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ABSTRACT

Beyond being simply positive or negative, beneficial or inhibitory, microbial interactions can involve a diverse set of
mechanisms, dependencies and dynamical properties. These more nuanced features have been described in great detail for
some specific types of interactions, (e.g. pairwise metabolic cross-feeding, quorum sensing or antibiotic killing), often with
the use of quantitative measurements and insight derived from modeling. With a growing understanding of the
composition and dynamics of complex microbial communities for human health and other applications, we face the
challenge of integrating information about these different interactions into comprehensive quantitative frameworks. Here,
we review the literature on a wide set of microbial interactions, and explore the potential value of a formal categorization
based on multidimensional vectors of attributes. We propose that such an encoding can facilitate systematic, direct
comparisons of interaction mechanisms and dependencies, and we discuss the relevance of an atlas of interactions for
future modeling and rational design efforts.
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INTRODUCTION

Microbes form complex ecosystems comprising up to hun-
dreds or thousands of different species (Whitman, Coleman and
Wiebe 1998; Ley et al. 2006; Walker and Pace 2007; Wilhelm
and Matteson 2008; Brown et al. 2009; Qin et al. 2010; Welch
and Huse 2011; Tecon and Or 2017). Increased exploration of
these communities enabled by new technologies has yielded a
wealth of information on their constituent organisms, as well
as growing insight into the complex and rich web of relation-
ships the organisms form between each other. As the study
of microbial communities embraces a more systems-oriented
approach (Raes and Bork 2008; Klitgord and Segrè 2011; Faust

and Raes 2012; Fuhrman, Cram and Needham 2015; Poudel
et al. 2016), more and more attention is being directed toward
the myriad ways microbes interact, as well as toward the cru-
cial roles these interactions play in defining community func-
tion. These relationships, which can range from mutualistic
exchange of metabolic products (Imachi et al. 2000; Harcombe
2010), to antagonistic secretion of antibiotics (Jousset, Scheu
and Bonkowski 2008; Cornforth and Foster 2015; Kelsic et al.
2015), to direct predation of individual organisms (Jurkevitch
2007; Chen et al. 2011; Kadouri et al. 2013), make up a vast
space of relationships that are ubiquitous in the microbial
world.
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Despite the diversity and abundance of microbial life on
the planet, we still face fundamental challenges in address-
ing broad, important questions pertaining to microbial inter-
relationships: are specific types of interactions more common
among certain taxa than others? How prevalent is mutualism
across all environments? How can we systematically compare
interactions across individual studies? A first step in answer-
ing these questions is to categorize interactions based on com-
mon, recurrent properties. We may start with a widely-used
classification system that is based on determining the ecolog-
ical outcome each organism experiences in a pairwise interac-
tion (Lidicker 1979; Keddy 2001) (Fig. 1A). These outcomes, on
a very general level, can be either positive, neutral or negative
and can encompass all possible pairs of effects: from mutual-
ism (in which both participants experience a positive outcome)
to competition (both participants experience a negative out-
come). Between these two extremes are combinations of pos-
itive, neutral and negative outcomes such as amensalism, in
which the actor experiences no benefit or detriment and the
recipient experiences a negative outcome. Though this frame-
work has formed the basis for a broad corpus of ecology research
(Faust and Raes 2012), it is limited in that it cannot capture
many nuances that are crucial in determining how individual
interactions arise, change and affect a community (Margulis
1990; Smith 2001; Martin and Schwab 2013). Moreover, there
exist inconsistencies in the very language used to describe these
ecological outcomes, hindering comparison of intermicrobial
behaviors between different disciplines and prompting efforts
to standardize how interactions are described (West, Griffin and
Gardner 2007; Smith et al. 2019; Tipton, Darcy and Hynson
2019).

In light of these limitations, we ask if it is possible to use addi-
tional properties to enhance the vocabulary we use to describe
and compare interactions. It has indeed become possible to
capture more and more fine details of interactions through
recently-developed technologies and computational tools, such
as measurements of individual exchanged molecules using
metabolomics (Tang 2011; Chamoun, Aliferis and Jabaji 2015;
Bilyk and Luzhetskyy 2016), inference of entire co-occurrence
networks based on metagenomic sequencing (Qin et al. 2010;
Steele et al. 2011; Barberán et al. 2012; Gilbert et al. 2012; Lloyd-
Price et al. 2017), and direct detection of interspecies synergy
using microfluidics (Park et al. 2011; Hsu et al. 2019). Unfortu-
nately, as this wealth of data is often reported on an observation-
by-observation basis, it remains difficult to comprehensively
classify interactions and systematically compare them across
studies. As a way of facing this challenge, we may therefore look
for inspiration in integrative categorizations of complex phe-
nomena in other areas of biology (e.g. metabolic networks (Kane-
hisa and Goto 2000; Caspi et al. 2016), protein interaction net-
works (Szklarczyk et al. 2017), or 16s sequences (DeSantis et al.
2006)), which have become valuable standardized repositories
of knowledge, as well as starting points for data-driven analyses
that would have been otherwise impossible (Barberán et al. 2012;
Magnúsdóttir et al. 2016; Goldford et al. 2018).

