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Abstract
Acute or chronic injury to the adult brain often results in substantial loss of
neural tissue and subsequent permanent functional impairment. Over the last
two decades, a number of approaches have been developed to harness the
regenerative potential of neural stem cells and the existing fate plasticity of
neural cells in the nervous system to prevent tissue loss or to enhance
structural and functional regeneration upon injury. Here, we review recent
advances of stem cell-associated neural repair in the adult brain, discuss
current challenges and limitations, and suggest potential directions to foster the
translation of experimental stem cell therapies into the clinic.
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Introduction
Similar to the rest of the body, the brain is constantly at risk of 
damage through either acute or chronic injury. The long-standing 
assumption has been that the capacity for regeneration is strongly 
limited in the adult mammalian brain compared with other tissues 
such as the skin, liver, or intestines. In line with this, the mamma-
lian brain is not able to simply regrow lost structures that are dam-
aged during deleterious events such as ischemic stroke or traumatic 
brain injury. However, there is substantial functional restoration 
with acute or chronic injury because of the ability of surviving neu-
ral structures to take over at least partially the previous functions 
of lost tissues. This becomes clear, for example, with patients who 
have left-hemispheric strokes and may initially suffer from motor 
or sensory aphasia: with extensive training and rehabilitation, 
a substantial number of patients regain their ability to speak and 
communicate1. Similarly, the brain can compensate functionally 
for massive loss of neural tissue before the consequences become  
apparent2. For example, it is considered that more than 80% of 
all dopaminergic neurons in the substantia nigra are lost before 
Parkinsonian symptoms appear3. Thus, the restorative potential of 
the adult mammalian brain to repair itself—at least functionally—
certainly exists.

However, at the same time, these endogenous repair mecha-
nisms have clear limitations, leaving a substantial percentage of 
patients with acute or chronic injury of the adult brain with per-
manent functional deficits. Thus, novel strategies need to be devel-
oped to ameliorate the course of degenerative or traumatic brain 
diseases. Substantial efforts have been made to either recruit or 
enhance endogenous repair mechanisms or to ameliorate brain 
function in the disease context by providing exogenous cells using 
transplantation4,5. Here, we focus exclusively on current approaches 
and ideas for how endogenous neural stem cells (NSCs) or other 
neural cells may be used to enhance brain repair.

Neurogenic permissiveness in the adult brain
Already in the mid-1960s, first reports suggested that the genera-
tion of neurons in the mammalian brain is not limited to embry-
onic or early postnatal periods but that the adult brain retains the 
capacity to generate new neurons6–8. These findings were met with 
large skepticism because they challenged a long-standing dogma 
in the neurosciences stating that no new neurons may be born after 
the end of embryonic and early postnatal development9,10. It took 
another 30 years and the advent of novel techniques to unequivo-
cally identify newborn neurons in the adult brain before the process 
of lifelong neurogenesis in the mammalian brain became broadly 
accepted11,12. However, the generation of new neurons is not wide-
spread but appears to be restricted to distinct areas of the adult brain. 
One of those regions is the hippocampus, a key brain structure that, 
simplified, serves to regulate the sorting of certain experiences into 
long- and short-term memory and that has been identified as a neu-
rogenic area permitting for the lifelong addition of dentate gyrus 
(DG) granule cells13,14.

The finding that NSCs persist even in the adult brain spurred tremen-
dous efforts with the aim to recruit endogenous NSCs for enhanced 
brain repair upon injury. In addition, the fact that new neurons that 
are born throughout life with the possibility to functionally integrate 

into pre-existing circuitries gave rise to new hope that restoration 
of neural circuits via transplantation approaches using exogenous 
NSCs or other neural cells may be feasible in principle. Here, we 
review multiple facets of how stem cell-associated processes may 
be harnessed for future regenerative approaches. Furthermore, we 
discuss how characterizing the neurogenic process in the adult brain 
may help to improve our understanding of disease etiology and pro-
gression and how this understanding may help to develop novel 
strategies to treat diseases of the adult brain.

