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Abstract

Although Scandinavian flint is one of the most important materials used for prehistoric stone

tool production in Northern and Central Europe, a conclusive method for securely differenti-

ating between flint sources, geologically bound to northern European chalk formations, has

never been achieved. The main problems with traditional approaches concern the often-

times high similarities of SiO2 raw materials (i.e. chert and flint) on different scales due to

similar genetic conditions and higher intra- than inter-source variation. Conventional chert

and flint provenance studies chiefly concentrate on visual, petrographic or geochemical

investigations. Hence, attempts to generate characteristic fingerprints of particular chert

raw materials were in most cases unsatisfying. Here we show that the Multi Layered Chert

Sourcing Approach (MLA) achieves a clear differentiation between primary sources of Scan-

dinavian flint. The MLA combines visual comparative studies, stereo-microscopic analyses

of microfossil inclusions, geochemical trace element analyses applying LA-ICP-MS (Laser

Ablation Inductively Coupled Plasma Mass Spectrometry) and statistical analyses through

CODA (Compositional Data Analysis). For archaeologists, provenance studies are the gate-

way to advance interpretations of economic behavior expressed in resource management

strategies entailing the procurement, use and distribution of lithic raw materials. We demon-

strate the relevance of our results for archaeological materials in a case study in which we

were able to differentiate between Scandinavian flint sources and establish the provenance

of historic ballast flint from a shipwreck found near Kristiansand close to the shore of south-

ern Norway from a beach source in Northern Jutland, the Vigsø Bay.
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Introduction

Scandinavian flint sensu Högberg and Olausson [1] can be regarded as one of the most impor-

tant materials for prehistoric stone tool production in northwestern and parts of Central

Europe. Previous studies have produced promising results for differentiating between several

varieties of Scandinavian flint [2–5]; however, a comprehensive systematic study concerning

this issue has not yet been presented. The current study focuses on the systematic characteriza-

tion and differentiation of Scandinavian flint through the application of the Multi Layered

Chert Sourcing Approach (MLA) [6]. This method combines macroscopic (visual), stereomi-

croscopic and geochemical analyses applying Laser Ablation Inductively Coupled Plasma

Mass Spectrometry (LA-ICP-MS) for trace element detection. Multivariate geochemical data

are subsequently evaluated by compositional data analysis (CODA) to achieve optimal separa-

tion between distinct geological source locations and best group assignment of individual sam-

ples to defined sources. The measured geochemical values, typically indicated in parts per unit,

percentages, ppm, ppb, etc., have to be considered as raw compositional data (or composi-

tions). Compositions represent “quantitative descriptions of the parts of some whole” [7], thus

only conveying relative information. Their sample space is the so-called D-part simplex, also

known as Aitchison simplex, for which standard statistical methods are not designed. Thus,

compositional data need to be transformed into Euclidean geometry in which statistical meth-

ods can operate [7]. This can be best achieved by isometric logratio (ilr) transformation, which

preserves all metric properties of compositions [8]. After transformation, discriminant analysis

(DA) is applied. Optimal group separation of so-called training data derived from known geo-

logical sources can be achieved using Fisher’s linear discriminant analysis (LDA) [9]. The

resulting discriminant rules are used for assigning the test data (i.e. the archaeological speci-

mens) to these predefined groups (i.e. training data) [10].

Flint was an especially coveted raw material due to its exceptional flaking properties and

could be procured from three distinct source contexts: From primary deposits by digging

through the soft chalk layers which contain flint seams involving partly extensive mining oper-

ations, from secondary and sub-primary sources at beach shores around the Baltic and North

Sea, and thirdly from glacial deposits extending as far south as Central Germany, Northern

Bohemia and Moravia, and southwestern Poland. Thus, flint occurs abundantly in prehistoric

Central and Northern European lithic assemblages.

The earliest evidence for the use of Scandinavian flint for chipped stone tool production is

known from central Germany (Schladebach/Wallendorf) and dates to the Holstein interglacial

(MIS 11, 340,000 to 325,000 BP) [11]. This material derived from erratic contexts. Due to its

abundance and accessibility, erratic flint became of increasing importance during the Middle

and Upper Paleolithic in Central and parts of Eastern Europe, e.g. south-central Germany

and Poland, Hungary, Austria, Moravia and Bohemia [12]. The extensive use of erratic flint

continued throughout the Mesolithic [13] and Neolithic periods in parts of Central and East-

ern Europe [14–17].

In Scandinavia, hunter-gatherer groups arrived during the Late Upper Paleolithic c. 11,700

years ago [18, 19], and made extensive use of the rich flint resources they encountered. Charac-

teristic small backed flint blades, so called “Federmesser”, became eponymous for a variety of

North European Late Paleolithic groups [20, 21]. At the end of the fifth millennium BC, Neo-

lithic populations arrived in Scandinavia [22]. From the fourth millennium on, regular flint

mining from both, secondary and primary deposits, commenced in Denmark and Sweden [23,

24]. The most distinguished artifacts made from Scandinavian flint are daggers, which were

widely circulated between the third and early second millennia BC over different parts of

Europe [24–26]. The use of Scandinavian flint continued after the Bronze Age [27], and gained

Sourcing Scandinavian flint: Provenance of ballast flint from Norway

PLOS ONE | https://doi.org/10.1371/journal.pone.0200647 August 8, 2018 2 / 34

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0200647


some economic importance for gunflint production at the end of the 18th century [28]. How-

ever, it never reached the industrial importance of the large British and French sources.

The present study demonstrates how the MLA achieves a discrimination of flint for archae-

ological sourcing studies—with Scandinavian flint used as ship ballast in historic times as case

study to test the archaeological relevance of our results. This project was initiated within the

framework of the interdisciplinary research project “Harbours of the North Atlantic c. AD

800–1300 (HaNoA)”. One component of the project is concerned with ship ballast as archaeo-

logical material culture, including the scientific study of lithic materials from submarine ballast

sites. Owing to its abundance in the study area, flint plays an important role in this respect

[29–31]. Scandinavian flint is bound to Cretaceous formations in Northern Europe and

occurs, e.g., in Northern Germany, Denmark, Sweden and on the British Isles, directly coin-

ciding with the HaNoA-project study area. Many primary flint deposits are situated at the

coast, and weathered flint nodules could easily be collected from beach shores. For the archae-

ological case study, we investigated flint bearing limestone boulders used as ship ballast recov-

ered from the post-medieval Leirvigen 1 shipwreck found off the southern shore of Norway,

close to the town of Kristiansand.