In this mini-review, we compile a diverse list of known micro-
bial interactions and comment on the limitations of describ-
ing and classifying them based solely on simple ecological out-
comes. We then provide an example of how one can instead
embrace the multifaceted nature of microbial relationships by
explicitly ascribing numerical variables to different properties
of the interacting partners. In doing so, we propose a framework
for encoding interaction data in a way that enables quantita-
tive analysis and comparison across studies. This formalization

could be viewed as one of many incremental steps needed to bet-
ter understand these interactions, as well as a way to encourage
conversations on how to structure future methodical compar-
isons, data-mining efforts, and data-driven analyses.

MICROBIAL INTERACTIONS ARE
MULTIDIMENSIONAL, DYNAMIC PHENOMENA

Examples of interactions that can be best understood by more
explicitly accounting for different attributes include those that
change significantly based on spatial configurations. An inter-
esting example is that of Aggregatibacter actinomycetemcomitans
(Aa) and Streptococcus gordonii (Sg), bacteria isolated from the
human oral cavity. Sg has been shown to secrete lactate, the pre-
ferred carbon source of Aa, as a metabolic byproduct (Brown and
Whiteley 2007; Tong, Zeng and Burne 2011). Lactate is taken up
by Aa, which experiences growth benefits as a result (Ramsey,
Rumbaugh and Whiteley 2011). It has been shown in a murine
infection model, however, that while this metabolic exchange
benefits the virulence capabilities of Aa, Sg also secretes high
amounts of hydrogen peroxide, a potent antimicrobial. Stacy et
al. demonstrated that Aa can adopt a twofold detoxification-
dispersion response to this challenge, which allows it to spa-
tially position itself at an optimal distance from Sg and detox-
ify the hydrogen peroxide to consume lactate (Stacy et al. 2014).
This response is also thought to yield benefits to Sg, enhanc-
ing the overall fitness of the community and the strength of the
infection. This interaction could be termed mutualistic using
a simple interpretation of ecological outcome since, despite a
clear antagonistic action by one of its participants, it results in
a net beneficial relationship. However, only adopting such an
interpretation risks abstracting away key nuances within the
interaction that detail paradoxical, yet important, mechanisms
for cooperation and competition. A different example of spa-
tially dependent interactions was investigated by Kelsic et al.
using a synthetic community made up of Escherichia coli and two
Streptomyces strains isolated from soil (Kelsic et al. 2015). In this
study, E. coli were exposed to an antibiotic-producing Strepto-
myces strain on an agar plate. As the E. coli population was sen-
sitive to the antibiotic produced, it was only able to grow outside
the radius formed by the antagonistic Streptomyces. However, if
an antibiotic-degrading Streptomyces strain was placed within
this killing radius, E. coli were shown to grow in an area around
the detoxifying strain (Fig. 1B). As such, the spatial configuration
of the interaction directly determined the growth outcomes of
its participants. Recent modeling efforts have also demonstrated
how the nature of an interaction can change when spatial infor-
mation is considered (Armitage and Jones 2019), underscoring
the importance of capturing these dependencies.

As with spatial organization, time-dependent sharing of
nutrients or toxin sequestration has also been shown to affect
the nature of microbial interactions. For example, in the same
study mentioned above, Kelsic et al. used dynamical modeling to
show how four organisms with varying degrees of antibiotic pro-
duction and degradation capabilities could stably coexist in var-
ious temporal modes (stable equilibrium, limit cycles, or chaotic
oscillations) without spatial separation (Kelsic et al. 2015). In
nature, the importance of temporal dynamics on interactions is
particularly evident in host-microbe symbioses, where circadian
cycles impact gene regulation and metabolic processes in the
host and among their symbionts (Roden and Ingle 2009; Liang,
Bushman and FitzGerald 2015; Heath-Heckman 2016; Staley et al.
2017). A classic example of such a scenario is the intraspecies
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Figure 1. The multifaceted nature of microbial interactions. (A), Axes commonly used to classify interactions, adapted from Lidicker 1979. A single interaction can be
represented as a point within the axes, which quantify the ecological outcomes experienced by the participants and the strength of the interaction. For example, a
point close to the bottom of the axes (corresponding to −+) represents an altruistic scenario in which one participant experiences a net negative outcome and the

