
ORIGINAL RESEARCH
published: 16 September 2021

doi: 10.3389/fneur.2021.662497

Frontiers in Neurology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 662497

Edited by:

Peter Sörös,

University of Oldenburg, Germany

Reviewed by:

Benedikt Sundermann,

Evangelical Hospital Oldenburg,

Germany

Nicola Amoroso,

University of Bari Aldo Moro, Italy

*Correspondence:

Jian Xu

jianxu777@126.com

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 03 February 2021

Accepted: 12 August 2021

Published: 16 September 2021

Citation:

Yang Y, Cheng Y, Wang X, Upreti B,

Cui R, Liu S, Shan B, Yu H, Luo C and

Xu J (2021) Gout Is Not Just Arthritis:

Abnormal Cortical Thickness and

Structural Covariance Networks in

Gout. Front. Neurol. 12:662497.

doi: 10.3389/fneur.2021.662497

Gout Is Not Just Arthritis: Abnormal
Cortical Thickness and Structural
Covariance Networks in Gout
Yifan Yang 1, Yuqi Cheng 2, Xiangyu Wang 1, Bibhuti Upreti 1, Ruomei Cui 1, Shuang Liu 1,

Baoci Shan 3, Hongjun Yu 4, Chunrong Luo 4 and Jian Xu 1*

1Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China,
2Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 3Nuclear Analysis

Technology Key Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China, 4Magnetic

Resonance Imaging Center, The First Hospital of Kunming, Kunming, China

Background: Hyperuricemia is the cause of gout. The antioxidant and neuroprotective

effects of uric acid seem to benefit some patients with central nervous system injury.

However, changes in the brain structure have not been discovered in patients with gout.

Object: Clarify the changes in cortical thickness in patients with gout and the alteration

of the structural covariance networks (SCNs) based on cortical thickness.

Methods: We collected structural MRIs of 23 male gout patients and 23 age-matched

healthy controls. After calculating and comparing the difference in cortical thickness

between the two groups, we constructed and analyzed the cortical thickness covariance

networks of the two groups, and we investigated for any changes in SCNs of

gout patients.

Results: Gout patients have thicker cortices in the left postcentral, left supramarginal,

right medial temporal, and right medial orbitofrontal regions; and thinner cortices were

found in the left insula, left superior frontal, right pericalcarine, and right precentral regions.

In SCN analysis, between-group differences in global network measures showed that

gout patients have a higher global efficiency. In regional network measures, more nodes

in gout patients have increased centrality. In network hub analysis, we found that the

transfer of the core hub area, rather than the change in number, may be the characteristic

of the gout’s cortical thickness covariance network.

Conclusion: This is the first study on changes in brain cortical thickness and SCN

based on graph theory in patients with gout. The present study found that, compared

with healthy controls, gout patients show regional cortical thinning or thickening, and

variation in the properties of the cortical thickness covariance network also changed.

These alterations may be the combined effect of disease damage and physiological

compensation. More research is needed to fully understand the complex underlying

mechanisms of gout brain variation.
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INTRODUCTION

Gout is the most common type of inflammatory arthritis.
The cause is high blood uric acid concentration due
to uric acid metabolism disorder, which causes uric
acid crystal deposition around the joints to cause local
inflammation. The affected joints have obvious inflammation
and pain; some patients develop gouty tophi. Due to
differences in research methods and populations render
fluctuating epidemiological indicators worldwide, the
worldwide prevalence of gout ranges between 1 and 6.8%,
and incidence ranges between 0.58 and 2.89 per 1,000
person-years (1, 2).

Many facts prove that gout is more than just arthritis; given
the important antioxidant properties of uric acid, hyperuricemia
may have some beneficial effects while causing gout. Studies
have found that patients with gout are at a lower risk of
Parkinson’s disease (3). Mean plasma uric acid in current
major depressive disorder and/or anxiety disorder(s) were
lower than in remitted cases; also symptom severity and
duration were negatively correlated with uric acid (4). Similarly,
patients with Alzheimer’s disease have lower central nervous
system uric acid levels (5). These results suggest that uric
acid may have neuroprotective effects, and these findings
have been verified in several experiments. Liu et al. found
that traumatic brain injury patients with significantly lower
serum uric acid levels have a better prognosis. Controlled
cortical impact mouse serum uric acid also decreased, but the
uric acid concentration in the brain tissue increased; and by
increasing the plasma uric acid concentration, the brain tissue
uric acid concentration can be increased, and the neurological
function of the mouse can be restored (6). However, the
existing research results are highly heterogeneous. As gout is
related to metabolic syndrome, type 2 diabetes, cardiovascular,
and strokes (7), research methods of the studies reporting
neuroprotective effects of uric acid have been questioned,
whereas some studies have reached contradictory conclusions
(8, 9).