Targeting endogenous neurogenesis for brain repair
NSCs generate new neurons in discrete regions of the adult brain15. 
In the rodent brain, two main neurogenic areas have been identified. 
One of those is the subventricular zone (SVZ) lining the lateral ven-
tricles where NSCs give rise to newborn cells that migrate along the 
rostral migratory stream toward the olfactory bulb (OB), where they 
differentiate into different types of olfactory neurons16,17. Whereas 
SVZ/OB neurogenesis is very substantial in the rodent brain, the 
neurogenic activity of the SVZ seems extremely reduced or absent 
in the human brain18,19. This is in contrast to the second main neuro-
genic area: the hippocampal DG, where NSCs give rise throughout 
life to DG granule cells20. Multiple lines of evidence suggest that 
also in the human hippocampus a substantial number of neurons are 
born throughout life and that as a result a substantial part of the DG 
granule cell population is generated during postnatal life21,22.

At the top of the neurogenic lineage stand largely quiescent NSCs, 
called type-B cells in the SVZ and type-1 or radial glia-like NSCs 
in the DG, that have a number of astrocytic properties (such as 
expression of astroglial markers and vascular end-feet)16,23,24. Upon 
activation, through extrinsic and intrinsic signals, radial glia-like 
NSCs enter the cell cycle and give rise to more proliferative type-C 
cells (SVZ) or type-2 cells (DG) generating neuroblasts that even-
tually differentiate into newborn neurons and integrate into the 
DG or OB circuits over the course of several weeks25–30. Notably, 
the levels of neurogenesis in the adult brain are dynamically regu-
lated with a number of positive (e.g., physical activity, learning, 
and environmental enrichment) and negative (e.g., stress, aging, 
and inflammation) regulators through a number of intrinsic and 
extrinsic factors13,31–40. Furthermore, it has been shown that hippoc-
ampal neurogenesis is substantially altered in a number of animal 
disease models13. For example, neurogenesis is reduced in animal 
models of major depression but enhanced upon treatment with cer-
tain antidepressants such as selective serotonin reuptake inhibitors 
(SSRIs)41–44. Strikingly, adult hippocampal neurogenesis seems to 
be required for at least some aspects of the antidepressant efficacy 
of SSRIs in animal models of depression45. These effects may not 
strictly qualify as “neural repair”, but it is reasonable to consider 
endogenous neurogenesis, in this case enhanced through antide-
pressants, as support of the improperly functioning brain to rebuild 
its correct connectivity.

Another example where altered neurogenesis in the adult DG may 
contribute to the disease process is temporal lobe epilepsy (TLE). 
In animal models of TLE, substantial changes in the levels of neu-
rogenesis (acutely: enhanced; chronically: reduced) and strongly 
abnormal modes of neuronal integration (i.e. aberrant migration and 
ectopic synapse formation) have been described, suggesting that 
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seizure-induced neurogenesis may contribute to the process of epi-
leptogenesis and TLE-associated co-morbidities such as cognitive 
impairment46–52. However, there is also evidence that altered neuro-
genesis in animal models of TLE may rather represent an attempt 
of the injured brain to repair itself by balancing excess excitation 
that occurs in animal models of TLE53. Be that as it may, targeting 
neurogenesis either to prevent abnormal and ectopic neurogenesis 
or to foster regenerative neurogenesis in the context of TLE may 
reduce the development of seizures or reduce co-morbidities asso-
ciated with later stages of TLE such as hippocampus-dependent 
cognitive decline54.

Furthermore, a large number of chronic neurodegenerative diseases, 
such as Alzheimer’s disease, have been associated with reduced 
neurogenesis that may participate in the progression of observed 
behavioral phenotypes of these diseases13. Thus, future approaches 
will aim to enhance neurogenesis with the goal of either partially 
stopping disease progression or ameliorating secondary cognitive 
symptoms.