Based on the nature of the ballast rocks it was apparent that they were acquired from a sec-

ondary beach source. In order to trace the original formation environment of the ballast mate-

rial, clusters of primary flint sources were established. Through the investigation of secondary

materials from beach deposits, we tested possibilities to assign such materials to an identified

source area.

Our initial analytical step was to macroscopically and microscopically investigate already

collected geological flint samples from potential source areas of the archaeological material,

curated at the lithothec of the University of Vienna (Vienna Lithothek, VLI). This included

materials from Great Britain, Denmark, south Sweden, Northern Germany, Lithuania and

Belarus. Since only material from the Baltic area corresponded to the Leirvigen ship ballast,

geological surveys were conducted at primary and secondary deposits in Denmark, southern

Sweden and Northern Germany. The nature of primary and secondary deposits recorded dur-

ing our geo-prospections revealed that the only potential sources of the ballast flint material

were located either in Denmark or in Northern Germany. Hence, this region was defined as

study area to undertake further analytical work. The collected raw materials from these two

regions were used as geological comparative samples for petrographic, mineralogical and geo-

chemical analyses. Additionally, the geological composition of secondary deposits close to the

shore was studied and compared with the archaeological material, which apparently derived

from one distinct beach source.

Leirvigen 1 ballast flint (LBF)

The archaeological site is located close to the Southern coast of Norway and recorded as Leirvi-

gen 1 (Fig 1). Radiocarbon investigations of the ship‘s wood produced C14 dates ranging from

cal AD 1455–1620.

The Leirvigen wreck was unfortunately broken due to dredging, but the conserved parts

show that it was a flat-bottomed ship with carvel construction at the bottom and clinker built

sides. The flint was found within the preserved ship’s parts and can be interpreted as the ves-

sel’s ballast or cargo [32]. A representative sample of the well-rounded ballast boulders, indica-

tive for an origin from a secondary beach deposit, is now housed at the Norwegian Maritime

Museum in Oslo. Most importantly, this assemblage constitutes a single deposition event and

the raw material of the ballast stones is highly uniform, i.e. they were gathered from a single

source and are therefore suitable for provenance studies. These advantageous preconditions
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encouraged this large-scale provenance study of Scandinavian flint varieties in order to locate

the source of the Leirvigen 1 ballast flint (LBF).

Geological material—Scandinavian flint

The term “flint” is a critical one due to its inconsistent use by both, geologists and archaeolo-

gists, in relation to the term “chert”. While both words are sometimes used interchangeably,

they are in other cases understood as two separate materials. Additionally, in some regions

flint is defined as a variety of chert, or vice versa [33–35]. Traditionally, in American and Brit-

ish literature flint is commonly understood as a nodular variety of chert of Upper Cretaceous

age [36–38].

However, outside this debate in North America and Great Britain, an entirely different dis-

tinction is made chiefly based on quality. Materials with excellent knapping properties, e.g.

from the Lessini Mountains or the Gargano area in Italy, from the vicinity of Kraków, Krze-

mionki Opatowskie or the Holy Cross Mountains in Poland, the extensive sources of the Moe-

sian platform in Bulgaria (the famous “Balkan flint”), and many more are frequently classified

as “flint”. In contrast, silicites of “poorer” quality in these regions are consequently identified

as “chert” [39].

There is to date no all-encompassing solution for this terminological dilemma. Thus, we

decided to apply the concept proposed by Přichystal [39] and detailed by Brandl [40] that flint

Fig 1. Geographical map with the location of the Leirvigen 1 shipwreck. Coolen J, Brandl M.

https://doi.org/10.1371/journal.pone.0200647.g001
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in the true sense is a variety of chert and has comparable fossil inclusions and formation envi-

ronments based on its

1. exclusive occurrence in Europe north of the Alps and most commonly in Scandinavia, with

flint-bearing formations extending from England to western Russia;

2. Upper Cretaceous (including Danian) age; and

3. distribution in distinct host rock facies (i.e. Cretaceous chalk and Danian limestone).

In agreeance with Högberg and Olausson [1], the material dealt with in the current contri-

bution will be referred to as “Scandinavian flint” to distinguish it from other flint types, such

as “southern” flint from France, Belgium and the Netherlands [41].

Geology of the study area

The study region is located within the Danish parts of the north-west European “Chalk Sea”.

This area is dominated by the Danish Basin, bordered by the Sorgenfrei-Tornquist Zone (STZ)

to the northeast and the Ringkøbing–Fyn High (RFH) to the southeast (Fig 2). Upper Creta-

ceous (Maastrichtian) chalk was deposited in varying depths in the NW European Epeiric Sea,

but always well below the photic zone and storm wave base. Chalk deposition reached a thick-

ness of over 2000 meters in the Danish Basin and extended in a belt along the STZ. Over struc-

tural highs such as the RFH and the STZ, the chalk thickness is significantly reduced due to

erosional processes [42]. Within these extremely pure chalk deposits formed distinct layers of

flint nodules.

Fig 2. Simplified geological map of the study area. Coolen J, Brandl M.

https://doi.org/10.1371/journal.pone.0200647.g002
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During the Paleocene, Bryozoan wackestone and packstone mound complexes containing

flint layers and nodules were deposited below the photic zone on the deep water shelf of the

Danish-Polish Trough in a depth between 100 and 300 meters [43, 44].

Flint formation

Directly linked to the NW European Late Cretaceous chalk and early Paleocene (Danian) lime-

stone formations are the occurrence of flint layers and nodules. Flint did not form directly on

the sea-floor but at a distance beneath the sediment surface, indicating original sea-bottom

contours and hence successive sequences of sea-bottom topographies [45].

Recently, a model for the formation of flint in the North Sea chalk was proposed [46, 47].

Following this model, nano-quartz particles (i.e. α-quartz spheres with diameters of ~500 Å)

were deposited on the sea floor together with bioclastic material. Due to the colloidal nature

of the nano-quartz crystals, a strong flocculation tendency was observed, which is an essential

precondition for the formation of flint layers. As a consequence of acidification of the sea

water related to volcanic activities during the Late Cretaceous and Early Paleogene periods,

practically all calcitic bioclasts were dissolved in some areas, resulting in high concentrations

of nano-quartz particles triggering flint formation.

