 for r∗ in samples do
23 ξ∗ ← m + r∗

24 Insert ξ∗ into posteriorSamples
25 end

Output: posteriorSamples

3.2.1. Numerical Sampling within geoVI

It is noteworthy that, as described in Section 3.1.1, an implementation of the proposed
sampling procedure for the residual r, and as a result also of the geoVI method itself,
inevitably relies on numerical approximations to realize a sample for r. To better understand
the impact of such approximations, we have to consider its impact on the distribution
Q(r|ξ̄). To this end, we denote with f the function that, given the expansion point ξ̄,
turns two standard distributed random vectors η1 and η2 into a random realization of
r. Specifically

r = f (η1, η2; ξ̄) with η1/2 ∼ N (η1/2; 0,1) , (65)

where the functional form of f is defined by combination of Equations (49) and (50). using
f we may write the geoVI distribution Q as

Q(r|ξ̄) =
∫ ∫

δ
(
r− f (η1, η2; ξ̄)

)
N (η1; 0,1) N (η2; 0,1) dη1dη2 . (66)

Any numerical algorithm used to approximate the sampling, irrespective of its exact form,
may be described by replacing the function f , leading to exact sampling from Q, with
some approximation f̂ which leads to an approximation of the distribution for r, which we
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denote as Q̂(r|ξ̄). Therefore, in a way, the geoVI result using a numerical approximation
for sampling can be understood as the variational optimum chosen from the family of
distributions Q̂, rather than Q. Therefore, even for a non-zero approximation error in f̂ ,
the result remains a valid optimum of a variational approximation, it is simply the family
of distributions used for approximation that has changed. This finding is of great relevance
in practice, as there is typically a trade off between numerical accuracy of the generated
samples and computational efforts. Thus, we may achieve faster convergence at a cost
of accuracy in the approximation, but without completely detaching from the theoretical
optimum, so long as f̂ remains sufficiently close to f . Nevertheless, as motivated in the
introduction, it is important for the chosen family to contain distributions close to the true
posterior, and therefore it remains important that the family Q̂ remains close to the family
of Q as only for Q the geometric correspondence to the posterior has been established. A
detailed study to further quantify this result, is left to future work.

3.2.2. MGVI as a First Order Approximation

We can compare the geoVI algorithm to the aforementioned variational approximation
technique called Metric Gaussian variational inference (MGVI), and notice some key
similarities. In particular the optimization heuristics with repeated alternation between
sampling of r∗ and optimization for m is entirely equivalent. The difference occurs in the
distribution Q(r|ξ̄) used for approximation. In MGVI, Q is assumed to be a Gaussian
distribution in r, as opposed to the Gaussian distribution in the transformed space y used
in geoVI. Specifically

QMGVI(r|ξ̄) ≡ N (r; 0,M̄−1) , (67)

where the inverse of the posterior metricM, evaluated at the expansion point ξ̄, is used
as the covariance. As it turns out, the distribution QMGVI arises naturally as a first order
approximation to the coordinate transformation used in the geoVI approach. Specifically if
we consider the geoVI distribution of r given in terms of a generative process

r = g−1(y; ξ̄)− ξ̄ with y ∼ N (y; 0,1) , (68)

and expand it around y = 0 to first order, we get that

r = g−1(0, ξ̄)−
(

∂g(ξ, ξ̄)

∂ξ

∣∣∣∣
ξ=ξ̄

)−1

y +O
(

y2
)
− ξ̄

= ξ̄ − ξ̄ −
√
M̄


1+

((
∂x
∂ξ

)T ∂x
∂ξ

)∣∣∣∣∣
ξ=ξ̄



−1

y +O
(

y2
)

= −
(√
M̄
)−1

y +O
(

y2
)

. (69)

Therefore, to first order in y, we get that

Q(r|ξ̄) =
∫

δ

(
r +

(√
M̄
)−1

y
)
N (y; 0,1) dy = N (r; 0,M̄−1) = QMGVI(r|ξ̄) . (70)

This correspondence shows that geoVI is a generalization of MGVI in non-linear cases. This
is a welcome result, as numerous practical applications [29–31] have shown that already
MGVI provides a sensible approximation to the posterior distribution. On the other hand,
it provides further insight in which cases the MGVI approximation remains valid, and
when it reaches its limitations. In particular if

M(m + r) ≈ M̄ , ∀r = g−1(y, ξ̄)− ξ̄ with y ∼ N (y; 0,1) , (71)
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we get that the first order approximation of Equation (69) yields a close approximation
of the inverse and geoVI reduces to the MGVI algorithm. In contrast, geoVI with its
non-linear inversion requires the log determinant of the metricM to be approximately
constant throughout the sampling regime. This is a much less restrictive requirement then
Equation (71), as the variation of eigenvalues ofM is considered on a logarithmic scale
whereas it is considered on linear scale in Equation (71). Furthermore, the log-determinant
is invariant under unitary transformations which means that local rotations of the metric,
and therefore changes in orientation as we move along the manifold, can be captured by
the non-linear approach, whereas Equation (71) does not hold any more if the orientation
varies as a function of r. Therefore we expect the proposed approach to be applicable in a
more general context, while still retaining the MGVI properties, as it reproduces MGVI in
the linear limit.

3.3. Examples

We can visually compare the geoVI and the MGVI algorithm using the two-dimensional
example previously mentioned in Section 3.1.2. In analogy to Figure 3 we depict the ap-
proximation to the posterior density together with its two marginals in Figure 5. We see
that geoVI yields a similar result compared to the direct approach here, while it provides a
significant improvement compared to the approximation capacity of MGVI.
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Figure 5. The geoVI and MGVI approximations of the two-dimensional example described in Section 3.1.2. We display the
same quantities as for the direct approximation shown in Figure 3.