Without any doubt, the basic understanding of the function of adult 
neurogenesis needs to be characterized in much more detail to 
understand its potential role in disease processes. Newborn neurons 
are involved in a number of learning tasks and cognitive processes55–59. 
In addition, there is now ample evidence that hippocampal neu-
rogenesis is also associated with emotional control60,61. However, 
it is still rather unclear when and how new neurons fulfill their 
action, even though accumulating data suggest that the period of 
heightened excitability may be critical for the effects of adult-born 
neurons on circuit activity27,28,62–64. Notably, it is currently believed 
not just that the purpose of hippocampal neurogenesis is simply to 
replace other neurons but that the key function of neurogenesis may 
be to provide young and excitable new neurons65. This may be in 
contrast to lifelong neurogenesis in the SVZ/OB, where, in rodents, 
the continuous generation of new neurons is also critically involved 
in proper tissue homeostasis66. Despite recent progress67,68, we still 
miss mechanistic data explaining the role of physiological neuro-
genesis that may be important to guide future experiments with the 
aim to harness the endogenous stem cell-associated potential for 
neural repair.

Overall, the role for endogenous SVZ/OB neurogenesis in the con-
text of human neural repair is less clear given the strong evidence 
that the neurogenic niche in the human SVZ underlies very sub-
stantial changes during the early postnatal periods that may not 
support lifelong neurogenesis19,69. Furthermore, novel technologi-
cal approaches (such as C14-based birth dating of neurons) suggest 
that no or only extremely few new neurons are integrated into the 
human OB during adulthood18. In addition, ischemic stroke (that 
is sufficient to trigger at least transient neurogenesis in the rodent 
striatum) apparently does not lead to substantial formation of new 
neurons in the human cortex70–72. However, these findings clearly 
do not rule out the potential for SVZ-associated neurogenesis also 
in the human brain. In fact, a recent study showed that, despite the 
virtual absence of neurogenesis in the human OB, substantial num-
bers of newborn neurons could be detected in the human striatum 
that become substantially depleted in patients with Huntington’s 

disease, suggesting that neurogenesis outside the DG and SVZ/OB 
may be involved in human disease73. However, it appears that new-
born striatal neurons are generated by local neurogenic astroglial 
cells and are not derived by NSCs residing in the SVZ73–75. Future 
studies will have to aim to identify the molecular and cellular details 
of striatal neurogenesis in rodents and humans.

Neural stem cell-based glial repair
Apart from approaches aiming to enhance endogenous neurogene-
sis for neuronal repair in the context of acute or chronic disease, the 
fate potential of endogenous NSCs also permits for targeting NSCs 
to support glial cell replacement and subsequent neural repair. In 
the rodent SVZ, it has been shown, for example, that demyelination 
leads to enhanced NSC-derived generation of oligodendrocytes that 
may help to remyelinate the injured brain upon lesion76,77. Similarly, 
induced generation of oligodendrocytes (that are not generated by 
DG NSCs under normal conditions) may represent an approach to 
induce remyelination of the DG circuitry for several demyelinating 
diseases such as multiple sclerosis or epilepsy78–81. However, poten-
tial therapeutic strategies aiming to use endogenous NSCs for glial 
repair are currently only beginning to be developed and additional 
evidence for their efficacy to improve brain function needs to be 
generated in rodent models of human disease.

Inducing neurogenesis outside the neurogenic 
niches
Physiological neurogenesis from NSCs may be extremely restricted 
in the human brain—potentially exclusively to the DG under physi-
ological conditions. However, recent evidence has shown that 
neural cells that are non-neurogenic under normal conditions may 
be amenable to exogenous reprogramming cues, allowing them 
to generate neuronal cells in vivo. This hypothesis was initially 
based on the fact that NSCs share many molecular and cellular fea-
tures with classical astrocytes that are found throughout the brain 
parenchyma16,82,83. Indeed, there is now compelling evidence that 
providing appropriate transcriptional cues is sufficient to induce 
neurogenesis throughout the cortex and other regions of the central 
nervous system84–93.