The cerebral cortex morphological indicators such
as cortical thickness, volume, and surface area can be
used to quantitatively reflect the abnormalities of brain
structure and provide a neuropathological basis for related
disorders. Indices of brain macrostructure reflected by
MRI can provide evidence of subtle changes, thus helping
researchers better understand the mechanism of disease.
Magnetic resonance studies have determined abnormality
of brain structure in many diseases such as systemic lupus
erythematosus, multiple sclerosis, and Parkinson’s and
Alzheimer’s diseases (10–12).

Graph theory is a branch of mathematics that is used
to study interacting element within systems. The graph in
graph theory is composed of a number of given nodes and
edges connecting two nodes. This graph usually describes the
correlation between the two, suitable for brain network research.
In recent years, progressively more studies have employed
graph theory to model brain organization as a network of
nodes and edges in the large scale (13, 14). A brain partition

template is constructed to analyze correlation between these
brain areas and define brain structure and functional networks.
Functional MRI (fMRI) data, structural MRI (sMRI) data,
and diffusion tensor imaging (DTI) data can be used to
construct a brain network matrix to reflect the functional
and structural networks, namely, global attributes (such as
clustering coefficient, shortest path length, local efficiency, and
global efficiency), modular attributes, and local node attributes.
Prior studies on brain network have identified small-world
attribute in human brains (15–17), which reflects the basic
concepts in human brain’s information processing: functional
separation and functional integration (18). In this network,
the local areas adjacent to the brain are closely connected,
and at the same time, any two brain areas are left with
a small number of connections for rapid communication.
Local information processing and the whole brain information
transmission achieve a balance, while meeting the efficiency
of functional classification and functional integration, reducing
the cost of maintaining efficient communication (19, 20).
Previous neuroimaging investigations found that the small-
world architecture is disrupted in various diseases, such as
Parkinson’s disease (21), clinically isolated syndrome (22), and
acute stroke (23).

The correlation between the morphological characteristics
of different brain regions is considered to be a manifestation
of the phenomenon of structural covariance, reflecting the
large scale of structural network model, also called structural
covariance networks (SCNs) (24). Brain SCNs reflect the impact
of the specific environment created by common experience such
as brain development, disease state, and social environment
on the brain (25, 26). The basis of structural covariance is
the functional connection and direct anatomical connection of
different brain areas. The application of SCN analysis provides
new ideas for exploring brain development and disease. It
has been widely used in the research for Alzheimer’s disease,
schizophrenia, depression, bilateral cerebral palsy, and other
diseases (26–29).

As mentioned above, the potential effect of hyperuricemia on
the central nervous system is still inconclusive, and it provides
clues for our research. Gout is a chronic disease, and the changes
in brain structure caused by it are more stable than functional
changes. At the same time, gout is a systemic disease, and its
damage on the brain is not limited to certain brain areas, so
we chose graph theory network analysis. Although the relevant
surface-based morphometry and high-level graph-theoretical
analysis magnetic resonance studies in patients with gout are
still lacking, it is based on the existing mature MRI research
methods, supporting software, and the results obtained in many
other neuropsychiatric studies; we expected that patients with
gout may have abnormal changes in cortical thickness. It was also
expected that common and unique structural covariance patterns
may exist in gout patients. This is an exploratory research. In
the present study, we used an exploratory approach to measure
and compare cortical thickness and its SCN in a small sample of
gout patients and healthy controls (HCs) to understand the brain
cortex organizational features and underlying physiopathology
mechanisms of patients with gout.
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MATERIALS AND METHODS

Participants
A total of 30 male volunteers diagnosed with gout were enrolled
in the outpatient and inpatient Department of Rheumatology
and Immunology at the First Affiliated Hospital of Kunming
Medical University from 2015 to 2018. All the patients
fulfilled the 2015 American College of Rheumatology/European
Alliance of Associations for Rheumatology (ACR/EULAR) gout
classification criteria (30). The inclusion criteria for all the
patients were as follows: (1) male; (2) age ranging from 18 to 60
years; (3) right-handedness; and (4) patients willing to participate
in the study voluntarily and sign informed consent.