To conclude the illustrative examples, we consider a single observation of the prod-
uct of a normal and a log-normal distributed quantity subject to independent, additive
Gaussian noise. The full model consists of a likelihood and a prior of the form

P(d|ξ1, ξ2) = N (d; ξ1eξ2 , σ2
n) with ξ1/2 ∼ N (ξ1/2; 0, 1) . (72)

This example should serve as an illustration of the challenges that arise when attempting a
separation of non-linearly coupled quantities from a single observation. Such separation
problems reappear in Section 4 in much more intertwined and high dimensional examples,
but much of the structural challenges can already be seen in this simple two-dimensional
problem. Figure 6 displays the results of the direct approach as well as the geoVI and MGVI
methods for a measurement setting of d = −0.3 and σn = 0.1. As a comparison, we also
depict the results from performing a variational approximation using a normal distribution
with a diagonal covariance, also known as a mean-field approximation (MFVI), as well
as an approximation with a normal distribution using a full-rank matrix as its covariance
(FCVI). Both, the diagonal as well as the full-rank covariance are considered parameters
of the distribution, and have to be optimized for in addition to the mean of the normal
distribution. An efficient implementation thereof is described in [7]. We notice that both,
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the direct and the geoVI approach manage to approximate the true posterior distribution
well, although the KL values indicate that the approximation by geoVI is worse by ≈0.016
nats compared to the direct approach. Here the passive update of the expansion point used
in this approach reaches its limitations as in cases where the posterior distribution becomes
increasingly narrow towards the optimal expansion point, the static sample statistics
of r can get stuck during optimization and increasingly repeated re-sampling becomes
necessary as one moves closer to the optimum. Nevertheless, the geoVI approximation
remains a good approximation to the true distribution, especially when compared to the
approaches using a normal distribution such as MGVI, MFVI, and FCVI.

0.00.5

P (ξ2)

−4

−2

0

2

4

ξ 2

0

1

P
(ξ

1
)

P

−4 −3 −2 −1 0 1

ξ1

P (ξ1, ξ2)

10−310−210−1 100

0.00.5

P (ξ2)

−4

−2

0

2

4

ξ 2

0

1

P
(ξ

1
) P

QD

−4 −3 −2 −1 0 1

ξ1

QD(ξ1, ξ2)

10−310−210−1 100

KL (P ;QD) = 0.0250 KL (QD;P ) = 0.0335

0.00.5

P (ξ2)

−4

−2

0

2

4

ξ 2

0

1

P
(ξ

1
) P

QgeoVI

−4 −3 −2 −1 0 1

ξ1

QgeoVI(ξ1, ξ2)

10−310−210−1 100

KL (P ;QgeoVI) = 0.0655 KL (QgeoVI;P ) = 0.0888

0.00.5

P (ξ2)

−4

−2

0

2

4

ξ 2

0

1

P
(ξ

1
) P

QMGVI

−4 −3 −2 −1 0 1

ξ1

QMGVI(ξ1, ξ2)

10−310−210−1 100

KL (P ;QMGVI) = 3.3487 KL (QMGVI;P ) = 2.0713

01

P (ξ2)

−4

−2

0

2

4

ξ 2

0

1

P
(ξ

1
) P

QMFVI

−4 −3 −2 −1 0 1

ξ1

QMFVI(ξ1, ξ2)

10−310−210−1 100

KL (P ;QMFVI) = 3.9867 KL (QMFVI;P ) = 0.8929

0.00.5

P (ξ2)

−4

−2

0

2

4

ξ 2

0

1

P
(ξ

1
) P

QFCVI

−4 −3 −2 −1 0 1

ξ1

QFCVI(ξ1, ξ2)

10−310−210−1 100

KL (P ;QFCVI) = 1.9748 KL (QFCVI;P ) = 0.5765

Figure 6. Same setup as in Figures 3 and 5 but for a Gaussian measurement of the product of a normal distributed quantity
ξ1 and a log-normal distributed one ξ2 as described in the second example of Section 3.3. From top to bottom and from left
to right: ground truth P, direct approximation QD, geoVI approximation QgeoVI, MGVI approximation QMGVI, mean-field
approximation QMFVI, and the normal approximation with a full-rank covariance QFCVI.
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4. Applications

To investigate the performance of the geoVI algorithm in high dimensional imaging
problems, we apply it to two mock data examples and compare it to the results using
MGVI. In the first example, which serves as an illustration, the geoVI results are addition-
ally compared to the results obtained from applying a Hamiltonian Monte-Carlo (HMC)
sampler [12] to the mock example (see Section 5.2 for further information on HMC). The
second example is an illustration of a typical problem encountered in astrophysical imag-
ing. Both examples consist of hierarchical Bayesian models with multiple layers which
are represented as a generative process. One particularly important process for the class
of problems at hand are statistically homogeneous and isotropic Gaussian processes with
unknown power spectral density, for which a flexible generative model has been presented
in [32]. This process is at the core of a variety of astrophysical imaging applications [32–35],
and therefore an accurate posterior approximation of problems involving this model is
crucial. To better understand the inference challenges that arise in problems using this
particular model, we briefly summarize some of its key properties.

4.1. Gaussian Processes with Unknown Power Spectra

Consider a zero mean, square integrable random process sx defined on a L-dimensional
space subject to periodic boundary conditions which, for simplicity, we assume to have
size one. Specifically let x ∈ Λ = [0, 1]L and thus s ∈ L2(Λ). A Gaussian process

P(s) = N (s; 0, S) , (73)

with mean zero and covariance function Sxy is said to be statistically homogeneous and
isotropic, if S is a function of the Euclidean distance between two points i.e.,

Sxy = S(|x− y|) . (74)

Furthermore, as implied by the Wiener Wiener-Khinchin theorem [36], the linear operator
associated with S becomes diagonal in the Fourier space associated with Λ, and therefore
s may be represented in terms of a Fourier series with coefficients s̃k, where k labels the
Fourier coefficients. These coefficients are independent, zero mean Gaussian random
variables with variance 〈

|s̃k|2
〉

P(s)
≡ Ps(|k|) , (75)

which is also known as the power spectrum Ps of s. As Ps encodes the correlation structure
of s, its functional form is crucial to determine the prior statistical properties of s. In [32],
a flexible, non-parametric prior process for the power spectrum has been proposed by
means of a Gauss–Markov process on log-log-scale. This process models the spectrum as a
straight line on log-log-scale (resulting in a power law in |k| on linear scale) with possible
continuous deviations thereof. These deviations are itself defined as a Gauss–Markov
process (specifically an integrated Wiener process) and their respective variance is, among
others, an additional scalar parameter steering the properties of this prior process that are
also considered to be random variables that have to be inferred. These parameters are
summarized in Table 1. A more formal derivation of this model in terms of a generative
process relating standard distributed random variables ξp to a random realization Ps(ξp)
of this prior model, is given in Appendix B.
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Table 1. Table of additional parameters.