At this time, the main target population to ectopically induce the 
generation of newborn neurons are astrocytes. However, there is 
also evidence that other glial cells such as oligodendrocytes, oli-
godendrocyte precursor cells, or pericytes may be targeted to induce 
neurogenesis throughout the brain93–98. Apart from testing different 
cellular populations in the injured brain that may be used to gener-
ate new neurons, the generation of neuronal subtypes is a key inter-
est in the field with the idea to replace the exact neuronal subtype 
that may be preferentially lost in certain diseases (e.g., dopaminer-
gic neurons in the context of Parkinson’s disease)97,99. These experi-
ments are guided by pioneering work studying the mechanisms 
controlling brain development using cocktails or sequential overex-
pression of subtype-specific transcription factors. Furthermore, cur-
rent studies attempt to translate data that were generated by using 
in vitro fate specification approaches into the in vivo situation97,100. 
Thus, inducing neurogenesis with high spatial control in injured 
brain areas may represent a promising approach for targeted brain 
repair.
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Key challenges and future directions
The finding that NSCs persist in the brain throughout life has been 
the starting point for novel approaches to enhance brain repair 
(Figure 1). The applications for targeting NSCs are manifold and 
range from their potential involvement in the disease process (e.g., 
major depression) to their ability to generate new neuronal and glial 
cells (e.g., neurodegenerative diseases such as Alzheimer’s disease). 
In addition, approaches to induce neurogenesis outside physiologi-
cal neurogenic niches may be of translational value5,101. However, 
we are still only beginning to understand what it takes for new 
neurons to truly make a functional impact on the injured brain. 
Key to improving these approaches will be to identify the mecha-
nisms that regulate meaningful and proper integration into exist-
ing circuitries. This may be more feasible for some diseases where 
neurons may rather fulfill the function of providing neurotransmit-
ters such as dopamine, but potentially more challenging and further 

away from clinical applications if diffuse circuitries or complete 
brain areas are impaired or destroyed.

Apart from increasing our understanding of the potential of endog-
enous NSCs or other neural cells for brain repair, the detailed 
molecular and cellular characterization of these processes also 
may be helpful to guide and improve current attempts to amelio-
rate brain function upon injury using exogenous transplantation of 
NSCs or other neural cells4,101. The key questions, such as neuronal 
differentiation, control of growth, and proper neuronal integration, 
are shared between these two strategies (NSC activation versus 
transplantation-based approaches) to target endogenous neural 
cells and to support brain repair with exogenous cells. In addi-
tion, it is foreseeable that ongoing studies aiming to understand 
disease processes using human embryonic stem cells or induced 
pluripotent stem cell-based approaches not only will improve our 

Figure 1. Road to harnessing stem cells and reprogramming strategies for neural repair. Future experiments will relate basic research 
findings obtained mostly in laboratory animals to the analyses of human disease and eventually to the therapeutic targeting of endogenous 
neural stem cells, the improved use of transplantation-based cell replacement strategies, or the reprogramming of other neural cells with 
the aim to enhance the potential for repair of the adult human brain. The road toward translation may lead from understanding physiologic 
and disease-associated neurogenesis in humans and an improved understanding of the molecular and cellular mechanisms underlying 
the neurogenic process toward novel approaches to study human diseases in the dish and mouse models. Finally, the application of this 
knowledge may lead to enhanced recruitment of endogenous stem cells or improved functionality of transplants and reprogramming-based 
approaches for neural repair. hESC, human embryonic stem cell; iPSC, induced pluripotent stem cell.
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understanding of disease mechanisms but also may guide future 
strategies to enhance endogenous neural repair.

Abbreviations
DG, dentate gyrus; NSC, neural stem cell; OB, olfactory bulb; 
SSRI, selective serotonin reuptake inhibitor; SVZ, subventricular 
zone; TLE, temporal lobe epilepsy.
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