second participant receives a positive one. (B-D), Examples of attributes observed in interactions that resist straightforward, benefit-oriented classification. Each of the
interactions displayed feature some kind of mutualistic outcome, but exhibit crucial dependencies that impact the nature of the interaction. (B), An interaction that
confers differing benefits on its participants based on their spatial configuration, reported by Kelsic et al. (Kelsic et al. 2015). Here, a colony of Streptomyces “P” produces
an antibiotic that kills sensitive E. coli “S” within a given radius. If, however, an antibiotic-degrading Streptomyces population “RD” is placed within this radius, E. coli is

able to survive within its immediate vicinity. Therefore, depending on its location, E. coli can either experience a neutral or negative effect from the antibiotic-producing
Streptomyces. (C), Time-dependent intraspecies interaction between Vibrio fischeri cells within the light organ of the Hawaiian bobtail squid. During the day, the squid
releases the majority of V. fischeri, diminishing their concentration within the organ. As the V. fischeri population regrows, individuals secrete signaling molecules that,

upon reaching a critical concentration, lead to the expression of luminescence genes. In this way, the symbionts allow the squid to bioluminesce at night. The day–
night cycle therefore drives this transition through its effects on squid physiology, signaling molecule concentration, and bacterial cell density. (D), Two mutualistic
interactions that impose differing metabolic costs on participants. Top: Intraspecies interactions within Pseudomonas fluorescens populations reported by Rainey and
Rainey (Rainey and Rainey 2003). Initially, cooperating individuals secrete an adhesive polymer to form a biofilm. This process occurs at a metabolic cost to individual

organisms. Over time, defecting individuals stopped producing the polymer but continued benefitting from the collective production within the group. This ‘cheating’
diminished the viability of the community in the short term, leading to more complex interaction dynamics over longer timescales. Bottom: A simplified schematic
of a mutualistic interaction based on non-costly overflow metabolism demonstrated by Ponomarova et al. Here, Saccharomyces cerevisiae uses overflow metabolism to
secrete amino acids which allow for the growth of Lactococcus lactis. Lactococcus lactis, in turn, provides glucose and galactose to the yeast through lactose hydrolysis,

yielding a stable symbiotic relationship (Ponomarova et al. 2017). Though these two mutualisms are fundamentally different, neither represents the sole possible
outcome of costly or non-costly interactions. Previous work has shown how cheating could in fact stabilize mutualisms (Foster and Kokko 2006), and that cheating
itself may pose less of a threat to community collapse as commonly thought (Frederickson 2017).
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signaling patterns shown within the Vibrio fischeri communities
living within the squid Euprymna scolopes. V. fischeri colonize the
light organ of the squid, allowing it to bioluminesce at night.
This result arises from a sequence of biological processes, all
ultimately driven by the day–night cycle (Fig. 1C) (Verma and
Miyashiro 2013). As the nature of these interactions vary dras-
tically over different temporal scales, it is important to consider
this attribute as a crucial factor in classification.

The classic axes commonly used to describe ecological inter-
actions (Fig. 1A) are also limited in the sense that specific points
on this graph (e.g. ++) group together interactions that may be
based on very different mechanisms and costs of metabolite pro-
duction and exchange. For example, two organisms that ben-
efit metabolically from each other (thus falling in the ++ cat-
egory) may do so in two fundamentally different ways: a first
possibility is an interaction mediated by evolved secretion of
metabolically costly products (Harcombe 2010; Wintermute and
Silver 2010; Celiker and Gore 2012; Mee et al. 2014; Zomorrodi and
Segrè 2017). A second type of interaction could be the outcome
of secreted byproducts that are not costly to the producer, and
that are not ‘intended’ to specifically benefit any other particu-
lar organism. Such non-costly secretions are also described as
byproduct benefits (Sachs et al. 2004), and can lead to the emer-
gence of mutually beneficial interactions through selfish actions
by individual organisms. Examples of this type of metabolite-
mediated exchange include overflow metabolism and secretion
of incompletely reduced carbon sources (Molenaar et al. 2009;
Basan et al. 2015), which are secretions that can be strongly
dependent on environmental context (Klitgord et al. 2010; Cham-
berlain, Bronstein and Rudgers 2014; Pacheco, Moel and Segrè
2019). Importantly, the cost of metabolite production and secre-
tion can change the interaction’s susceptibility to cheating phe-
notypes (Hamilton 1964; West et al. 2006; D’Souza et al. 2018),
which in turn can have implications for the long-term stability of
the relationship (Fig. 1D). Additionally, the strong environmen-
tal dependence of interactions is especially problematic when
studying ‘uncultivable’ organisms or when designing synthetic
microbial communities, whose members may have metabolic
dependencies that are difficult to satisfy experimentally (Rappé
and Giovannoni 2003; Vartoukian, Palmer and Wade 2010; Stew-
art 2012). The formation of an interaction often requires the
fulfillment of particular environmental conditions, such as the
presence of specific carbon or nitrogen sources or a particular
pH range, which might be strongly modulated by spatial or tem-
poral dynamics.