The most important question for flint analyses involving geochemistry concerns the origin

of silica (Si). Lindgreen et al. [46] propose the origin of Si from dissolved microorganisms such

as radiolarians and diatoms in deep sea conditions, and from sponges in more shallow water

shelf environments. Volcanism in the form of hydrothermal activities in the North Sea region

has to be considered as an additional important silica source [48, 49].

Hypotheses and scientific questions

The working hypothesis for the present sourcing study suggests that depositional basins are

characteristic and discernable from each other in their composition of the microfauna as well

as geochemical signatures. Based on the geographic position of individual outcrops in the

study region we tested possibilities to reconstruct such paleobasins in which flint was formed

to define distinct flint provinces. Within those flint provinces we attempted a more refined

source separation with increasing geographical resolution based on specific geological settings,

generating a “fingerprint” of each individual source. Subsequently, the archaeological material

was investigated in order to trace it back to its original source.

The Scandinavian flint provenance study is structured in four consecutive steps:

1. The initial step focused on a differentiation between sources of Late Cretaceous (Maastrich-

tian) and Early Paleocene (Danian) age throughout the study region.

2. In a second step, we attempted to discern distinct source clusters within those larger sedi-

mentary regimes (i.e. the Maastrichtian and the Danian flint provinces) with the assump-

tion that such source clusters would be representative of submarine depositional basins in

which flint was formed.

3. Eventually the potential to discriminate between particular sources within one of the

defined clusters (i.e. depositional basins) was tested.

4. Ultimately, a representative number of archaeological material (i.e. samples from the Leirvi-

gen 1 ballast flint) was contrasted against analytical results from the primary geological

samples and the composition of beach deposits in order to assign the LBF to one of the

identified source areas and to establish the provenance of the archaeological material.
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Materials and methods

Geological samples

Additional to a characterization of primary flint deposits, the archaeological case study

attempted to source samples from secondary deposits. Such undertakings are generally con-

sidered problematic [50], however, previous studies involving geochemistry have demon-

strated the potential of such efforts [51]. Our sampling strategy was based on the argument

that materials from secondary sources inherently bear the closest similarities in microfossil

content and trace element distribution to materials from their primary geological host envi-

ronments [4]. Thus, once a reliable fingerprint has been established for primary deposits,

it should be possible to assign samples from secondary deposits to a primary source area.

Following this strategy, we investigated 13 primary and 37 secondary sources in the study

region. The primary geological localities, five of Maastrichtian- and eight of Danian age,

were chosen from previous studies that established a comprehensive groundwork for the

current undertaking [1–4].

Maastrichtian flint samples were collected from Hillerslev (HI), Thisted (THMa), Stevns

(STMa), Møn (MO) in Denmark and Sassnitz (SN) from Rügen in Germany. Flint deposits of

Danian age were sampled at Bulbjerg (BU), Hanstholm (HH), Vokslev (VO), Thisted (THDa),

Sangstrup (SA), Fornæs (FO), Stevns (STDa) and Klintholm (KH), all located in Denmark

(Fig 3).

The chalk from which all Danish Maastrichtian flint samples were collected corresponds to

the uppermost section of the North Sea Chalk Group, the Tor formation [52]. Flint samples

from Hillerslev and Thisted in Jutland and samples from Møn derive from the upper part of

this geological unit. At Stevns, a flint seam from the upper Sigerslev member was sampled.

Litho-stratigraphically, flint samples from Sassnitz in Germany belong to the late Lower

Maastrichtian Rügen member of the Hemmoor formation. All sampled limestone outcrops of

Danian age correspond to the Stevns Klint Formation [43, 53].

From each source, 20 individual flint nodules from one distinct layer clearly assigned to a

geological formation were chosen for characterization. Given the wide range of visual variation

of Scandinavian flint types [2], the flint variety dominating each sampled locality was chosen

for analyses in order to produce significant and reproducible results. Altogether, 260 individ-

ual samples from secure lithostratigraphic context were analyzed.

Since the LBF clearly derived from a secondary context, 37 secondary deposits were selected

according to a “coherent sampling scheme” [33]. For this task, beach deposits within the entire

study area including South Sweden were sampled in a distance of approximately 50 km to

investigate the varying composition of such deposits and to contrast the results against those

from the primary outcrops.

Archaeological samples

The lithic ballast material recovered from the Leirvigen 1 shipwreck is stored at the Norwegian

Maritime Museum in Oslo (reference no. 10010030 for all samples) and consists of 30 natu-

rally rounded flint-bearing limestone boulders ranging between 15 and ca. 40 cm in diameter

(Fig 4). From this assemblage, 20 individual specimens were chosen for provenance studies.

For geochemistry, flint inclusions in the limestone boulders which were sufficiently large and

homogeneous and thus considered representative were mechanically extracted. For microfa-

cies analysis, larger samples of limestone containing flint were knapped off 5 of the investi-

gated boulders in order to test if the material corresponds to only one or several lithological

contexts.

Sourcing Scandinavian flint: Provenance of ballast flint from Norway
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Fig 3. Primary and secondary deposits used for this study. Coolen J, Brandl M. Thisted and Stevns were sampled twice (STMa/STDa and

THMa/THDa).

https://doi.org/10.1371/journal.pone.0200647.g003
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Analytical strategy

Samples from beach deposits were studied according to macroscopic flint variety distribution,

grain size (i.e. sand—gravel—cobble—boulder), sorting and degree of erosion. All samples

from primary contexts were analyzed according to the Multi Layered Chert Sourcing

Approach (MLA) combining visual comparative studies, stereo-microscopic analyses of

microfacies and geochemical trace element analyses using LA-ICP-MS (Laser Ablation Induc-

tively Coupled Plasma Mass Spectrometry) for source area identification and separation [6].

Visual (macroscopic). Macroscopic inclusion patterns and the range of color according

to Munsell were investigated. During this analytical stage, distinct raw material groups can be

separated and microscopically and geochemically tested for their consistency [33, 54, 55].