Name Description Prior Distribution

offset std. Prior standard deviation of the overall offset of s from zero Log-normal
fluctuations Prior amplitude of the variation of s around its offset Log-normal

slope Exponent of the power law related to Ps Normal
flexibility Amplitude of deviations from the power-law on log-log-scale Log-normal
asperity Smoothness of the deviations as a function of log(|k|) Log-normal

In order to use this prior within a larger inference model, the underlying space has to
be discretized such that the solution of the resulting discrete problem remains consistent
with the continuum. We achieve this discretization by means of a truncated Fourier series
for s such that s may be written as

s = F †
(√

Pk(ξp)ξ
)

with P(ξ) = N (ξ; 0,1) , (76)

where F denotes a discrete Fourier transformation (DFT) and F † its back-transformation.
If we additionally evaluate s on a regular grid on Λ, we can replace the DFT with a
fast Fourier transformation (FFT) which is numerically more efficient. For a detailed
description on how the spatial discretization is constructed please refer to [37,38]. In this
work, however, we are primarily interested in evaluating the approximation quality of the
proposed algorithm geoVI, and therefore, from now on, we regard all inference problems
involving this random process to be high, but finite, dimensional Bayesian inference
problems and ignore the fact that it was constructed from a corresponding continuous,
infinite dimensional, inference problem.

4.2. Log-normal Process with Noise Estimation

As a first example we consider a log-normal process es, defined over a one-dimensional
space, with s being a priori distributed according to the aforementioned Gaussian process
prior with unknown power spectrum. The observed data d (see top panel of Figure 7)
consists of a partially masked realization of this process subject to additive Gaussian noise
with standard deviation σn. In addition to s and its power spectrum Ps, we also assume σn
to be unknown prior to the observation and place a log normal prior on it. Therefore the
corresponding likelihood takes the form

P(d|s, σn) = N (d; Res, σ2
n) . (77)

We apply the geoVI algorithm (Figure 7),the MGVI algorithm (Figure 8), and an HMC
sampler (Figure 9) to this problem and construct a set of 3000 approximate posterior
samples for all methods. The HMC results serve as the true reference here, as the true
posterior distribution is too high dimensional to be accessible directly and HMC is known
to reproduce the true posterior in the limit of infinite samples. Considering solely the
reconstruction of es, we see that both methods, geoVI and MGVI, agree with the true signal
largely within their corresponding uncertainties. Overall we find that the geoVI solution
is slightly closer to the ground truth compared to MGVI and the posterior uncertainty is
smaller for geoVI in most regions, with the exception of the unobserved region, where it is
larger compared to MGVI (see residual plot of Figures 7 and 8). In this region MGVI appears
to slightly underestimate the posterior uncertainty. In addition, in the bottom panels of
Figures 7 and 8, we depict the posterior distribution of the noise standard deviation σn as
well as the posterior mean of the power spectrum Ps, together with corresponding posterior
samples. Here the difference between geoVI and MGVI becomes evident more visibly,
which, to some degree, is to be expected due to the more non-linear coupling of σn and Ps
to the data compared to es. Indeed we find that the posterior distribution of σn recovered
using MGVI is overestimating the noise level of the reconstruction. The geoVI algorithm



Entropy 2021, 23, 853 23 of 42

is also slightly overestimating σn, however we find that for geoVI the posterior yields
σ

geoVI
n = 0.220± 0.026 which places the true value of σn = 0.2 approximately 0.8-sigma

away from the posterior mean. In contrast, for MGVI, we get that σMGVI
n = 0.233± 0.011

for with the ground truth is almost a 3-sigma event. Considering the HMC results (bottom
panel of Figure 9), the geoVI results appear to be closer to the HMC distribution compared
to MGVI, although the HMC distribution for σn is broader and even closer to the true
value then geoVI. In addition we find that the overall reconstruction quality of the power
spectrum Ps is significantly increased when moving from MGVI to geoVI. While MGVI
manages to recover the overall slope of the power-law, it fails to reconstruct the devations
from this power-law as well as the overall statistical properties of Ps as encoded in the
parameters of Table 1. In contrast, the geoVI algorithm is able to pick up some of these
features and recovers posterior statistical properties of the power spectrum similar to the
ground truth. In addition the posterior uncertainty appears to be on a reasonable scale,
as opposed to the MGVI reconstruction which significantly underestimates the posterior
uncertainty. The structures on the smallest scales (largest values for |k|), however, appear
to be underestimated by the geoVI mean, although the posterior uncertainty increases
significantly in these regimes. In comparison to HMC we find that the results are in
agreement for the large scales, although the geoVI uncertainties appear to be slightly larger.
On small scales, the methods deviate stronger, and the under-estimation of the spectrum
seen by geoVI is absent in the HMC results.
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Figure 7. Posterior approximation using the geoVI algorithm for the log-normal process described in Section 4.2. Top:
The ground truth realization of the log-normal process es (red line) and the corresponding data (brown dots) used for
reconstruction. The blue line is the posterior mean, and the gray lines are a subset of the posterior samples obtained from the
geoVI approximation. Below we depict the residual between the ground truth and reconstruction, including the residuals
for the posterior samples. The blue dashed line corresponds to the one-sigma uncertainty of the reconstruction. Bottom
left: Approximation to the marginal posterior distribution (blue) of the noise standard deviation σn. The red vertical line
indicates the true value of σn = 0.2 used to construct the data. Bottom right: Power spectrum Ps of the logarithmic quantity
s. Red displays the ground truth, blue the posterior mean, and the gray lines are posterior samples of the power spectrum.
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Figure 8. Same setup as in Figure 7, but for the approximation using the MGVI algorithm.
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Figure 9. Same setup as in Figure 7, but for the approximation using the HMC sampling.
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To further study the posterior distribution of the various scalar parameters that enter
the power spectrum model (see Table 1), as well as the noise standard deviation σn, we
depict the reconstructed marginal posterior distributions for all pairs of inferred scalar
parameters. Figures 10–12 show the posterior distributions recovered using geoVI, MGVI,
and HMC, respectively. All parameters are displayed in their corresponding standard
coordinate system, i.e., they all follow a zero-mean unit variance normal distribution prior
to the measurement. From an inference perspective, some of these parameters are very
challenging to reconstruct, as their coupling to the observed data is highly non-linear
and influenced by many other parameters of the model. In turn, their values are highly
influential to the statistical properties of more interpretable variables such as the observed
signal es and its spectrum Ps. We see that despite these challenges the geoVI posterior
appears to give reasonable results, that are largely in agreement with the ground truth,
within uncertainties. Thus, the algorithm appears to be able to pick up parts of the non-
linear structure of the posterior, which is validated when compared to the MGVI algorithm,
as for these parameters the MGVI reconstruction (Figure 11) does not yield reliable results
any more. This is to be expected in case of significant non-linearity as MGVI is the first
order approximation of geoVI. In comparison to HMC (Figure 12), however, we find that
there remain some differences in the recovered posterior distributions. The HMC results
regarding the “fluctuations” and “noise std.” parameters are more centered on the ground
truth and in particular the posterior distribution of the “slope” parameter is significantly
different and more constrained, compared to the geoVI results. These differences indicate
that there remain some limitations to the recovered geoVI results in the regime of highly
non-linear parameters of the model which we may associate to the theoretical limitations
discussed in Section 2.2.