For some interactions, the ecological outcomes experienced
by their participants remain unclear. Nonetheless, other prop-
erties can be clearly identified to yield insight into the mech-
anisms of the relationship, as exemplified by the interaction
between two archaea: Igniococcus hospitalis and Nanoarchaeum
equitans. Both species are able to form a stable co-culture, but
such a partnership is only necessary for the survival of N. equi-
tans, and not for that of I. hospitalis (Huber et al. 2003). In co-
culture experiments, N. equitans appears to rely on H2S, the pri-
mary metabolic end product of I. hospitalis, as well as on amino
acids and lipids provided by I. hospitalis (Jahn et al. 2004, 2008).
This interaction would therefore appear to be parasitic. How-
ever, this relationship results in no detriment to the I. hospitalis
population and there even appear to be evolved structural fea-
tures that allow for a tight physical connection between both
organisms. This strong coupling suggests that there is some
benefit given by N. equitans to I. hospitalis, though experiments
have so far been unable to identify such a mechanism, mak-
ing any definitive labeling of an interaction type elusive. This

interaction exhibits other important properties, such as contact-
dependence, that are not captured in a framework based solely
on ecological outcomes.

Finally, interactions that involve three or more species
present further classification challenges. It is often possible to
assign clear benefits when the participants in a multispecies
interaction can be divided into two distinct roles, as in, for exam-
ple, an interaction observed between Myxococcus xanthus and
a consortium of prey bacteria (Berleman et al. 2006). Here, the
predatory M. xanthus can be assigned a positive outcome and
its prey bacteria can collectively be assigned a negative, detri-
mental one. Additionally, if an interaction confers effects of the
same sign to all recipients (e.g. a tripartite symbiosis in which all
organisms benefit (Lőrincz et al. 2010) it is possible to place it on
an ecological outcome axis (Fig. 1A). If, however, different mem-
bers within a higher-order interaction are influenced by effects
of different signs, as is likely to occur within complex commu-
nities, it becomes less clear how to classify the interaction with-
out reducing it to a set of pairwise interactions. This limita-
tion has important implications for understanding the structure
and function of natural microbial ecosystems. Though pairwise
relationships can be used to gain insights into overall commu-
nity features (Guo and Boedicker 2016; Friedman, Higgins and
Gore 2017; Venturelli et al. 2018), their predictive power can vary
depending on the model used or on interaction mechanisms
(Carrara et al. 2015; Momeni, Xie and Shou 2017). As such, the
way in which features of higher-order interactions are repre-
sented must be carefully considered.

A MULTI-DIMENSIONAL FRAMEWORK FOR
DESCRIBING MICROBIAL INTERACTIONS

The above examples pose the question of whether it is possi-
ble to move beyond individual narratives and formally encode
multiple features of observed microbial interactions, extending
the classical ecological outcome axis. If some of these features
are ubiquitous across microbial communities, one could formal-
ize the multidimensional nature of microbial relationships and
devise an expanded list of attributes that can classify interac-
tions at a higher resolution and in a manner that better high-
lights their diverse, dynamic qualities. In this section, we intro-
duce a possible scheme for capturing some of these attributes,
and exemplify the application of this framework to a com-
pendium of interactions found in the literature. The attributes
we will consider here are: the molecular vehicle (if present) that
mediates the interaction, whether the interaction is specific to a
particular recipient, whether there is a fitness cost to engaging
in the interaction, the site (cytoplasm, membrane or extracellu-
lar) in which the interaction takes place, the biome or habitat in
which the interaction has been observed, whether the interac-
tion was observed to depend on specific spatial configurations,
temporal dynamics or direct physical contact, as well as the sign
of the ultimate ecological outcome incurred by the participants.
It is our hope that incorporating these attributes, further formal-
ized in Table 1, into descriptions of interactions will enhance
our understanding of the landscape of known microbial rela-
tionships.

The set of interactions to which we applied the proposed
framework consists of 74 microbial relationships sourced from
the literature, which together make up a ‘catalog’ in which
each interaction is characterized by a ‘barcode’ of quantifiable
attributes (Table S1, Supporting Information). As we focused
almost exclusively on collecting interactions that had sufficient
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Table 1. Definitions of key interaction attributes. We describe microbial interactions using a number of attributes, each of which is assigned
a numerical value based on experimental observations. Each attribute defined here corresponds to a column in our interaction catalog (Sup-
plementary Table 1). We quantify most features in a binary way: using a ‘0’ if the interaction does not exhibit a certain attribute and a ‘1’ if it
does. For example, if an interaction involved the exchange of a peptide, it would contain a ‘1’ in the ‘peptides’ column. Costs and ecological
outcomes are specific to the organisms in the interactions, that is, there are columns for costs and outcomes for each of the participants. In a
pairwise commensal interaction, for instance, there would be a ‘0’ in the column corresponding to the outcome gained by participant 1 and a
‘1’ in the column corresponding to the outcome gained by participant 2.