The exclusion criteria for all subjects were as follows: (1)
patients fulfilling the ACR classification criteria for systemic
lupus erythematosus, rheumatoid arthritis, systemic sclerosis,
primary or secondary Sjögren’s syndrome, or other connective
tissue diseases; (2) patients with organic encephalopathy or
neurological disorders (such as a history of traumatic brain
injury, surgery, Parkinson’s disease, or epilepsy) that can interfere
with brain structure or diffusion imaging; (3) patients with severe
active mental illness (such as severe behavioral disorders and
unconsciousness); (4) patients with a history of alcoholism and
drug abuse; (5) patients who have contraindications to MRI
(e.g., claustrophobia andmetal implants); (6) patients with severe
clinical conditions that can lead to brain atrophy (such as a
history of hypertension, diabetes, stroke, and renal insufficiency);
and (7) patients whose conventional T1- and T2-weighted MRI
scan suggesting abnormal brain structure.

After the scan, we first checked whether the data file was
missing. Raw MR images of all subjects were read by a senior
radiologist. Three volunteers refused the MRI examination,
one volunteer showed lacunar infarction on MRI, and three
volunteers had partial MRI results missing. Finally, 23 gout
patients were included in the study.

Twenty-three male age-matched HCs were enrolled in
this study.

This study has been approved by the ethics committee of the
First Affiliated Hospital of Kunming Medical University. Before
beginning the trial, the participants and their legal guardians were
informed of the trial procedures in detail, and signed informed
consent was obtained.

MR Image Acquisition
All MR images were obtained by an experienced neuroradiologist
using a 1.5T MRI scanner (TwinSpeed; GE Medical Systems,
Milwaukee, WI, USA) with cage head coils for MRI data
acquisition. Subjects were placed in a supine position and
advised to be relaxed, to be motionless, to have their eyes
closed during the scan. Foam support pads were used to reduce
head movement. Conventional T1-weighted image (T1WI) and
T2-weighted image (T2WI) plain scanning was performed
first to exclude obvious structural abnormalities. The scanning
parameters were as follows: axial T1WI: echo time (TE)= 8.9ms,
repetition time (TR) = 2,056.9ms, layer thickness = 5mm,
layer spacing = 6mm, and turning angle = 90◦; T2WI:
TR = 12,000ms, TE = 88.4ms, layer thickness = 6mm, layer

spacing = 6mm, and turning angle = 90◦. No subjects were
excluded for the presence of abnormal brain structure; 3D-
MRI uses 3D-T1-weighted fast phase disturbance gradient echo
sequence (3D-T1-fspgr sequence), and the parameters were as
follows: TR = 10.5ms, TE = 2ms, inversion time = 350ms,
layer thickness = 1.8mm and no layer interval, scanning
matrix = 256, turning angle = 15◦, field of view = 240mm,
spatial resolution = 0.94mm × 0.94mm × 0.9mm, and layer
number= 172; scanning range covers the whole brain.

Image Processing
Structural images were processed using the FreeSurfer package
(version 5.3.0, https://surfer.nmr.mgh.harvard.edu/fswiki/
DownloadAndInstall#Download). The technical details of the
image processing program have been described in previous
publications (31). Briefly, the processing includes raw date
import, data format conversion, head movement correction,
automated Talairach transformation, non-uniform field
correction, skull dissection, brain tissue segmentation, and
automated reconstruction of the pial and gray matter–white
matter surfaces. Then, all data were resampled and smoothened
onto the FreeSurfer average subject template. In order to
perform group-level whole-brain analysis, before statistical
analysis, maps were filtered using a surface-based full-width
at half maximum (FWHM) Gaussian kernel of 10mm. The
final maps were averaged across participants to align cortical
folding patterns using a non-rigid high-dimensional spherical
method (32). This software was proven to have good re-
measurement reliability between magnetic field intensity and
scan sequence parameters of magnetic resonance scanners of
different manufacturers (33). All results of cortical segmentation
were evaluated using the FreeSurfer Qoala-T tool (34) to detect
the effects of head movement, reconstruction of critical regions,
and mis-segmentation of non-brain tissues; and all fulfilled
verification requirements. See Supplementary Material 1 for the
segmentation results of some critical regions.