4.3. Separation of Diffuse Emission from Point Sources

In a second inference problem we consider the imaging task of separating diffuse,
spatially extended and correlated emission es from, bright, but uncorrelated point sources
p in an image. This problem is often encountered within certain astrophysical imaging
problems [39] where the goal is to recover the emission of spatially extended structures such
as gas or galactic dust. This emission usually gets superimposed by the bright emission
of stars (point sources) in the image plane, and only their joint emission can be observed.
In this example we assume that the emission is observed through a detection device that
convolves the incoming emission with a spherical symmetric point spread function R
and ultimately measures photon counts on a pixelated grid. Specifically we may define a
Poisson process with count rate

λ = R(p + es) with P(d|λ) = ∏
i

(λi)
di e−λi

(ki)!
, (78)

where i labels the pixels of the detector. We assume the diffuse emission to follow a
statistically homogeneous and isotropic log-normal distribution with unknown prior
power spectrum. Thus, s is again distributed according to the prior process previously
given in Section 4.1. The point sources follow an inverse-gamma distribution at every point
(x, y) of the image plane, given as

P(pxy) =
qα

Γ(α)
(

pxy
)−α−1 exp

(
− q

pxy

)
, (79)

where in the particular example we used (α, q) = (2, 3). A visualization of the problem
setup with the various stages of the observation process is given in Figure 13.
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Figure 10. Posterior distributions of the scalar parameters that enter the forward model of the power spectrum (Table 1),
and the noise standard deviation. All parameters, including the noise parameter, are given in their corresponding prior
standard coordinate system, i.e., have a normal distribution with zero mean and variance one as a prior distribution. Each
square panel corresponds to the joint posterior of the parameter in the respective row and column. In addition, for each row
and each column the one-dimensional marginal posteriors of the corresponding parameter are displayed as blue lines. The
red lines in the 1-D, and the red dots in the 2-D plots denote the values of the ground truth used to realize the ground truth
values of the spectrum Ps, the signal es, and finally the observed data d.
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Figure 11. Same setup as in Figure 10, but for the approximation using the MGVI algorithm.
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Figure 12. Same setup as in Figure 10, but for the approximation using HMC sampling.

We employ the geoVI and MGVI algorithms to infer all, a priori standard distributed,
degrees of freedom of the model and recover the power spectrum Ps for the diffuse emission
together with its hyper parameters, the realized emission es and the point sources p, from
the Poisson count data d. The reconstructed two dimensional images of p and es are
displayed in Figure 14 together with the recovered count rate λ, and compared to their
respective ground truth. We find that in this example there is barely a visible difference
between the reconstructed diffuse emission of MGVI and geoVI. Both reconstructions are
in good agreement with the ground truth. For the point sources, we find that the brightest
sources are well recovered by both algorithms, while geoVI manages to infer a few more of
the fainter sources as opposed to MGVI. Nevertheless, for both algorithms, the posterior
mean does not recover very faint sources present in the true source distribution. This can
also be seen in Figure 15, where we depict the per-pixel flux values for all locations in
the image against their reconstructed values, for both, the diffuse emission and the point
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sources. We find that the MGVI and the geoVI are, on average, in very good agreement.
It is noteworthy that the deviations between the true and the reconstructed flux values
increases towards smaller values, which is to be expected due to the larger impact of the
Poisson noise. For the spatially independent point sources, there appears to be a transition
regime around a flux of ≈50, below which point sources become barely detectable. All
in all, for the diffuse emission as well as the point sources, both reconstruction methods
apparently yield similar results, consistent with the ground truth. In addition, in Figure 16,
we depict the inferred power spectra. We find that the overall shape is reconstructed well
by both algorithms, but smaller, more detailed features can only be recovered using geoVI.
In addition we find that the statistical properties of the spectrum, as indicated by, e.g., the
roughness of the spectrum as a function of the Fourier modes |k|, are well reconstructed
by geoVI and in agreement with the true spectrum, whereas the MGVI reconstruction,
including the posterior samples, appear to be systematically too smooth compared to the
ground truth. As discussed in the previous example in more detail, the parameters that
enter the model to determine these properties of the spectrum are highly non-linearly
coupled and influenced by the observed data and therefore the linear approximation as
used in MGVI becomes, at some point, invalid.
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Figure 13. Graphical setup of the separation problem discussed in Section 4.3. Random realization of the power spectrum
Ps (left) which is used to generate the log-signal s, which, after exponentiation, models the diffuse emission on the sky es.
The point sources p (top panel in the middle), which are a realization of the position-independent inverse-gamma process,
get combined with the diffuse emission and the result is convolved with a spherical symmetric point spread function R to
yield the per-pixel count rate λ which is ultimately used as the rate in a Poisson distribution used to realize the count data d.
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Figure 14. Comparison of the ground truth (top row) to the geoVI (middle row) and the MGVI (bottom row) algorithms.
The middle and bottom rows show the posterior means for (from left to right) the point sources p, the diffuse emission es,
and the count rate λ.
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Figure 15. Comparison of the per-pixel flux between the ground truth (y-axis) and the reconstruction (x-axis) for the diffuse
emission es (top row), and the point sources p (bottom row). The left column shows the geoVI result where the density
of pixels is color-coded ranging from blue, where the density is highest, to green towards lower densities. The red lines
indicate contours of equal density. The right column displays the same for the MGVI reconstruction, with the corresponding
density contours now displayed in light blue. The red dashed contours are the density contours of the geoVI case, shown
for comparison.
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Figure 16. Power spectrum Ps of the logarithm of the diffuse emission s. The red line is the ground truth, the blue line the
posterior mean, and the gray lines a subset of posterior samples for the geoVI (left) and MGVI (right) approximations.