Attribute Definition Quantification

Specificity The reported mechanism of interaction is deployed in a manner specific to the recipient

(e.g. signaling molecules specific to one species vs. nonspecific secretion of waste products).

Binary

Cost Engagement in the reported interaction (e.g. secreting a metabolite) imposes a fitness

burden on a participant (i.e. the individual fitness/growth rate of an organism would

initially have been greater had it not been involved in the interaction).

Binary

Ecological outcome The ultimate ecological effect the interaction confers on each participant. Combining these

values for both participants in a pairwise interaction yields its overall ecological outcome

(e.g. 1,-1 corresponds to selfishness; 1,1 corresponds to mutualism, etc.).

1: Beneficial

0: Neutral

−1: Detrimental

Contact dependence Reported interaction features organisms engaging in direct physical contact. Binary

Time dependence Reported relationship features organisms interacting according specific temporal frames

(e.g. occurring only at one point in a circadian cycle).

Binary

Spatial dependence Reported interaction features organisms displaying particular spatial configurations (e.g.

colonies separated by some distance on an agar plate as opposed to interacting in mixed

cultures).

Binary

Site The site, relative to the microbes involved, in which the interaction is reported to take

place: extracellular (e.g. signaling molecule release or metabolic exchange), membrane (e.g.

protein docking or conjugation), or cytoplasm (e.g. direct predation).

Binary value for each site

Habitat The biome(s) in which the interaction or participating organisms have been observed:

aquatic, biofilm, food product, multicellular host, soil, synthetic, or ubiquitous.

Binary value for each

habitat

Compounds involved The type of molecule that mediates the interaction: small molecules (e.g. carbohydrates or

metabolic intermediates, but not secondary metabolites), nucleic acids (e.g. DNA), peptides

(e.g. amino acids), or secondary metabolites (e.g. quorum sensing molecules).

Binary value for each

compound type

data to assign values to each of our attributes, our catalog is lim-
ited to a small set of well-characterized observations. Nonethe-
less, it is intended to represent a cross-section of all known inter-
actions, featuring a wide variety of biomes, mechanisms, taxa
and dependencies. We also note that our assignment of features
is specific to the experiments reported in each study. As a result,
the attributes we report here should not be considered universal
to all interactions between the reported taxa. Instead, they serve
to encode the complex nature of observed microbial interactions
in a manner that is compatible with current methods of data col-
lection. Nonetheless, the gradual establishment of a standard-
ized set of attributes to be measured in newly designed experi-
ments could lead to large compendia of these multi-dimensional
traits that may enable more generalizable insights.

A majority of the interactions that we compiled occurred
between two distinct microbial species. However, we have also
included some interactions that have been studied at lower tax-
onomic resolutions (e.g. at the genus or phylum level). Some of
these relationships list multiple species of a particular genus —
or even relatively undefined consortia of organisms – as indi-
vidual participants. Although different species within a large
taxonomic grouping will undoubtedly display varying interac-
tion properties individually, studies may group several organ-
isms together to highlight their collective performance of a func-
tion of interest. For example, a set of nitrogen-fixing archaea
was framed as a single entity that engages in an interaction
with organisms of the bacterial genus Desulfosarcina (catalog
entry 6, (Dekas, Poretsky and Orphan 2009)). In grouping these

varied organisms together, Dekas et al. highlighted the cooper-
ative behavior of the archaeal consortium as it applied to its
bacterial symbionts. Since identifying relationships of interest
in complex natural microbial systems sometimes necessitates
such levels of abstraction, our catalog reflects the taxonomic
groupings for each interaction as they were reported.