Cortical thickness calculation: In accordance with the
principle of the surface-based morphometry, the FreeSurfer
software package uses the grid-based surface analysis method
proposed by Desikan et al. (35). In this method, the shortest
distance from the white matter–gray matter surface to the gray
matter–pia mater surface is defined as the cortical thickness. The
calculation method is to use a known vertex on the outer surface
as the origin and to measure the shortest distance from the outer
surface to the inner surface and the shortest distance from the
inner surface to the outer surface on the vertex. The average of
the two measured values is defined as the thickness of the cortex
at the vertex.

Construction of Structural Covariance
Networks
By using scripts edited based on MATLAB, the average cortical
thickness of 68 brain regions covering the entire brain of
each subject were extracted according to the Desikan–Killiany
Atlas (35). Many studies have used 68 cortical regions of
the Desikan–Killiany Atlas to construct the SCN of cortical
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FIGURE 1 | Correlation and binary matrices for gout patients and healthy controls (HCs). Correlation matrices for gout (A) and HCs (B), and binary adjacency

matrices thresholded at Dmin (0.1) for gout (C) and HCs (D). The color bar denotes the correlation coefficient and represents the strength of the connections.

thickness, and they demonstrated good applicability (26, 36–
38). The cortical thickness data were used for construction of
SCNs by Graph Analysis Toolbox (17, 39–41). By defining the
68 regions of interest as nodes, and the strength of the edges
of the covariance network is defined by Pearson’s correlation
between the cortical thickness value of each pair of brain
regions in all subjects using age as a covariate, a 68 × 68
association matrix M for each group was derived, and each
entry rij is defined as Pearson’s correction coefficient between the
cortical thickness of regions i and j (Figures 1A,B). A minimum

graph density is required for comparison of graph measures, to
ensure that the two graphs being compared are fully connected
(not fragmented); and for structural networks, densities above
50% might not have biological meaning. Upon referring to
experience with similar studies, a threshold from 0.1 to 0.5
(with an interval of 0.02) was set as the density of the network
(41, 42). Thresholding of correlation matrices with absolute
values results in a dissimilarity in the number of nodes and
edges, which may introduce confusion for subsequent between-
group comparisons. To solve this problem, the threshold of
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FIGURE 2 | Brain regions where the cortical thickness are different between gout patients and HCs. Cluster of areas with significantly thicker cortex in gout patients,

including the left postcentral, left supramarginal, right medial temporal, and right medial orbitofrontal regions. Cluster of areas with significantly thinner cortex in gout

patients including the left insula, left superior frontal, right pericalcarine, and right precentral regions (GRF correction, voxel level p < 0.05, cluster level p < 0.01).

Cluster with p < 0.01 are shown in the figure. CT, cortical thickness; HCs, healthy controls; L, left; R, right; GRF, Gaussian random field.

TABLE 1 | Regional changes in cortical thickness in the gout group compared with HCs.

Contrast Cortical region Size (mm2) xyz peak (MNI) p-Value

Gout > HCs Left Postcentral 1.40 −35.5/−30.2/54.2 0.015*

Supramarginal 13.19 −47.9/−53.2/−32.2 0.046*

Right Medial temporal 6.87 59.0/−28.8/−16.5 0.025*

Medial orbitofrontal 9.85 12.6/26.6/−16.2 0.042*

Gout < HCs Left Insula 2.81 −35.4/−10.4/−2.0 0.017*

Superior frontal 10.46 −17.0/41.1/36.8 0.029*

Right Pericalcarine 4.98 11.5/−85.0/9.1 0.020*

Precentral 5.29 21.4/−26.4/52.3 0.031*

HCs, healthy controls; MNI, Montreal Neurological Institute.