5. Further Properties and Challenges

Aside from the apparent capacity to approximate non-linear and high-dimensional
posterior distributions, there are some further properties that can be derived from geoVI
and the associated coordinate transformation. In the following, we show how to obtain
a lower bound to the evidence using the geoVI results. Furthermore, we outline a way
to utilize the coordinate transformation in the context of Hamilton Monte-Carlo (HMC)
sampling. Finally, some limitations remain to the approximation capacity of geoVI in its
current form, which are discussed in Section 5.3.

5.1. Evidence Lower Bound (ELBO)

With the results of the variational approximation at hand, we can provide an Evidence
lower bound (ELBO). To this end consider the HamiltonianH(ξ|d) of the posterior which
takes the form

H(ξ|d) = H(ξ, d)−H(d) = H(d|ξ) + 1
2

ξTξ +
1
2

log(|2π1|)−H(d) , (80)

and the Hamiltonian of the approximationHQ as a function of r, given as

HQ(r|ξ̄) =
1
2

g(ξ̄ + r; ξ̄)T g(ξ̄ + r; ξ̄) +
1
2

log(|2π1|)− 1
2

log
(∣∣M̃(ξ̄ + r)

∣∣) . (81)

Using these Hamiltonians, we may write the variational approximation as

KL(Q; P) =
〈
H(ξ = ξ̄ + r|d)

〉
Q(r|ξ̄) −

〈
HQ(r|ξ̄)

〉
Q(r|ξ̄)

=
〈
H(ξ = ξ̄ + r, d)

〉
Q(r|ξ̄) −H(d)−

〈
HQ(r|ξ̄)

〉
Q(r|ξ̄) . (82)

As H(d) = − log(P(d)), we can derive a lower bound for the logarithmic evidence P(d)
using the KL as

log(P(d)) ≥ log(P(d))−KL(Q; P) , (83)
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where the lower bound becomes maximal if the KL becomes minimal. Thus, we may use our
final expansion point ξ̄ obtained from minimizing the KL together with the Hamiltonians
(Equations (80) and (81)) to arrive at

log(P(d))−KL(Q; P) =

=
1
2

tr(1)−
〈
H(d|ξ = ξ̄ + r) +

1
2
(
ξ̄ + r

)T(
ξ̄ + r

)
+

1
2

log
(∣∣M̃(ξ̄ + r)

∣∣)
〉

Q(r|ξ̄)

≈ 1
2

tr(1)− 1
N

N

∑
i=1

(
H(d|ξ = ξ̄ + r∗i ) +

1
2
(
ξ̄ + r∗i

)T(
ξ̄ + r∗i

)
+

1
2

log
(∣∣M̃(ξ̄ + r∗i )

∣∣)
)

, (84)

where
{

r∗i
}

i∈{1,...,N} are a set of samples drawn from the approximation Q(r|ξ̄). Under

the assumption that the log determinant of M̃ is approximately constant throughout the
typical set reached by Q, we may replace its sample average with the value obtained at ξ̄ to
arrive at

log(P(d))−KL(Q; P) ≈ 1
2

tr(1)− 1
2

log
(∣∣M̄

∣∣)

− 1
N

N

∑
i=1

(
H(d|ξ = ξ̄ + r∗i ) +

1
2
(
ξ̄ + r∗i

)T(
ξ̄ + r∗i

))
, (85)

where we also replaced the metric of the expansion M̃ with the metric of the posterior
M as they are identical when evaluated at the expansion point ξ̄ (see Equation (41)). The
assumption that the log determinant does not vary significantly within the typical set is also
a requirement for the approximation Q to be a close match for the posterior P and in turn it
is a necessary condition for the ELBO to be a tight lower bound to the evidence as only in
this case the KL may become small. Therefore Equation (85) is a justified simplification in
case the entire variational approximation itself is justified. Nevertheless it may be useful
to compute the log determinant also for the posterior samples if feasible, as it provides a
valuable consistency check for the method itself.

5.2. RMHMC with Metric Approximation

As initially discussed in the introduction, aside from Variational inference methods
there exist Markov chain Monte-Carlo (MCMC) methods that utilize the geometry of
posterior to increase sampling efficiency. A recently introduced Hybrid Monte-Carlo
(HMC) method called Riemannian manifold HMC (or RMHMC) utilizes the same posterior
metric as discussed in this work in order to define a Riemannian manifold on which
the HMC integration is performed. As one of the key results presented here yields an
approximate isometry for this manifold, we like to study the impact of the proposed
coordinate transformation on RMHMC. To do so, recall that in HMC the random variable
ξ ∈ RM, which is distributed according to a posterior distribution P(ξ), is accompanied
by another random variable p ∈ RM, called momentum, and their joint distribution
P(ξ, p) is factorized by means of the posterior P(ξ), and the conditional distribution P(p|ξ).
The main idea of HMC is to regard the joint Hamiltonian H(ξ, p) = − log(P(ξ, p)) as
an artificial Hamiltonian system that can be used to construct a new posterior sample
from a previous one by following trajectories of the Hamiltonian dynamics. In particular
suppose that we are given some random realization ξ0 of P(ξ), we may use the conditional
distribution P(p|ξ0) to generate a random realization p0. Given a pair (ξ0, p0), HMC
solves the dynamical system associated with the HamiltonianH(ξ, p) for some integration
time t∗, to obtain a new pair (ξ∗, p∗). As Hamiltonian dynamics is both energy and
volume preserving by construction, one can show that if (ξ0, p0) is a random realization
of P(ξ, p), then also (ξ∗, p∗) is. This procedure may be repeated until a desired number of
posterior samples is collected. In practice, the performance of an HMC implementation
for a specific distribution P(ξ) strongly depends on the choice of conditional distribution
P(p|ξ). To simplify the Hamiltonian trajectories and enable a fast traversion of the posterior,
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RMHMC has been proposed which utilizes a position dependent metric for the conditional
distribution of the momentum which takes the form