Microscopy. Reflected light microscopy allows for the detection of trace fossils and non-

fossil inclusions in silicites. Micropaleontological and microfacies analyses are useful tools to

determine the age and genetic environment of silicites. Sedimentary facies can be differenti-

ated based on texture and components. Texture represents the relation between the ground-

mass (matrix) and the components of a rock. Criteria for facies identification are matrix type

and abundance and distribution of the components, typically fossil and non-fossil inclusions

[44]. Both classification systems for carbonate rocks proposed by Dunham [56] and Folk [57,

58] were used for characterization. Microscopic studies were performed at 20 individual

macrosamples for each source. For primary feature analyses a biological stereomicroscope

with up to 70 x magnification was used. In order to make our results applicable to archaeolog-

ical finds, which in most cases require non-invasive analyses, all micropictures for this study

were produced on unpolished rock surfaces qualitatively illustrating source characteristic

inclusion patterns at 40 times magnification and under water immersion. For petrographic

investigations of specific mineral phases in selected flint samples, polished surfaces were ana-

lyzed by SEM-EDX-WDX (Jeol JSM 6310, Institute of Earth Sciences, Graz University) and

with a Petrographic Zeiss Axio binocular with Canon EOS 750D camera application.

Geochemistry. Instrumental sourcing techniques are increasingly gaining importance in

archaeological research, however geochemistry is still only occasionally employed for lithic

provenance studies [59–62]. In the last decades, various geochemical methods have been

employed for sourcing chert and flint with varying success [4, 63–65]. Considering the

Fig 4. Sample of Leirvigen 1 ballast at the Norwegian Maritime Museum in Oslo.

https://doi.org/10.1371/journal.pone.0200647.g004
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comparatively heterogeneous nature of siliceous rocks and the typically very low trace element

concentrations in such materials [33, 66, 67], LA-ICP-MS is increasingly used for their chemi-

cal characterization [59, 60, 62, 68–73]. LA-ICP-MS requires only minimal sample preparation

and allows for the rapid simultaneous detection of up to 50 elements at highest sensitivity [74–

76]. Successfully working with this technique requires to comprehend the complex geochemi-

cal processes responsible for the distribution of trace elements in siliceous rocks, which can be

outlined as follows:

1. Silicon (Si4+) can be substituted (i.e. replaced) in the crystal lattice of chert and flint by

other cations with a similar ion radius and charge. These typically immobile elements

include aluminum (Al3+), titanium (Ti4+), germanium (Ge4+), iron (Fe3+) and phosphorus

(P5+). A charge difference of 1 is possible, however additional cations or crystal defects are

necessary to establish neutrality in the system [77]. Although trace element substitution in

the crystal lattice of quartz is not very common, such generally immobile elements can be

used to achieve a differentiation between chert and flint sources.

2. Chemical elements can be incorporated into the lattice interstitials and pore spaces of sili-

cites. In the case of aluminum (Al3+) and iron (Fe3+), additional cations such as lithium

(Li+), sodium (Na+) and hydrogen (H+) can occupy interstitial positions in the crystal lat-

tice. Deposition of trace elements can occur cogenetically during sedimentation or through

secondary processes in the course of diagenesis [78]. Cations situated in the lattice intersti-

tials and in pore spaces during the formation of SiO2 modifications include strontium (Sr),

vanadium (V), rubidium (Rb), barium (Ba), boron (B) and lithium (Li) and are in many

cases suitable for a source discrimination. Conversely, alterations of the rock surface after

the material was formed can significantly change the chemical composition by depletion or

enrichment of elements [4, 79]. Most commonly, this involves coloring cations such as iron

(Fe), manganese (Mn), chromium (Cr) and nickel (Ni), resulting in darker or polychrome

areas on rock surfaces. These effects are also known as “patination” and have to be avoided

for geochemical analysis.3. Synsedimentary (i.e. during the process of sedimentation) inclu-

sion of foreign minerals commonly involves feldspar, carbonates, clay minerals and heavy-

minerals (e.g. rutile, hematite, magnetite, etc.). Trace elements calcium (Ca), aluminum

(Al), potassium (K), iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr), barium (Ba),

magnesium (Mg), strontium (Sr), vanadium (V) and rubidium (Rb) can be enriched in

such inclusion minerals [80]. Specifically calcium in combination with aluminum, magne-

sium and strontium reveals the genetic environment of chert and flint and consequently

the origin of trace elements, e.g. from carbonates, plagioclase or clay minerals. Elements

related to inclusion minerals are suitable for provenance studies if they are source specific,

i.e. if their distribution is unique at each source location. In the case of coloring cations

such as Fe and Mn it has to be ensured that they are not secondarily enriched in the course

of postgenetic alteration processes.

For the present study, Laser Ablation Inductively Coupled Plasma Mass Spectrometry

(LA-ICP-MS) analyses were performed with an Agilent 7500ce quadrupole ICP-MS unit

located at the Central Lab for Water, Minerals and Rocks, NAWI Graz Geocenter (University

of Graz and Graz University of Technology, Austria), with sample introduction through an

ESI NWR-193 laser ablation system. Effects of naturally occurring heterogeneity within sedi-

mentary rocks were controlled and minimized by analyzing each sample at three discrete

spots, resulting in 780 multi-elemental measurements for geological samples, and 66 for the

archaeological material. Geochemical data of 36 elements, which were found to be useful

in earlier provenance studies [70, 73], were effectively determined (S1 Table). Small chips of
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(c. 2 mm) of both, geological and archaeological samples, were imbedded into resin mounts

and polished in order to avoid analyzing chemically altered rock surfaces (“patination”).

The spot size of the 193 nm wavelength laser was 75 μm, operated at 10 Hz pulse frequency

corresponding to an energy of ~8 mJ cm-1. Ablated material was transported via a helium gas

stream (0.7 1 min-1) into the argon plasma torch of the mass spectrometer and passed into the

ICP-MS unit. Standard reference glass NIST SRM 612 was routinely analyzed for standardiza-

tion and drift correction (concentrations from [81]). NIST SRM 614 was analyzed as unknown

and reproduced within 10% relative error. Silicon (Si) was used as internal standard. For data

reduction in GLITTER, a SiO2 value of 99 wt% was established for Scandinavian flint. Detec-

tion limit of LA-ICP-MS is typically 0.01–0.1 ppm for most elements, however values below

1 ppm need to be treated with caution since microinclusions, which are commonly occurring

in flint and chert samples, might influence the concentration of the element of interest signifi-

cantly at this concentration level.

Statistical evaluation. Bivariate scatter plots are used to reveal individual elements which

can be considered source specific, and hence responsible for a differentiation of geological

sources using trace element concentrations. Such elements allow the reconstruction of geologi-

cal formation processes and indicate why a differentiation can or cannot be achieved. How-

ever, standard statistical methods cannot be used for further data analyses, since they produce

biased results when applied to raw geochemical data (i.e. absolute measured values). Hence,

we evaluate multivariate geochemical datasets by Compositional Data Analysis (CODA).