Based on the Desikan–Killiany Atlas with 68 parcels bilaterally.

the correlation matrix for each group can be arranged into a
binary adjacency matrix with network density D, defined as
the number of edges in the graph divided by the maximum
possible number of edges. The network density used in this
study has a wide range of 0.1 ≤ D ≤ 0.5. The lower limit of
the range is defined as the minimum density at which neither
of the two networks was fragmented (where Dmin = 0.1). The
upper limit of the range is the maximum density of the two
networks (where Dmax = 0.5). Then, threshold the association
matrix into a binary matrix A with values of 1 or 0. Matrix
A was derived from each association matrix where aij was
considered 1 if rij was >0.1 and zero otherwise. The diagonal
elements of the constructed association matrix were also set to
zero (Figures 1C,D). For detailed description, see Hosseini et al.
(41, 43).

From these thresholded and binarized networks, global
network parameters including clustering coefficient, path length,

small-world index, global efficiency, transitivity, and modularity;
and regional network parameters including nodal betweenness
centrality, nodal degree, and local efficiency were calculated to
describe the topological characteristics of the SCN (42). Briefly,
the clustering coefficient is the ratio of edges between nodes
in a neighborhood divided by the number of edges that may
exist between them; it represents the degree of interconnectivity
between network nodes and neighboring nodes. Characteristic
path length, which is the average of the shortest path between
network nodes, describes the optimal path for information
transmission between various nodes; the shorter the path length,
the higher the efficiency of information transmission. Small-
world index is the ratio of the normalized clustering coefficient to
the normalized characteristic path length. The global efficiency is
defined as the inverse of the harmonic mean of the shortest path
length between a node and all other nodes. The local efficiency
of a node is the average of the local efficiency of all nodes. The

Frontiers in Neurology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 662497

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yang et al. Gout Is Not Just Arthritis

FIGURE 3 |
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FIGURE 3 | Global network measures of two groups and between-group differences in these measures. Clustering coefficient (A,B), characteristic path length (C,D),

gamma (E,F), lambda (G,H), small-world index (I,J), global efficiency (K,L), transitivity (M,N), and modularity (O,P) of the Gout and HC networks. The red * lying

(Continued)
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FIGURE 3 | outside the confidence intervals indicates that the difference between the two groups in this density is significant (B,D,F,H,G,L,N,P). Except for a few

densities, the global efficiency of HCs is lower than that of the gout group (p < 0.05, FDR-corrected; L); the rest of the abovementioned measures were not

significantly different between the two groups. Gout, gout group; HCs, healthy controls; FDR, false discovery rate.

local efficiency of a global is the average global efficiency of all
nodes. Transitivity is a global expression of clustering coefficient,
which represents the degree of aggregation of a network as a
whole.Modularity quantifies the degree to which the network can
be decomposed into subnets (modules) with the maximal intra-
module connections and the minimal inter-module connections.
Node degree refers to the number of edges associated with a
node and its interaction within the network. Nodal betweenness
centrality is defined as the proportion of all the shortest paths
through a given node in the network to the total number of the
shortest paths (39, 44, 45).

Statistical Analyses
Surface-based group analyses were done, using the QDEC
interface provided by FreeSurfer, for differences in cortical
thickness, using general linear model, controlling for age. Then,
a Gaussian random field (GRF) was used at the cluster threshold
of p < 0.01 (46) and vertex-wise threshold of p < 0.05 to control
for multiple comparisons. Finally, Freeview was used to display
the results.

To calculate significance of the differences in SCN measures
between groups, we analyzed the network parameters both at
Dmin and across the density range (0.1–0.5 with an interval
of 0.02) using area under the curve (AUC). A non-parametric
permutation test (1,000 repetitions) was used to investigate the
statistical significance of the difference in global and regional
network parameters. The comparison of the abovementioned
parameters between groups was completed with the GAT toolbox
with the result corrected by p < 0.05 with false discovery rate
(FDR) considered to be statistically significant. In addition, the
node was identified as a hub when regional node-betweenness
value was at least 2∗SD larger than the mean value.

RESULT

Demographics
We recruited 23 male patients with gout (Gout) with mean ±

SD age of 42.04 ± 10.52 years. Twenty-three demographically
matched male HCs with mean ± SD age of 36.96 ± 6.23 years
were included. There was no statistically significant difference in
age between the two groups as evidenced by the two-sample t-test
(p= 0.052).