P(p|ξ) = N (p; 0,M(ξ)) , (86)

where M(ξ) denotes the metric associated with the posterior P(ξ) as introduced in
Section 2 in Equation (10). The associated Hamiltonian takes the form

H(p, ξ) =
1
2

pTM(ξ)−1 p +
1
2

log(|M(ξ)|) +H(ξ) . (87)

In direct analogy of the discussion in Section 2, the motivation of utilizing the metric is that
the resulting Hamiltonian system can be understood as being defined on the Riemannian
manifold associated with M. Therefore the geometric complexity is absorbed into the
shape of the manifold, and the trajectories become particularly simple. In practice, however,
numerical integration of the system related to Equation (87) is challenging, as in general
H(p, ξ) is non-separable. Here, our coordinate transformation may come in handy, as a
Hamiltonian using the approximated metric M̃ (Equation (14)) instead ofM becomes
separable. Specifically replacingM in Equation (87) yields

H(p, ξ) =
1
2

pTM̃(ξ; ξ̄)−1 p +
1
2

log
(∣∣M̃(ξ; ξ̄)

∣∣)+H(ξ)

=
1
2

pT

((
∂g(ξ; ξ̄)

∂ξ

)T
∂g(ξ; ξ̄)

∂ξ

)−1

p + H̃(ξ; ξ̄) . (88)

This modified system allows for a canonical transformation of the form

(
y
v

)
←
(

g(ξ; ξ̄)(
∂g(ξ;ξ̄)

∂ξ

)T
p

)
, (89)

in which the Hamiltonian (Equation (88)) takes the form

H(v, y) =
1
2

vTvs. + H̃(ξ; ξ̄)
∣∣
ξ=g−1(y;ξ̄) ≡ T(v) + V(y) , (90)

and thereforeH is separable in the momenta v and the position y. This separability is an
interesting property as it has the potential to simplify the integration step used within
RMHMC. However, in its current form, we find that there are multiple issues with this
approach that prevent an efficient implementation in practice. For one, the transformation
g depends on an expansion point ξ̄, which becomes a hyper-parameter of the method
that has to be determined (possibly in the warm-up phase). In addition, unlike the direct
approach discussed in Section 3.1, we cannot circumvent the inversion of g, which is
only implicitly available in general, as it has to be computed for every integration step
related toH(v, y) (Equation (90)). Therefore, numerical integration of the system may be
simpler, but evaluation of H(v, y) becomes more expensive. Finally, the approximation
of the metric may become invalid as we move far away from the expansion point ξ̄, and
therefore the applicability compared to an RMHMC implementation using the full metric
M is limited. Nevertheless we find the existence of a separable approximation to the
Hamiltonian system very interesting, and think that the (or a similar) transformation g and
its associated coordinate system (y, v) might be of relevance in the future development of
RMHMC algorithms.
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5.3. Pathological Cases

As discussed in Section 2.1, one property that can violate our assumptions are non-
monotonic changes in the metric. To this end, consider a sigmoid-normal distributed
random variable, and a measurement subject to additive, independent noise of the form

P(d|ξ) = N (d; σ
(
σpξ
)
, σ2

n) with P(ξ) = N (ξ; 0, 1) , (91)

where σ(•) denotes the sigmoid function. The resulting posterior, its associated coordinate
transformation, as well as its geoVI approximation, is displayed in Figure 17 for a case
with (σp, σn, d) = (3, 0.2, 0.2). We find that similar to the one-dimensional log-normal
example of Section 3.1.2, the approximation quality depends on the chosen expansion
point. However, the changes in approximation quality are much more drastic as in the
log-normal example. In particular, due to the sigmoid non-linearity, there exists a turning
point in the coordinate transformation g, and if we choose an expansion point close to
this point, we see that the approximation to the transformation strongly deviates from
the optimal transformation as we move away from this point. As a result, in this case the
approximation to the posterior (left panel of Figure 17) obtains a heavy tail that is neither
present in the true posterior nor the approximation using the optimal transformation.
Nevertheless there may very well also exist a case where such a heavy tail is present in the
optimal approximation to the transformation. Even in the depicted case, where the tail is
only present for sub-optimal choices of the expansion point, an optimization algorithm
might have to traverse this sub-optimal region to reach the optimum. Thus, the heavy tail
can lead to extreme samples for some intermediate approximation, and therefore the geoVI
algorithm could become unstable.
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Figure 17. Same setup as in Figure 2, but for the sigmoid-normal distributed case. In addition to the exact isometry giso,
the approximation using the optimal expansion point ξ̄ = −0.68 and a pathological heavy-tail example using ξ̄ = −0.1
is displayed.
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In a second example we consider a bi-modal posterior distribution, generated from a
Gaussian measurement of a polynomial. Specifically we consider a likelihood of the form

P(d|ξ) = N
(

d; ξ4 + ξ, 1
)

, (92)

with ξ being a priori standard distributed. As can be seen in Figure 18, this scenario leads
to a bi-modal posterior distribution with two well separated, asymmetric modes. We find
that the geometrically optimal transformation giso also leads to a bi-modal distribution in
the transformed coordinates, however the local asymmetry and curvature of each mode
has approximately been removed. Thus, while an approximation of the posterior by
means of a single unit Gaussian distribution is apparently not possible, each mode may be
approximated individually, at least in case the modes are well separated. If we consider
the approximation of the coordinate transformation used within geoVI, and choose as an
expansion point the optimal point associated with one of the two modes, we get that for
the chosen mode the approximation remains valid and the transformation is close to the
optimal transformation. However, if we move away from the mode towards the other
mode, the approximation quickly deviates from giso and eventually becomes non-invertible.
Therefore only the approximation of one of the modes is possible. Here, care must be taken,
as in practical applications the inversion of g is performed numerically and one has to
ensure that the inversion does not end up on the second branch of the transformation.
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Figure 18. Second pathological example, given as a bi-modal posterior distribution. The setup is similar to Figures 2 and 17,
where in this example only the (locally) optimal expansion point ξ̄ = 1.08 is used.