For the present study we used stepwise variable selection, with X representing the complete

original data matrix:

1. Apply LDA on ilr(X) and compute the CV-misclassification rate (mcCV).

2. Apply LDA on ilr(X[,-j]) (remove j-th variable), for j = 1, . . .,#columns of X, and compute

mcCV for each j. Remove that variable for which the largest reduction of mcCV is achieved,

but only if this results in a smaller mcCV as for the previous step.

3. Proceed as in 2) with removing one variable at a time, as long as mcCV can be reduced.

Analytical results

Geological samples

Macroscopic (visual) and microscopic analyses. On a macroscopic scale, Maastrichtian

samples typically appear darker than Danian specimens and display more or less frequent grey

intraclasts in a homogeneous rock matrix. All Danian samples are characterized by high poros-

ity linked to minute cavities derived from poorly silicified macro- and microfossil inclusions

(mainly bryozoan skeletons and “calcispheres”), resulting in a heterogeneous rock texture.

Based on the work from Högberg and Olausson [1], Högberg et al. [2] and the results of the

present study, it is possible to propose a systematic classification of visually distinct flint varie-

ties considering geological age and visual characteristics (Table 1). However, these types are

not source specific, and macroscopic source assignment is therefore not possible.

Principal microscopic parameters for source differentiation are type and abundance of fos-

sil and non-fossil inclusions (S2 Table). For direct comparison, only microscopic features con-

sidered useful for source identification were recorded, and inclusion abundance in the rock

matrix was averaged [82]. There exist recognizable differences in trace fossils between individ-

ual deposits of the same geological age, however they do not appear to be consistent enough

to allow secure assignments to a specific outcrop [83]. A general differentiation is possible

between Maastrichtian and Danian samples, mainly based on the significantly higher
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abundance of Bryozoan inclusions in Danian samples. Conversely, Maastrichtian flint is richer

in shell-, brachiopod- and echinoderm remains due to specific diagenetic conditions directly

affecting the preservation of microfossil inclusions, especially shell structures. Non-fossil inclu-

sions were also detected in the course of SEM analyses, which revealed rutile, Fe-oxides, car-

bonates and Sulphur. Petrographic investigations under polarized light produced evidence for

frequent Fe-sulfide and rarer Fe-oxide inclusions in both, Maastrichtian and Danian samples,

however they are insignificantly interspersed into matrices of all investigated flint samples,

and hence not suitable for source division.

Microfacies. All investigated Maastrichtian flint samples can be classified as fossiliferous

micrite according to Folk [58], which agrees well with a slightly bioturbated pelagic deposi-

tional environment. The majority of Danian samples correspond to packed biomicrite and

those from Klintholm to sparse-packed biomicrite, both in agreeance with benthic bryozoan

limestone facies (S1 Fig).

Geochemistry. Trace elemental distribution in sea sediments chiefly depends on biogenic

composition, depositional environment and geochemical milieu at the sediment-water inter-

face. For the present study, trace elements strontium (Sr), aluminum (Al), magnesium (Mg),

manganese (Mn), germanium (Ge) and rubidium (Rb) were found to be geochemically signifi-

cant for bivariate analyses revealing source specific depositional and post-depositional mecha-

nisms. For statistical analyses applying CODA, the complete data set was used with stepwise

data reduction as indicated in materials and methods.

1. Maastrichtian versus Danian samples: Bivariate analyses. A differentiation of the two

units can be achieved to a certain degree by Sr versus Mg, Al and Mn concentrations (Figs 5, 6

and 7). However, significant overlapping effects occur. By tendency, Mg, Al and Mn are slightly

enriched in Danian samples (Figs 7 and 8), whereas Maastrichtian flint generally displays higher

Sr values. The variation of trace element concentrations is related to changing conditions in

depositional facies, including depletion processes. In general, Maastrichtian chalk contains

higher amounts of Sr and lower concentrations of Mg and Mn compared to Danian limestone,

which is in agreeance with findings of Jørgensen [84] and Kunzendorf and Sørensen [85].

Correlations with calcium (Ca), the primary constituent of the host rock facies, are useful

for reconstructing the geochemical, i.e. paleo-depositional, environment of the investigated

sources, which is representative of source-genetic conditions. High Ca concentrations are

present in HI (Maastricht), and HH, STDa, and some KH (Danian) samples (Figs 9 and 10).

Generally, Danian flint displays a wider range of Ca contents. Calcium concentration may be

related to carbonate phases in the silicite, however, in correlation with Al this indicates the

Table 1. Classification of flint types based on geological age and visual characteristics.

geological age visual characteristics short code eponym Subtype primary locations

Maastrichtian Black Flint MBF Stevns/Hov Hillerslev, Thisted, Ellidshøj, Stevns, Hvideklint, Sassnitz, Bjerre, Hov, Sallerup

Maastrichtian Gray Flint MGF Møn Mön, Sassnitz

Maastrichtian Speckled Flint MSF Gøl/Møn Hillerslev, Møn, Sassnitz

Maastrichtian Banded Flint MBdF Falster Falster

Danian Bryozoan Brown Flint DBB Funen Fornæs; Sangstrup, Bulbjerg, Hamborg, Thisted, Vokslev, Stevns, Faxe, Klintholm, Limhamn

Danian Bryozoan Gray Flint DBG Funen Klintholm

Danian Bryozoan Black Flint DBBl Funen Klintholm

Danian Gray Banded Flint DGB - Hanstholm, Vokslev, Ellidshøj

Danian Gray Matte Flint DGM Östra Torp Östra Torp

Variegated flint varieties (not detected

at primary sources)

SVF - glacial tills around the Baltic Sea

https://doi.org/10.1371/journal.pone.0200647.t001
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presence of the calcic feldspar plagioclase, which may be the case in the investigated Maastrich-

tian chalk—Danian bryozoan limestone sequence (Fig 9). Calcium is correlated with Sr values

in Maastrichtian and Danian samples (Fig 10). In the Ca–Sr correlation plot (Fig 10), all sam-

ples follow a 45˚ tendency displaying the similar geochemical behavior of both elements and

indicate a higher or lower abundance of carbonates and/or plagioclase.