Between-Group Comparison of Cortical
Thickness
Clusters with significant cortical thickness differences were
projected on the brain surface template (Figure 2, Table 1).
Compared with the HCs, patients with gout showed a
significantly thicker cortices in the left postcentral, left
supramarginal, right medial temporal, and right medial
orbitofrontal regions and significantly thinner cortices in the

left insula, left superior frontal, right pericalcarine, and right
precentral regions (GRF correction, voxel level p = 0.05, cluster
level p= 0.01).

Between-Group Differences in Global
Network Measures
The correlation matrix of the two groups shows significant
correlation between most of the homotopic brain regions
(Figures 1A,B). The global network measures for two groups
at this range are displayed in Figure 3. Also, we compared the
differences in characteristic path length, clustering coefficient,
gamma (normalized clustering coefficient), lambda (normalized
path length), small-world index, global efficiency, transitivity,
and modularity of the networks in gout patients and HCs
(Figure 3). Except for a few densities, the global efficiency in
HCs was found to be lower than that in the gout group (p <

0.05, FDR-corrected; Figure 3L); the rest of the abovementioned
measures were not significantly different between the two
groups (Figure 3). AUC (density range of 0.1–0.5 with interval
of 0.02) analysis also showed that there were no significant
differences in all the above mentioned measures between the
two groups.

Between-Group Differences in Regional
Network Measures
We performed AUC (density range of 0.1–0.5 with an interval
of 0.02) analysis on regional network measures. The AUC of
normalized clustering coefficient in the left lateral occipital and
right lateral occipital cortex regions was significantly smaller
in the gout group; while in the left pars orbitalis, right pars
opercularis, right precentral, and right transverse temporal cortex
regions, it was significantly greater in the gout group. The AUC of
normalized degree centrality in the bilateral posterior cingulate,
left pericalcarine, and left insula cortex regions was significantly
smaller in the gout group; while in the left transverse temporal
cortex, it was significantly greater in the gout group. The AUC of
normalized betweenness in the left parahippocampal and right
entorhinal cortex regions was significantly smaller in the gout
group, while in the left lateral occipital and left insula cortex
regions, it was significantly greater in the gout group. The AUC of
normalized local efficiency was not significantly smaller in any of
the study region in gout patients; whereas in the left pars orbitalis,
right pars opercularis, and right transverse temporal areas, it was
significantly greater in the gout group (Figure 4, Table 2).

Network Hubs
Hubs are defined as regions possessing a node-betweenness
2∗SD greater than the mean network node-betweenness. By
quantifying the network hubs under the threshold of Dmin,
network hubs are grouped such that each of the two groups
possesses equal number of hubs, but hub distribution is unique
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TABLE 2 | Between-group differences in regional network measures.

Gout < HCs Gout > HCs p-Value

Clustering coefficient Bilateral lateral occipital l pars orbitalis

r pars opercularis

r precentral

r transverse temporal

0.05

Degree Bilateral posterior cingulate l pericalcarine l insula l transverse temporal 0.05

Betweenness l parahippocampal r entorhinal l lateral occipital

l insula

0.05

Local efficiency – l pars orbitalis

r pars opercularis

r transverse temporal

0.05

Gout, gout group; HCs, healthy controls; l, left; r, right.

to each group. And accordingly, the gout group hubs of node-
betweenness include the left parahippocampal, left insula, and
right superior parietal regions; while the health control hubs of
node-betweenness include the left superior frontal, right superior
frontal, and right supramarginal regions (Figure 5).

DISCUSSION

This is the first study on regional cortical thickness and
graph theory-based large-scale SCN parameters in gout. In
the present study, we found that compared with HCs, gout
patients have some changes in their cortical thickness and
SCN properties. Specifically, we determined that patients with
gout exhibit (1) abnormal regional cortical thickness: Patients
with gout showed significantly thicker cortices in the left
postcentral, left supramarginal, right medial temporal, and right
medial orbitofrontal regions and significantly thinner cortices
in the left insula, left superior frontal, right pericalcarine,
and right precentral regions. (2) Altered global network
properties include increased global efficiency, increased and/or
decreased regional network measures in some brain regions,
and different network hubs and degree distribution. This
indicates that abnormal cortical thickness and its network
connection may be the consequence of gout/hyperuricemia on
the brain.