As an example of how a specific interaction can be translated
into our proposed multi-dimensional classification, we will ana-
lyze here in detail a predatory relationship between two oppor-
tunistic pathogens: Pseudomonas aeruginosa and the filamentous
form of the fungus Candida albicans, initially identified by Hogan
and Kolter ((Hogan and Kolter 2002), catalog entry 48). Here, P.
aeruginosa is reported to form a biofilm on the filaments of C.
albicans, which kills the fungus. By eliminating a competitor, this
action allows P. aeruginosa to more effectively consume nutri-
ents. We quantify the ecological outcomes of this interaction
by assigning a positive outcome to P. aeruginosa and a negative
one to C. albicans. The study also described mechanisms dis-
played by P. aeruginosa, that were necessary to initiate the inter-
action, chief among which was an ability to differentiate the fil-
amentous form of the fungus from the yeast form. We therefore
deem this interaction to be targeted towards a particular organ-
ism and phenotype, as the bacterium did not attack yeast-form
C. albicans. The authors described a dependence of the interac-
tion on quorum sensing pathways, indicating the probable role
of secondary metabolites. Since these molecules are exchanged
between organisms, we record the extracellular environment
as the primary site for this relationship. As the activation
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pathways that lead to the formation of biofilms and the secre-
tion of secondary metabolites are metabolically costly, we assign
to P. aeruginosa a positive metabolic cost of initiating preda-
tion. Since the interaction results in the death of C. albicans, we
also deem the interaction to impose a fitness cost on the fun-
gus. Lastly, the interaction features direct contact between both
species and depends on their spatial proximity, so we list contact
and space as key dependencies. In all, we describe this interac-
tion with 22 different variables, which collectively make up its
interaction ‘barcode.’

Though this ‘barcoding’ constitutes a rudimentary formal-
ization of the complex attributes an interaction can exhibit, it
has some immediate ramifications. Firstly, it allows for iden-
tification of interaction attributes that may not be intuitively
correlated. For example, are interactions involving signaling
molecules more likely than others to also exhibit spatial depen-
dence? In which environments could such correlations hold?
Using our limited dataset, for instance, we calculated a Spear-
man correlation coefficient of 0.41 between the column detail-
ing spatial dependence and the column containing secondary
metabolite data (compared to −0.24, −0.04 and −0.04 for small
molecules, nucleic acids and peptides respectively). Though
modest, this significant correlation (P = 0.0003) hints at pos-
sible relationships between spatial dependence and secondary
metabolite use for interactions in our dataset. By performing
similar analyses on a greater number of interactions, it may be
possible to infer stronger, additional correlation patterns emerg-
ing from the data. For example, it would be possible to ask if
all ‘barcode’ combinations tend to occur, or if there are spe-
cific attribute combinations that are either very frequent or rare.
Moreover, it would be possible to highlight the discovery of new
types of interactions that exhibit unique attribute combinations
not previously observed. Such a framework could also be useful
for identifying commonalities among interactions from differ-
ent biomes, and for comparing seemingly unrelated interactions
to each other.

An ability to answer the general questions discussed above
would undoubtedly require more data than the small collec-
tion of interactions we have compiled here. Moreover, annotat-
ing newly discovered interactions to the level of detail we pro-
pose is not a trivial task, as generating a single interaction ‘bar-
code’ likely requires deployment of a variety of different experi-
mental and computational methods (Raes and Bork 2008; Faust
and Raes 2012) in addition to manual curation of the catalog
itself. Because of these challenges, some mechanistic attributes
remain unknown even for the relatively well-characterized set of
interactions that we have compiled here. For instance, the pres-
ence and strength of a microbial interaction can also be deter-
mined by environmental constraints such as temperature (Price
and Sowers 2004; Dell, Pawar and Savage 2014; Lin et al. 2016) and
pH (López-Lara, Sohlenkamp and Geiger 2003; Jin and Kirk 2018;
Ratzke and Gore 2018), as well as by the chemical composition of
the environments (Klitgord et al. 2010; Chamberlain, Bronstein
and Rudgers 2014; Ponomarova et al. 2017; Ziesack et al. 2018;
Pacheco, Moel and Segrè 2019). Moreover, microbial interactions
may change based on properties of the populations themselves
such as relative population size (Kong et al. 2018; Venturelli et al.
2018), order of colonization (Mazumdar, Amar and Segrè 2013;
Dang and Lovell 2016), or stochasticity in community assem-
bly (Zhou et al. 2013; Vega and Gore 2017; von Bronk et al. 2017).
Future cataloguing and analysis efforts would benefit from the
reporting of as many of these attributes as possible in individ-
ual studies, as well as from improved data mining methods to
incorporate existing data into numerical frameworks.

Despite these challenges, we will outline how a quantita-
tive method of comparing interactions may be approached using
the dataset we have compiled. Here, we used our annotation
framework to calculate distance metrics between each interac-
tion. These distances consider, in an unbiased way, all of the
attributes we have annotated for each interaction. In this man-
ner, we are able to generate a hierarchical tree and heatmap
(Fig. 2) to visualize which interactions are most similar to each
other. As our encoding of interaction properties yielded numer-
ical vectors that are difficult to parse and intuitively compare
by eye, such a tree (which likely bears no resemblance to evolu-
tionary or phylogenetic trees) is a useful way to visually inter-
pret similarities or differences between interactions. Our clus-
tering yielded several key observations: for example, the case of
prophage-bacteria mutualism reported by Barondess and Beck-
with ((Barondess and Beckwith 1995), catalog entry 43) is, per-
haps intuitively, grouped furthest away from all other organ-
isms. This grouping occurred independently of the large relative
taxonomic difference between viruses and bacteria, archaea and
eukaryotes, as taxonomic information was not considered for
the clustering. Instead, its grouping is likely due to the ubiquity
of this interaction in terms of habitat – it is generally not limited
to a particular environment, which differentiates it from other
interactions in our dataset. As data on more and more interac-
tions becomes available, we may begin to use such clustering
techniques to gain more universal insight on the general global
distributions of certain interaction types.