This summarizes the two main issues that may render a geoVI approximation of a
posterior distribution invalid. The challenges and issues related to multi modality appear
to be quite fundamental, as in its current form, the geoVI method falls into the category of
methods that utilize local information of the posterior which all suffer from the inability
to deal with more than a single mode. The problems related to turning points are more
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specific for geoVI, and its implications need to be further studied in order to generalize
its range of applicability in the future. One promising finding is that this issue appears to
be solely related to the local approximation of the transformation with a “bad” expansion
point, as the geometrically optimal transformation giso apparently does not show such be-
havior. Therefore an extension of the current approximation technique using, e.g., multiple
expansion points, or identifying and excluding these “bad” expansion points during opti-
mization, may provide a solution to this problem. At the current stage of the development,
however, it is unclear how to incorporate such ideas into the algorithm without loss of the
functional form of g that allows for the numerically efficient implementation at hand.

6. Summary and Outlook

In this work we introduced a coordinate transformation for posterior distributions
that yields a coordinate system in which the distributions take a geometrically simple
form. In particular we construct a metric as the sum of the Fisher metric of the likelihood
and the identity matrix for a standard prior distribution, and construct the transformation
that relates this metric to the Euclidean metric. Using this transformed coordinate system,
we introduce geometric Variational Inference (geoVI), where we perform a variational
approximation of the transformed posterior distribution with a normal distribution with
unit covariance. As the coordinate transformation is only approximately available and
utilizes an expansion point around which it is most accurate, the VI task reduces to finding
the optimal expansion point such that the variational KL between the true posterior and
the approximation becomes minimal. There exists a numerically efficient realization that
enables high-dimensional applications of geoVI because even though the transformation
is non-volume preserving, geoVI avoids a computation of the related log-determinant of
the Jacobian of the transformation at any point. The expansion point used to generate
intermediate samples is only passively updated. Furthermore, the application of the
constructed coordinate transformation is similar to the cost of computing the gradient
of the posterior Hamiltonian. In addition, to generate random realizations, computing
the appearing matrix square root of the metric can be entirely avoided, and the inverse
transformation is achieved implicitly by second order numerical inversion.

Despite being an approximation method, we find that geoVI is successfully applicable
in non-linear, but uni-modal settings, which we demonstrated with multiple examples. We
see that non-linear features of the posterior distribution can accurately be captured by the
coordinate transformation in low-dimensional examples. This property may translate into
high dimensions, as it increases the overall reconstruction quality there when compared
to its linearized version MGVI. Nevertheless we also find remaining pathological cases in
which further development is necessary to achieve a good approximation quality.

In addition to posterior approximation, geoVI results can be used in order to provide
an evidence lower bound (ELBO) which is used for model comparison. Finally we demon-
strate the overlap to another posterior sampling technique based on Hamilton Monte-Carlo
(HMC), that utilizes the same metric used in geoVI, called Riemannian manifold HMC.

All in all, the geoVI algorithm, and more generally the constructed approximative
coordinate transformation, are a fast and accurate way to approximate non-linear and
high-dimensional posterior distributions.
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The following abbreviations are used in this manuscript:

VI Variational Inference
MCMC Markov-Chain Monte-Carlo
geoVI geometric Variational Inference
VB Variational Bayes’
RMHMC Riemannian manifold Hamilton Monte-Carlo
HMC Hamilton (Hybrid) Monte-Carlo
MGVI Metric Gaussian Variational Inference
NIFTy Numerical Information Field Theory
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MAP Maximum a posterior
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Appendix A. Likelihood Transformations

In order to construct the coordinate transformation x(ξ) introduced in Section 2.1, we
require that the Fisher metric of the likelihoodMd|ξ may be written as the pullback of the
Euclidean metric. Recall that the likelihood expressed in coordinates ξ is obtained from the
likelihood P(d|s′) with s′ = f ′(ξ) (see Equation (4)). Therefore we may expressMd|ξ as

Md|ξ(ξ) =

(
∂s′

∂ξ

)T

Md|s′
∂s′

∂ξ
. (A1)

Thus, the task reduces to construct a transformation x(s′) that recoversMd|s′ from the
Euclidean metric if we set the full transformation to be x(ξ) ≡ x(s′ = f ′(ξ)). Specifically
we require for x(s′)

Md|s′
!
=

(
∂x
∂s′

)T ∂x
∂s′

. (A2)

Below, in Table A1, we give a summary of multiple commonly used likelihoods, their
respective Fisher metric, and the associated transformation x(s′).

Table A1. List of common likelihood distributions with their respective HamiltonianH(d|s′), their
Fisher MetricM(d|s′), and the associated coordinate transformation x(s′) satisfying Equation (A2).