CODA results.

1. List of variables which are removed, together with the achieved mcCV:

2. List of variables that remain for LDA:

"Li7" "B11" "Mg24" "Al27" "Ca43" "Mn55" "Fe56" "Co59" "Ni60" "Cu65" "Zn66" "Ge74"

"Sr88" "Cs133" "Pr141" "Eu153" "Dy163" "Th232" "U238".

Fig 5. Strontium (Sr) versus magnesium (Mg) concentration plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g005
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3. LDA with remaining list of variables:

mcCV = 0.05512821

Group (grp) assignment:

The results of statistical data evaluation illustrate distinct group separation between Maastrich-

tian and Danian samples with minimal misclassification (Fig 11). Hence, an assignment of any

sample to one of the two groups is possible with high reliability.

2. Maastrichtian samples: Bivariate analyses. Although overlapping effect occur, trace

elements Sr and Ge in combination with Al are suitable to achieve a separation between Maas-

trichtian sources to a certain degree (Figs 12 and 13). It has to be noted that Ge values are gen-

erally very low in Maastrichtian flint samples, ranging between 0.1 and 1 ppm. Therefore,

special care was taken to exclude microinclusions and analytical accuracy was closely moni-

tored by repeated measurements of the NIST614 glass reference material which contains

Ge in the above mentioned range. However, both Sr–Al and Al–Ge scatter plots allow for a

differentiation of three distinct source clusters which are indicative of separate depositional

Fig 6. Strontium (Sr) versus aluminum (Al) concentration plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g006

grp 1 2

1 458 22

2 21 279

https://doi.org/10.1371/journal.pone.0200647.t003
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environments. Hence, we were able to identify three different sub-basins within the study area.

Elemental concentrations of Sr, Al and Ge display an increasing trend from south to north.

Translated into geography, MO, STMa and SN samples fall within the southernmost area, HI

is situated in the north, and THMa is located between the two (see Fig 1).

CODA results.

1. List of variables which are removed, together with the achieved mcCV:

2. List of variables that remain for LDA:

"Li7" "B11" "Ca43" "Ge74" "Ba137" "Ce140" "Sm147" "Eu153" "Dy163" "Er166" "Yb172"

"Pb208" "Th232" "U238".

Fig 7. Strontium (Sr) versus manganese (Mn) concentration plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g007
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https://doi.org/10.1371/journal.pone.0200647.t004
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3. LDA with remaining list of variables:

mcCV = 0.01333333

Group assignment:

Statistical analyses of the geochemical datasets produced minimal misclassification, and source

specific training-data are well allocated as indicated in the assignment table (highlighted num-

bers). Hence, three distinct source clusters, i.e. depositional basins, were confirmed through

CODA application (Fig 14).

3. Danian samples: Bivariate analyses. Geochemical differentiation between Danian

sources is more intricate. The depositional environments appear far more homogeneous during

the Early Paleocene compared to the Maastrichtian. Source separation is only possible to a lim-

ited degree. Trace elements rubidium (Rb) and germanium (Ge) provide certain possibilities for

geographic discrimination, but overlapping is significant and a clear separation is not possible.

Fig 8. Aluminum (Al) versus magnesium (Mg) concentration plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g008

grp 1 2 3

1 116 2 2

2 0 120 0

3 0 0 60

https://doi.org/10.1371/journal.pone.0200647.t005

Sourcing Scandinavian flint: Provenance of ballast flint from Norway

PLOS ONE | https://doi.org/10.1371/journal.pone.0200647 August 8, 2018 16 / 34

https://doi.org/10.1371/journal.pone.0200647.g008
https://doi.org/10.1371/journal.pone.0200647.t005
https://doi.org/10.1371/journal.pone.0200647


Values of both, Rb and Ge, are generally low in Danian flint, with ranges from 0.1 to 5 ppm for

Rb, and below 0.1 to approximately 2 ppm for Ge (Fig 15). Only the STDa data cluster is distinct

based on extremely low Ge contents, while the rest of the samples scatter insignificantly.

CODA results.

1. List of variables which are removed, together with the achieved mcCV:

2. List of variables that remain for LDA:

"Li7" "Be9" "B11" "Mg24" "Al27" "Ca43" "Ti49" "V51" "Cr53" "Co59" "Cu65" "Ga71" "Ge74"

"Sr88" "Zr90" "Ba137" "Nd146" "Sm147" "Eu153" "Dy163" "Er166" "Yb172" "Pb208" "U238".

3. LDA with remaining list of variables:

mcCV = 0.09791667

Group assignment:

Fig 9. Calcium (Ca) versus aluminum (Al) concentration plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g009
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https://doi.org/10.1371/journal.pone.0200647.t006
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A clearer separation can be achieved through statistical analyses. We tested if the Danian suc-

cession also allows for internal differentiation and grouping into three discrete source areas.

This hypothesis was confirmed using CODA, however, misclassification and therefore over-

lapping is significantly higher than at Maastrichtian sources (Fig 16).

Application to the archaeological material

Macroscopic (visual) and microscopic analyses. Visually, LBF samples correspond well

with Danian limestone with flint inclusions. The flint is porous in its texture, due to abundant

calcispheres and micro-skeletal inclusions visible by naked eye. Coloration ranges between

dark yellowish brown and almost black with irregularly interspersed light gray patches, dis-

playing an altogether very heterogeneous texture. The investigated material comprises two

related flint types consistent with DGB and DBB varieties according to the classification pro-

posed in Table 1. Microscopically, the most apparent feature of LBF is the relative abundance

Fig 10. Calcium (Ca) versus strontium (Mg) concentration plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g010

grp 1 2 3
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https://doi.org/10.1371/journal.pone.0200647.t007
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of bryozoan inclusions in the majority of the investigated samples. Abundant Particulate

Organic Matter (POM) and peloids are additional characteristics.

Microfacies. The texture of all LBF samples corresponds to packed biomicrite, and is

identical with geological samples from Danian bryozoan limestone facies.