In addition, this analysis revealed proximity between some
interactions based on mechanism of action. For example,
siderophore-mediated signaling interactions reported sepa-
rately by Lamont et al. in Pseudomonas ((Lamont et al. 2002), cata-
log entry 49) and Guan et al. in Vibrio ((Guan, Kanoh and Kamino
2001), catalog entry 73) are grouped within the same cluster.
Interactions not mediated by any molecular exchange (Cata-
log entries 28, 32, 40, 41 and 46) are also largely grouped sep-
arately from those that require a molecular vehicle. In addition,
observations of direct amino acid exchange ((Accolas, Veaux
and Auclair 1971; Gobbetti, Corsetti and Rossi 1994; Holguin and
Bashan 1996; Rikhvanov et al. 1999; Garcia et al. 2015), cata-
log entries 31, 12, 54, 55 and 9) display close proximity despite
having been observed in very different habitats. This grouping
shows that our clustering is sensitive to mechanism of action,
and may provide a tool for identifying similar interactions across
very different ecosystems.

Another feature of this multi-dimensional distance analysis
is that it does not necessarily group interactions within the same
benefit/detriment category together (e.g. all commensal inter-
actions or all mutualistic interactions), as shown in the close
groupings of a Burkholderia-Rhizopus toxin-dependent interac-
tion (Partida-Martinez et al. 2007) and a eukaryote-bacteria
protein-based relationship ((Schulz et al. 2016), catalog entries
17 and 18). These interactions, despite involving very different
mechanisms, are similar in a less straightforward way: they
are both mutualistic and both spatially and contact-dependent.
Their close grouping therefore stems from this combination of
features, which is rare in the dataset and places them at a greater
distance from most other interactions. Such a use of a combina-
tion of factors to determine proximity is essential for more com-
plete comparisons of interactions, and can also provide clues as
to the types of interactions that may be rare in nature or have
yet to be observed.

Lastly, this framework can be extended to analyzing inter-
actions that involve more than two organisms. For example,
the ‘ecological outcome’ and ‘cost’ categories can have as many
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Figure 2. Hierarchical clustering of microbial interactions, numbered according to their catalog entry in Table S1 (Supporting Information). Numerical values for inter-
action attributes (specificity, costs, ecological outcomes, dependencies, site, habitat and compounds involved) were normalized from 0 to 1. Multi-column attributes

(i.e. those that contain specific values for individual participants, such as ecological outcome and cost) were additionally encoded into single unique values using the
Cantor pairing function. Unknown values (comprising 2.1% of the dataset) were imputed with the mean of each column to enable all interactions to be compared. The
normalized values were used to calculate pairwise distances between each interaction using Spearman’s rho. Hierarchical clustering was then performed to generate

a tree based on the resulting distance matrix. Taxonomic information (which was not used to generate clustering), as well as habitat information is displayed for all
interactions.
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columns as there are partners within any given interaction. In
this way, it is possible to assign corresponding values to each
participant within the entire multispecies relationship. To com-
pare these attributes with those of other interactions, we used
a pairing function to collapse these multivariable characteristics
into single unique numerical values. In this way, for example, we
can directly compare a synthetic tripartite symbiosis between
Azotobacter, Alternaria and Chlamydomonas ((Lőrincz et al. 2010),
catalog entry 8) with all others in our dataset. This example
clustered very closely to a relationship between yeast and Acine-
tobacter ((Smith, Des Etages and Snyder 2004), catalog entry
52), allowing us to appreciate similarities in their mechanisms
(both interactions involved the exchange of small molecules
and have spatially dependent components) despite each hav-
ing a different number of individual participants. If, however, an
interaction involving more than two organisms can be divided
into two clear roles, it is still possible to analyze it under a
pairwise framework. For example, in the relationship involv-
ing Thioploca, a genus of marine sulfur bacteria, and a set of
anaerobic ammonium oxidizing (anammox) bacteria, Thioploca
is defined as the first participant as it was observed to unidi-
rectionally provide small molecules to the anammox consor-
tium, which is defined collectively as the second participant
((Scholten et al. 2007), catalog entry 68). We can then analyze
such an interaction in the same way as we would those involv-
ing two distinct organisms. As a result, we notice that this inter-
action is grouped closely to other marine bacterial metabolic
exchanges, showing that interactions with similar attributes can
cluster together independently of the number of organisms
involved.