Name H(d|s′) MetricM Trafo. x(s′)
Normal 1

2 (d− s′)T N−1(d− s′) + cst. N−1
√

N−1s′

Poisson 1Ts′ − dT log(s′) + cst. 1/s′ 1
2

√
s′

Inv. Gamma (α + 1)T log(s′) + βT
(

1
s′

)
+ cst. α+1

s′2
√

α + 1 log(s′)

Student-T θ+1
2 log

(
1 + s′2

θ

)
+ cst. θ+1

θ+3

√
θ+1
θ+3 s′

Bernoulli −dT log(s′)− (1− d)T log(1− s′) + cst. 1
s′(1−s′) −2 tan−1

(√
s′
)
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For some likelihoods, however, such a decomposition is not accessible in a simple
form. One example that is being used in this work is a normal distribution with unknown
mean m and variance v. The Hamiltonian of a one dimensional example takes the form

H(d|m, v) =
1
2
(d−m)2

v
+

1
2

log(v) + cst. , (A3)

and the corresponding Fisher metric for s′ = (m, v) is

Md|s′ =

(
1
v 0
0 1

2v2

)
. (A4)

While there is no simple decomposition by means of the Jacobian of some function x, there
is an approximation available for which x takes the form

x(s′) =

(
d−m√

v
1
2 log(v)

)
with

∂x
∂s′

=

(
− 1√

v − d−m
2v3/2

0 1
2v

)
. (A5)

We can compute the approximation to the metric and find

(
∂x
∂s′

)T ∂x
∂s′

=

(
1
v

d−m
2v2

d−m
2v2

1
4v2 +

(d−m)2

4v2

)
. (A6)

Note that as opposed to the Fisher metric, this approximation depends on the observed
data d. In fact we can recover the Fisher metric from this approximation by taking the
expectation value w.r.t. the likelihood. Specifically

〈(
∂x
∂s′

)T ∂x
∂s′

〉

N (d;m,v)

=

(
1
v 0
0 1

2v2

)
=Md|s′ , (A7)

and therefore it may be regarded as a local approximation using the observed data. All
examples of this work that use a normal distribution where in addition to the mean also
the variance is inferred, use this approximation.

Multiple Likelihoods

In general, we may encounter measurement situations where multiple likelihoods are
involved, e.g., if we aim to constrain s′ with multiple data-sets simultaneously. Specifically
consider a set of D data-sets {di}i∈{1,...,D}, and an associated mutually independent set of
likelihoods, such that the joint likelihood takes the form

P(d1, . . . , dD|s′) =
D

∏
i=1

P(di|s′) , (A8)

we get that the corresponding Fisher metric takes the form

Md1,...,dD |s′(s
′) =

D

∑
i=1
Mdi |s′ . (A9)

If we assume that we have, for every individual metricMdi |s′ , an associated transformation
xi(s′) available that satisfies Equation (A2), we see that we can stack them together to form
a combined transformation

x(s′) ≡
(
x1(s′), . . . , xD(s′)

)T , (A10)

that automatically satisfies (A2) for the joint metricMd1,...,dD |s′ .
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Appendix B. Correlated Field Model

Here, we give a brief description of the generative model for power spectra and
resulting Gaussian processes used in Section 4. For a detailed and extended derivation
please refer to [32].

A random realization s ∈ L(Λ) of a statistically homogeneous and isotropic Gaussian
process P(s), defined over an L dimensional domain Λ = [0, 1]L, subject to periodic
boundary conditions along each dimension, may be represented as a Fourier series via

sx =
(
F † Aξ

)
x
≡∑

k
e−2πikx A(|k|) ξk with ξk ∼ N (ξ; 0, 1) ∀k , (A11)

where k = (k1, . . . , kL) ∈ ZL is a multi-index labeling the individual Fourier components,
and |k| denotes its Euclidean norm. In order to discretize s on a computer, we may truncate
this Fourier series, i.e., by replacing the infinite index k with a finite index that truncates
at some maximal kmax. The operator F denotes the Fourier transformation and F † its
corresponding back-transformation (or their discrete versions in case of truncation). The
so-called amplitude spectrum A may be identified with the square root of the power-
spectrum Ps of the process (specifically Ps being the eigen-spectrum of the linear operator
associated with the covariance of the prior probability P(s)). Therefore we proceed to
construct a model for A rather then Ps as it is more convenient for a generative model. The
non-parametric prior model for A is largely built on the assumption that power spectra
(and therefore also amplitude spectra) do not vary arbitrarily for similar |k|, which in turn
allows us to assume that the values of A are, to some degree, correlated. A prominent
example of a physically plausible spectrum is a power-law Ps = |k|α and therefore it turns
out to be more convenient to represent A on a log-log-scale, specifically

τl ≡ log(A(|k|))||k|=el , (A12)

since power-laws become straight lines on these scales. As k is a regularly spaced index,
the new index l = log(|k|) is an irregularly spaced index starting from the smallest
non-zero mode labeled as l0 (the origin with |k| = 0 is treated separately). To exploit
correlations in the prior of τl , we define a random process τ̃(l) over a continuous domain
O = [l0, ∞) (O = [l0, lmax = log(|kmax|)] in the truncated case), and evaluate this process
on the irregularly spaced locations on which τl is defined. The prior process used for τ̃
is a Gauss–Markov process given in terms of a linear stochastic differential equation of
the form

∂

∂l

(
τ̃(l)
y(l)

)
+

(
0 −1
0 0

)(
τ̃(l)
y(l)

)
= σ

(
ε ηl
ξl

)
, with ηl/ξl ∼ N (ηl/ξl ; 0, 1) ∀l ∈ O . (A13)

A Markov process can easily be realized on an irregular grid utilizing its transition proba-
bility which in this case takes the form

P
((

τl
yl

)∣∣∣∣
(

τl0
yl0

))
= N

((
τl
yl

)
;
(

1 ∆l
0 1

)(
τl0
yl0

)
, σ2
(

∆3
l/3 + ε2∆l ∆2

l/2
∆2

l/2 ∆l

))
(A14)

with ∆l = l − l0. We notice that in absence of stochastic deviations (e.g., if σ = 0), the
solution is a straight line with slope yl0 that determines the exponent of the power-law,
and therefore becomes a variable of the model on which we place a Gaussian prior with
a negative prior mean (to a priori favor falling power laws). The offset τl0 becomes, after
exponentiation, an overall scaling factor that sets the variance of the stochastic process s.
Thus, τl0 (specifically its exponential) is also a variable of the model which we refer to as
“fluctuations” in Table 1. Similarly, the zero-mode (i.e., A(|k| = 0)), which is not included
in τ, is set to be a log-normal distributed random variable which we refer to as “offset std.”.
Finally σ (named flexibility) and ε (named asperity) become both log-normal distributed
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variables (again see Table 1) that determine the variance and shape of the deviations of τ
from a straight line (i.e., the deviations of A from a power-law).
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