Macroscopic and microscopic investigations confirm that the LBF material consists of flint

bearing Danian bryozoan limestone, which allows defining more specific source criteria. Our

field investigations revealed that detached limestone boulders at primary Danian sources are

rarely well rounded and considerably larger than the archaeological ship ballast material, since

new material is continuously delivered. Danian material which was transported over larger

distances and deposited at the shore was in all cases heavily worn and the remaining pebbles

too small compared to the LBF sample. Only a deposit located at a short distance from a pri-

mary source produces boulders corresponding to the archaeological material. The rounded-

ness of the LBF boulders suggests a source in proximity to the coast, most likely a beach

deposit. Additionally, the size of the boulders indicates that they were not transported too far

from the primary source. Hence, source conditions for the LBF material match best with a

coastal deposit located close by a primary source or an eroded cliff comprised of Danian lime-

stone. Investigated beach sources comprising this kind of material are predominantly located

in the north of the study area, however macroscopic assessments are by no means conclusive

and need to be substantiated through more refined analyses.

Geochemistry. According to the identified source specifics it was reasonable to concen-

trate on geochemical data obtained from Danian samples for comparison and to assign the

LBF to one of the three identified Danian depositional environments.

Fig 11. Linear discriminant plot of all geological samples.

https://doi.org/10.1371/journal.pone.0200647.g011
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Bivariate analyses. As for the geological samples, trace elements Rb and Ge were used

since they allowed for—albeit limited—geospatial resolution between primary Danian sources.

Except few outliers, the majority of the LBF data points display a behavior analogous to sam-

ples from BU and HH, both situated within the north-westernmost Danian source area (Fig

17). However, since overlapping effects are so significant in the Rb–Ge scatter plot this result

could only be considered a mere indication which had to be verified through CODA.

CODA results. Prediction of LBF samples using LDA from Danian samples produced the

following summarized group assignment:

As demonstrated by this result and illustrated in Fig 18, the majority of test data (i.e. the

archaeological samples) are allocated to group 1 of 3, which were generated from the training

data, i.e. geochemical results from Danian flint samples. These three groups correspond to

the three geographically distinct Danian source areas. Group 1 of the geological samples repre-

sents the northern source cluster within the Danian depositional realm, and the LBF signatures

place the archaeological material into this geochemical environment. Hence, the indication

derived from Rb–Ge investigations was confirmed.

Fig 12. Strontium (Sr) versus aluminum (Al) concentration plot of all Maastrichtian geological samples.

https://doi.org/10.1371/journal.pone.0200647.g012

Group (training data) 1 2 3

LBF (test data) 51 13 2

https://doi.org/10.1371/journal.pone.0200647.t008
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Macroscopic and microscopic features in combination with geochemical results suggest an

origin of the LBF from the northernmost Danian source area, more specifically close to the pri-

mary deposits of Hanstholm and Bulbjerg. Our geo-archeological surveys revealed one specific

locality which provides material best corresponding with the archaeological finds: A beach

stretch between the Bulbjerg (BU) and Hanstholm (HH) sources, the so-called Vigsø Bay. This

locale presents an elongated curved beach line characterized by abundant flint bearing lime-

stone boulders exactly corresponding to the LFB material, in terms of size, roundedness, and

microscopic properties (Fig 19).

Discussion

There exist numerous pilot- and also more comprehensive studies attempting to characterize,

differentiate and generate a fingerprint for the large variety of micro- to cryptocrystalline sili-

ceous rocks from Northern European chalk and limestone formations generally referred to as

“flint” [3] (and further citations therein). However, to date a clear possibility to assign archaeo-

logical artifacts to one of the many recognized geological sources has not been achieved due to

a higher inter-source homogeneity of certain flint types than intra-source consistency. This

problem directly affects what is known as the “Provenance Postulate” stating “that there exist
differences in chemical composition between different natural sources that exceed, in some recog-
nizable way, the differences observed within a given source” [86].

Consequently, the main emphasis of the current study was to establish a sound methodol-

ogy for sourcing Scandinavian flint based on hypotheses that were formulated after a decade of

Fig 13. Aluminum (Al) versus germanium (Ge) concentration plot of all Maastrichtian geological samples.

https://doi.org/10.1371/journal.pone.0200647.g013
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provenance studies involving silicites from a broad variety of geological backgrounds [69, 70,

73, 87, 88]. Detailed geological and morphological information is available for each geological

location discussed in this study, hence we concentrated on parameters we found best suitable

for source differentiation. The hypotheses we tested through this investigation are of geological

nature. Many provenance studies attempt to differentiate samples from a geological sequence

or profile which in most cases does not produce significant results [3, 4]. Potentially such an

approach can be useful on a micro-scale, however results can be misleading when a differentia-

tion between deposits on a larger scale is endeavored. The explanation can be found in the

nature of the deposits, directly linked to the genetic environments of the analyzed materials.

As previous studies have revealed, two significant trends for chert source provenance studies

applying geochemistry are evident. The first trend is spatial, the second one chronological.

In marine environments, chemical variability is recognizable between basin structures

which may be spatially extensive. In such submarine basins or troughs, trace element

Fig 14. Linear discriminant plot of all Maastrichtian geological samples.

https://doi.org/10.1371/journal.pone.0200647.g014
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concentrations of the sea water display fairly homogeneous distributions reflected in trace ele-

ment contents. Intra-basin differences of the values are due to different depositional regimes

under which silicites were formed. This is directly linked to distinct locations within the

basins, i.e., ridge-proximal (mid-ocean ridges), pelagic (open ocean), and at continental mar-

gin environments. While the sedimentation rate is considerately higher in silicites formed at

continental margins due to continental input, silicites bound to ridges or developed under

pelagic conditions were exposed to the seawater for longer time periods, which is reflected in

REE and trace element deposition [5, 89, 90].

Trace elements strontium (Sr), aluminum (Al), titanium (Ti), magnesium (Mg), manganese

(Mn), germanium (Ge) and rubidium (Rb) were found to be suitable for chemically sourcing

Scandinavian flint. Primary sources of Sr, Al, Ti, Mg, Mn, Ge and Rb in seawater are terrigene

input from weathering of a wide variety of minerals and hydrothermal fluids. In sea sediments,

Al is indicative of feldspars, mica or clay minerals, Rb is present mainly in K-feldspar, mica

and clay minerals, and Mg typically indicates dolomite. Manganese content is an important

indicator for degradation of organic matter [91–94]. Germanium is strongly correlated with

silicon (Si) in the marine cycle, suggesting that the distribution of both elements is controlled

by the same mechanisms. Accordingly, Ge content can be used to reconstruct changes of the

Si concentration in the past deep sea [95]. Especially this set of trace elements is absorbed and

accumulated by microorganisms and eventually into biogenic opal, and can thus be considered

proxies indicative of changes in bioproductivity. As demonstrated by the current study, such

elements can allow a differentiation between distinct source areas to various degrees, and in

Fig 15. Rubidium (Rb) versus germanium (Ge) concentration plot of all Danian geological samples.

https://doi.org/10.1371/journal.pone.0200647.g015
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some cases between sources within a considerably small catchment area, e.g. depositional

basins. However, such intra-basinal differences were found to be less significant than inter-

basinal signatures in their trace element composition.