Cortical thickness analysis is one of the most important
brain structure analysis techniques. Humans acquire complete
cortical neurons in the first half of fetal life; cortical thickness
is relatively fixed during the growth and development of the
brain. Some disease processes can cause changes in cortical
thickness. Alzheimer’s disease and dysplasia-related frontal lobe
epilepsy, for example, show thinning and thickening of the
cortex, respectively (47, 48). Previous studies have found that,
compared with those in other animals, higher concentrations of
uric acid in humans may stimulate the cerebral cortex to obtain
more brain volume and better intelligence performance (49).
The antioxidant, vasculoprotective, and neuroprotective effects
of uric acid have also been proven to be effective in treating
some neurological diseases (6, 50, 51). However, whole brain
structural mapping in gout patient has not been done before. The

impact comorbidities, such as hypertension, diabetes mellitus,
and chronic kidney disease (7) associated with gout on brain
structure is still unclear. In this study, we found that patients
with gout have thickening or thinning of cortical thickness
in multiple brain regions that function in sensory processing,
emotional processing, language understanding, hearing, etc.
Cortical thickness changes may be a potential marker for
morphological changes in the brain in patients with gout. Limited
by the lack of preliminary basic research and the lack of similar
research, we are still not sure whether the above findings are
specific, and we look forward to future studies with larger sample
sizes to confirm our results.

Cluster forming threshold (CFT) is closely related to the
reliability of neuroimaging research. But FreeSurfer software does
not provide users with a default cluster-defining threshold. Greve
and Fischl (46) used the real data analyzed in FreeSurfer to
evaluate the influence of CFT and FWHM on the false-positive
rate (FPR) of the results. This research found that thickness
analysis showed slightly inflated FPRs in the range of 5–10% for
CFTs≤0.01 and FWHM≥4mm, not nearly as bad as for fMRI at
matching smoothness and CFT levels. The thickness FPRs were
not strongly dependent on either applied smoothing level or CFT.

Based on the research aim of this study and the threshold
selection of similar studies, we set the CFT as 0.01. We believe
that this threshold is appropriate to provide valid statistical
results. And there is literature to support our choice. We also
expect that higher thresholds can be used in future studies with
larger sample sizes to better ensure the reliability of the results.

In recent years, brain connectomics has been widely utilized to
study the pathological mechanism of brain diseases. At present,
there is no research suggesting that the effect of uric acid on brain
tissue is regionally targeted. In order to explore the multivariate
network relationship between different neuroanatomical regions
in the background of gout, we further conducted a SCN analysis
based on cortical thickness.

After comparing several key global network measures
between-groups, only in a few densities, the global efficiency
of HCs was found to be significantly lower than that of
the gout group (Figure 3), showing that the global cortical
thickness covariance network of gout patients has not changed
significantly. This may denote that the global cortical thickness
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FIGURE 4 | Between-group differences of measures across a range of network densities: normalized clustering coefficient (A), degree (B), betweenness (C), and

local efficiency (D). The red * lying outside of the confidence intervals indicates regions in which the difference between the two groups in this density is significant. All

regions survived following FDR correction (p < 0.05). Gout, gout group; HCs, healthy controls; AUC, area under the curve; FDR, false discovery rate.

is not significantly different between gout patients and HCs.
In addition, coordinated compensation by relevant regions in
the network may play a role in maintaining the stability of
the overall network. Similar results were also found in SCN
study on generalized tonic–clonic seizure, and vertically infected
HIV adolescents (42, 52). The global efficiency is defined as
the inverse of the harmonic mean of the shortest path length

between a node and all other nodes; it is a measure that reflects
parallel information transmission and comprehensive processing
capabilities (19). The reduction of this measure also appears in
diseases such as mild cognitive impairment (53) and peritoneal
dialysis patients (54).

For regional network measures, we calculated the following
measures: clustering coefficient, degree, betweenness, and local
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FIGURE 5 | Network hubs of the gout group and healthy control (HC) group. Three network hubs were identified in each of the gout group (green highlights) and the

HC group (red highlights).

