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Background. Disorders of autophagic processes have been reported to affect the survival outcome of clear cell renal cell carcinoma
(ccRCC) patients. The purpose of our study was to identify and validate the candidate prognostic long noncoding RNA signature of
autophagy.Methods. Transcriptome profiles were obtained from The Cancer Genome Atlas. The autophagy gene list was obtained
from the Human Autophagy Database. Based on coexpression analysis, we obtained a list of autophagy-related lncRNAs
(ARlncRNAs). GO enrichment analysis and KEGG pathway analysis were conducted to explore the functional annotation of
these ARlncRNAs. Univariate and multivariate Cox regression analyses were conducted to elucidate the correlation between
overall survival and the expression level of each ARlncRNAs. We then established a prognostic signature that was a linear
combination of the regression coefficients from the multivariate Cox regression model (β) multiplied by the expression levels of
the respective ARlncRNAs in the training cohort. The predictive performance was tested in the validation cohort. Additionally,
the independence of the risk signature was assessed, and the relationship between the risk signature and conventional
clinicopathological features was explored. Results. Seven autophagy-related lncRNAs with prognostic value (SNHG3, SNHG17,
MELTF-AS1, HOTAIRM1, EPB41L4A-DT, AP003352.1, and AC145423.2) were identified and integrated into a risk signature,
dividing patients into low-risk and high-risk groups. The risk signature was independent of conventional clinical characteristics
as a prognostic indicator of ccRCC (HR, 1.074, 95% confidence interval: 1.036-1.113, p < 0:001) and was valuable in the
prediction of ccRCC progression. Conclusion. Our risk signature has potential prognostic value in ccRCC, and these
ARlncRNAs may play a significant role in ccRCC tumor biology.

1. Introduction

Renal cell carcinoma (RCC), a principal malignancy of the
renal tubular epithelium, ranks third among urinary cancers1
[1]. Characterized by multifarious genetic features [2], RCC
is composed of different histopathologic subtypes, of which
clear cell renal cell carcinoma (ccRCC) represents the princi-
ple pathologic subtype, accounting for 70% to 80% of RCCs

[3]. The prognosis of ccRCC varies between patients with
complicated genetic mutations, such as von Hippel-Lindau
(VHL), PBRM1, and BAP1 [4]. Surgery remains the principal
treatment for ccRCC due to its therapeutic value, but 40% of
ccRCC patients will eventually suffer distant metastasis [5],
and few exhibit a positive response to radiotherapy or che-
motherapy [6]. Neither immunologic nor targeted therapy
can definitely benefit ccRCC patients [7]. Therefore,
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predicting the progression and prognosis of ccRCC by seek-
ing novel effective biomarkers might facilitate the therapeutic
schedule and the evaluation of survival status.

Autophagy, a process in which cells engulf proteins and
organelles by forming double-membraned autophagic vesi-
cles where degradation occurs, is regarded as a recycling of
organelles and an adaptation of metabolism. Autophagy
plays a tumor-suppressor role by inhibiting the selection
and expansion of tumor-initiating cells early in tumor devel-
opment [8]. However, increasing evidence in established
tumors suggests that autophagy can help cope with environ-
mental or intracellular stresses, such as hypoxia, nutrient
shortage, or cancer therapy, thereby promoting tumor
growth [9–11]. Although an increasing number of studies
have sought to identify novel potential targets by probing
the autophagy pathway, and autophagic drugs have been
reported to induce renal cancer cell death, the mechanism
is still to be clarified [12].

Long noncoding RNAs (lncRNAs), a variety of noncod-
ing RNA, participate in many cellular processes with multitu-
dinous functions by modulating gene expression at the
epigenetic, transcriptional, and posttranscriptional levels
[13–15]. Accumulating evidence suggests that lncRNAs can
target autophagy-related genes at both the transcriptional
and posttranscriptional levels to regulate the autophagy path-
way, and lncRNAs regulate various proteins that function in
the autophagy process [16, 17]. Dysregulated lncRNAs are
involved in ccRCC progression and dissemination [18]. It
has been suggested that autophagy-related lncRNAs can
exert their action in tumor regulation [19].