Accordingly, differentiation is in most cases possible between sources linked to different

depositional regimes (frequently separated by basin structures), whereas outcrops situated

within the same genetic environment can often not be clearly separated geochemically [70]. A

finer resolution can be achieved through microfacies analysis, revealing the depositional envi-

ronment of silicites located at the neritic, benthic or pelagic zone [44, 96].

The second issue is chronological. Since the chemical signatures of geological profiles dis-

playing multiple and oftentimes closely stacked silicite layers produce ambiguous results, a

secure differentiation is only possible between layers which are separated by a change in the

chemistry of the host rock environment. This may be caused by environmental changes,

altered sedimentation processes, increased or decreased terrigene influx (e.g. through rivers),

or a combination of some of these factors. Hence, only silicites derived from distinct host rock

facies (regardless if they derive from one outcrop or distant sources) can be securely distin-

guished, as demonstrated by our results.

Fig 16. Linear discriminant plot of all Danian geological samples.

https://doi.org/10.1371/journal.pone.0200647.g016
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Ship ballast

Sourcing flint used as ship ballast is a promising approach to further explore economic aspects

of this archaeological marker. Ballast can be used to localize harbor sites, more specifically

ports of call, and understand harbor management strategies such as the procurement, use,

recycling and final deposition of materials used as ship ballast and maritime trade networks

[97–110].

Successfully sourcing ballast of the Leirvigen 1 shipwreck to the Vigsø Bay raises the main

economic question concerning why and how this specific material was used. Source location

and material type suggest two possibilities for an interpretation of the archaeological record,

both of which are equally possible:

The ballast boulders were directly gathered from the beach at Vigsø at which the ship had

one of its stops. The flint boulders may have been taken on board

1. in the course of its initial loading of this particular journey, or

2. during one of the stopovers.

It is to date not possible to decide which alternative is more likely. However, the ship can be

placed into an economic scenery of the time between 1450 and 1650 as indicated by an existing

C14 date from one of the ship‘s planks. This date and the geographical location of the ship-

wreck indicate a possible connection with the so-called “Skudehandel” for timber trade

between Denmark and Norway between the late 15th and early 19th centuries [111–113].

Fig 17. Rubidium (Rb) versus germanium (Ge) concentration plot of the Danian geological samples and the LBF

material.

https://doi.org/10.1371/journal.pone.0200647.g017
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Conclusion

Translating Weigand‘s Provenance Postulate [86] referred to at the beginning of the discussion

into a multi-methodological approach such as the MLA, successful silicite provenance studies

depend on the systematic combination of analytical procedures revealing recognizable differ-

ences in visual characteristics, source specific microscopic features, and chemical composition

between geographically separated natural sources exceeding heterogeneities observed within

a given source. The careful compliance to this approach allows tracing lithic artifacts back to

their original source area as demonstrated by this study. However, successful implementation

is highly contingent on the scientific questions: Failure of analytical procedures for provenance

studies is oftentimes a result of inadequate questions to the studied materials. For the current

study, we had specific hypotheses which were tested through the application of the MLA chert

sourcing technique. Our results derived from systematic analytical work demonstrate clear

Fig 18. Linear discriminant plot of all Danian geological samples and the LBF material.

https://doi.org/10.1371/journal.pone.0200647.g018
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possibilities for distinguishing materials from primary Scandinavian flint deposits on different

scales, and it was possible to establish the origin of the archaeological material.

For Scandinavian flint, we were able to demonstrate that combined visual and micro-

scopic analyses only permit a differentiation between Maastrichtian and Danian deposits

with sufficient certainty. To achieve a finer resolution, geochemistry—here LA-ICP-MS

analytics—coupled with CODA for statistical evaluation of geochemical data was employed.

In an initial step, we investigated the potential to differentiate sources of Late Cretaceous

(Maastrichtian) and Early Paleocene (Danian) age throughout the study region. Subse-

quently, we tested possibilities to group and distinguish source clusters within those deposi-

tional regimes, which ultimately revealed chemically distinct source areas indicative of

individual depositional basins. Once this was achieved, it was possible to assign any particu-

lar source to one of the defined source areas. Including the archaeological material, analytical

results suggest that the Danian limestone boulders used as ballast on the Leirvigen 1 ship

originate from a source in the north of the study area (i.e. Denmark), situated close to a pri-

mary outcrop on the shore. Visual and microscopic characteristics in combination with geo-

chemical and statistical results reveal the area around Hanstholm and Bulbjerg as the most

likely source region of the LBF material. The nature of beach deposits recorded during sys-

tematic field surveys of the entire Danish and north German secondary flint-bearing shore

zone additionally supports this assessment. Within the study region, there exists only one

distinct area which fulfills all requirements for the LBF: the Vigsø Bay in Northern Jutland.

Primary sources for the boulders at Vigsø Bay are located to the north at Bulbjerg and possi-

bly in the south around Hanstholm. Hence, we conclude that the most likely source of the

Fig 19. Overview over the Vigsø Bay in Northern Jutland, Denmark.

https://doi.org/10.1371/journal.pone.0200647.g019
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LBF can be located at this particular part of the Danish coast. Considering the location of the

shipwreck as indicated in Fig 1, this conclusion is particularly convincing, and demonstrates

the value of our systematic methodological approach.

The outcomes of the present study offer potential for sourcing flint implements from vari-

ous archaeological contexts on a pan-European scale. In the future, additional primary depos-

its will be included into our database to test and consolidate our geological findings, and more

archaeological material needs to be investigated.
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tung des Spät-Magdalénien. Neumünster: Karl Wachholtz Verlag GmbH; 1954.

21. Dev S, Riede F. Quantitative Functional Analysis of Late Glacial Projectile Points from Northern

Europe. Lithics 2012; 33: 40–55.

22. Malmström H, Linderholm A, Skoglund P, Stora J, Sjödin P, Thomas M, et al. Ancient mitochondrial
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