efficiency (Figure 4). These measures reflect the centrality
of nodes in the network from different perspectives. As a
component of the brain network, each node has a unique
centrality, and it is essential to define the specialization of node
functions (55). Patients with gout showed significant decrease of
clustering coefficient in the bilateral lateral occipital cortex and
significant increase in the left pars orbitalis, right pars opercularis,
right precentral, and right transverse temporal cortex regions
(Figure 4A). The clustering coefficient reflects the degree of
interconnection between network nodes and neighboring nodes;
the higher the clustering coefficient, the closer the connection
between the local nodes of the network. In contrast, the gout
group showed a decrease in the degree of most nodes (bilateral
posterior cingulate, left pericalcarine, and left insula); only in
the right transverse temporal area was an increase in the degree
of the node seen (Figure 4B). The degree of a node is the
number of edges connecting to it. The decrease in degree reflects
the decrease in the centrality and importance of the node.
Two nodes (left parahippocampal and right entorhinal regions
decreased in gout) were found to have increased, and other

two (left lateral occipital left insula regions) showed decreased
betweenness (Figure 4C). Local efficiency was not reduced in any
of the nodes in the gout group, but it was increased on three
nodes including the left pars orbitalis, right pars opercularis, and
right transverse temporal nodes (Figure 4D). In patients with
gout, the centrality of some nodes was reduced, reflecting damage
in anatomical connection between these nodes and other parts
of the brain. However, more nodes showed increased centrality,
which may be a physiological compensation to maintain the
integrity of the brain structural network.

Although identical in numbers, the two groups show
obvious differences in hub positioning (Figure 5). The left
parahippocampal cortex is one of the hubs in gout patients group
discovered in this study. Similar results were reported in previous
studies on the functional brain network of osteoarthritis, in
a region that was thought to be related to the response to
analgesics (56, 57). The insular cortex is considered essential for
the perception, modulation, and chronification of pain (58). This
study indicated that the left insula is a hub; the reason may be
related to this. We did not find common hubs between gout
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patients and HCs; the transfer of the core hub area, rather than
the change in number, may be the characteristic of the gout’s
cortical thickness covariance network. These findings may also
be caused by individual differences between subjects.

The nodes of SCN research are determined according to the
brain partition atlas selected by the research method. Even for
the same batch of samples, using different brain partition atlases
for calculations may also have some impact on the SCN measure
results. In order to provide evidence that the key results of this
study are independent of the partition scheme used, we selected
Desterieux Atlas (148 regions) to conduct a reanalysis of this
batch of data, and the analysis results show that the key results
of the two are basically consistent. Specifically, in terms of SCN
global and regional network measures, the results obtained by
using the two partition atlases are basically the same, but the
number and location of network hubs are quite different. The
reason for the high variability of network hubs between the
two analyses may be due to more accurate results caused by
the inclusion of more nodes and covariant connections between
nodes; and on the other hand, it may be due to the limitations
caused by the small sample size. But no matter which template
is used, the conclusions of this study will not be subversively
affected. See Supplementary Materials 2–6 for details. There are
still some limitations in our study. Although we measured the
serum uric acid of some gout patients included in this study
before the MRI examination, the serum uric acid concentration
during the acute attack of gout does not reflect the patient’s long-
term real situation, and most patients cannot provide long-term
serum uric acid test result.We did not study the cortical thickness
changes and its covariance network properties in association with
uric acid concentration, which should be evaluated in future
research. For surface-based morphometry method and high-level
type of graph-theoretical analysis, the sample size was relatively
small, and future studies with large samples will provide further
insights and better test performance. To avoid the effects of
age-related brain structural changes on the results of this study,
we matched the age of the gout group and HCs. Although
the age difference between the two groups was not statistically
significant, and age was used as a covariable in subsequent
statistics, and although it did show some disparity, we did not
further analyze after correcting for effects of age. Nutritional
status, lifestyle, and comorbidities often affect uric acid levels.
This study did not collect this information, and it could not be
ruled out that these differences may have impacted the results of
the study.

In conclusion, this is the first study on changes in brain
cortical thickness in patients with gout and changes in cortical
thickness covariance networks based on graph theory. The
present study found that compared with that in HCs, the
regional cortical thickening or thinning was found in gout
patients; the properties of the cortical thickness covariance
network also changed. We were unable to recognize any
protection conferred by hyperuricemia against extensive cortical

thickening and SCN optimization in patients with gout. But
the alterations discerned may be the combined effect of disease
damage and physiological compensation and can be regarded
as neuroanatomical hallmark of brain changes in gout. More
research needs to be carried out to fully understand the
complex underlying mechanisms of brain damage in patients
with gout.
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