The specific encoding structure we have proposed here is
flexible, as different attributes can be highlighted using vari-
ants of the framework and refined as additional cases and data
become available. In addition, our particular clustering anal-
ysis is highly sensitive to the distance metrics used and to
the numerical inputs that were used to quantify individual
attributes. Therefore, further research could address the ques-
tion of whether alternative metric schemes should be used
or different methods for dimensionality reduction could be
employed. Regardless of the comparison techniques employed,
however, we believe that a continued effort to formally encode
interaction properties as we have done here could facilitate
comparisons of diverse inter-microbial networks, especially as
data from multiple microbial ecosystems are increasingly made
available. While the formalization exemplified here is limited to
a numerical representation of known attributes, a framework
like it could help implement more comprehensive mathematical
models for microbial ecosystem dynamics, applicable to under-
standing complex natural communities. For example, different
interaction attributes could translate to specific terms in appro-
priate differential equations that describe community function
(Carrara et al. 2015; Momeni, Xie and Shou 2017; Hart et al.
2019) enabling quantitative predictions of population dynam-
ics. If available, data providing deeper information on interac-
tion mechanisms, such as gene expression, binding affinities,
and reaction rates could be also systematically encoded in future
compendia. Such an encoding would need to be much more
complex than the simple framework we have proposed here in
order to enable comparison across interactions, but it would
have the potential to facilitate quantitative community mod-
eling efforts. For example, transporter parameters such as Km

and Vmax values can be directly incorporated into metabolic
cross-feeding simulations using genome-scale models (Khan-
delwal et al. 2013; Harcombe et al. 2014). Additionally, the design

of synthetic microbial consortia could greatly benefit from the
availability of a curated list of interaction properties. One could
imagine selecting candidate organisms based on their known
interactions in certain contexts, potentially expediting the pro-
cess of assembling multispecies communities with desired phe-
notypes.

SUMMARY

Descriptions of microbial interactions range from those that
report individual symbioses in exquisite detail, to an increas-
ing number of large-scale measurements of pairwise interac-
tions enabled by new technologies. As we try to make sense of
these interactions with the aid of network analyses and com-
puter simulations, an emerging challenge is how to categorize
these different types of relationships and formally encode their
underlying mechanisms and attributes to enable comparison
across datasets. In this mini-review, we provided examples of
well-characterized microbial interactions to highlight their com-
plex nature, and we illustrated the limitations of a broadly used
ecological classification system. At the same time, we showed
how one can in principle distill recurrent interaction charac-
teristics that can be translated into multi-dimensional profiles.
In an effort to embrace these details and characterize interac-
tions in a more unified framework, we proposed a list of quan-
tifiable attributes that can more fully capture the multidimen-
sional nature of these phenomena. We compiled a collection of
diverse interactions and quantitatively compared them accord-
ing to these attributes, showing how such analysis can serve
as a stepping stone towards more comprehensive quantitative
frameworks for addressing important questions in microbial
ecology.

As more data becomes available for a greater number of
interactions, we may begin to incorporate additional attributes
that can impact their interpretation, such as dependence on
environmental substrates, pH or strain abundances. In addition,
if non-mechanistic data from methods such as network infer-
ence are also to be incorporated into future iterations of this
framework, it will be important to add identifiers to denote the
experimental and computational techniques used to infer the
resultant interactions. These considerations are crucial, as vari-
ability in different methods of inferring interactions is likely
to have an impact on which data are available to collect and
compare.

We anticipate that efforts similar to the one proposed here
could grow into large databases of microbial relationships
based on detailed observations, phenotypic measurements and
ecosystem-level sequencing efforts. As we continue to gather
data about microbial interactions and learn which of their
attributes are most useful to encode, a standard format for these
knowledge repositories (e.g. SBML for systems biology (Hucka
et al. 2003) or SBOL for synthetic biology (Galdzicki et al. 2014))
may emerge to further codify reporting methods and facilitate
comparative analyses. We therefore hope that, by compiling,
classifying and analyzing this small collection of microbial rela-
tionships, our effort can motivate further efforts and conversa-
tions on how to gather, formalize and mine multi-dimensional
data on microbial interactions.
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Lőrincz Z, Preininger É, Kósa A et al. Artificial tripartite symbiosis
involving a green alga (Chlamydomonas), a bacterium (Azo-
tobacter) and a fungus (Alternaria): Morphological and phys-
iological characterization. Folia Microbiol (Praha) 2010;55:393–
400.
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