The potential value of autophagy-related lncRNAs in
evaluating the prognosis of ccRCC patients and their role as
potential therapeutic targets have yet to be fully explored.
Here, we sought to identify an autophagy-related lncRNA
signature in ccRCC and to advance more personalized treat-
ment guidelines for ccRCC through bioinformatic analysis.

2. Materials and Methods

2.1. Data Acquisition Processing. In our study, RNA-seq tran-
scriptome data of which the workflow type was HTSeq-
FPKM and clinical information data were downloaded from
the TCGA database (https://portal.gdc.cancer.gov/) [20]. The
lncRNAmatrix and mRNAmatrix were extracted from tran-
scriptome profiling, respectively, by gene annotation. A list
consisting of 232 autophagy genes was obtained from the
Human Autophagy Database (HADb, http://autophagy.lu/
clustering/index.html) (Table S1). Then, the expression
matrix of 210 autophagy genes was extracted combing the
mRNA matrix with autophagy genes list (Table S2), and 21
genes were abandoned due to lacking expressing
information. In addition, the clinicopathological features
included survival status, survival time, age, sex,
International Society of Urological Pathology (ISUP) grade,
and American Joint Committee on Cancer (AJCC) stage.

2.2. Autophagy-Related lncRNAs Screening. The Pearson cor-
relation test was performed to screen autophagy-related
lncRNAs based on 210 autophagy genes and all lncRNAs as

mentioned. A lncRNA with a correlation coefficient ∣R ∣ >
0:3 and p < 0:001 was considered an autophagy-related
lncRNA. The “limma” package in R software was then used
to screen [21] differentially expressed autophagy-related
lncRNAs (ARlncRNAs) (Table S3).

2.3. Construction of a Coexpression Network of the
Autophagy-Related lncRNAs and Building a Sankey
Diagram. Firstly, the clinicopathological data and ARlncR-
NAs were merged. Then, we constructed a mRNA-lncRNA
interaction network of prognostic ARlncRNAs by applying
Cytoscape software 3.8.0 [22]. A Sankey diagram was built
to describe the relationship between the autophagy genes
and lncRNAs by using the R software packages “ggalluvial”
[23] and “ggplot2” [24].

2.4. Enrichment Analysis via DAVID Bioinformatics
Resources. In this study, we conducted enrichment analyses
via DAVID web server, a free server resource (https://david
.ncifcrf.gov/summary.jsp) to elucidate the biological func-
tions of those lncRNAs. 17 differentially expressed genes
and 19 ARlncRNAs (Table S4) were taken to perform the
analyses. Gene Ontology annotation and KEGG pathway
were both involved.

2.5. Establishment of the ARlncRNA Signature and
Performance Evaluation. First, the entire cohort obtained
from the TCGA dataset was randomly divided into two
cohorts: a training cohort (266 patients) and a validation
cohort (264 patients). The training cohort was used to estab-
lish the Cox regression risk signature, and the validation
cohort was then used to assess the performance of the

Table 1: Clinical characteristics of ccRCC patients in the TCGA
database.

Characteristics Total %

Age at diagnosis (y) 58 (26~90)

Gender
Female 191 35.57

Male 346 64.43

Stage

I 269 50.37

II 57 10.67

III 125 23.41

IV 83 15.55

Grade

G1 14 2.65

G2 230 43.48

G3 207 39.13

G4 78 14.74

T stage

T1 275 51.21

T2 69 12.85

T3 182 33.89

T4 11 2.05

N stage
N0 240 93.39

N1 17 6.61

M stage
M0 426 84.36

M1 79 15.64
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signature. Then, univariate Cox regression and Kaplan-Meier
(KM) analysis were used to identify ARlncRNAs with prog-
nostic value. Seven lncRNAs considered significant with a p
value < 0.0001 by both analyses were included in the result-
ing model. Next, multivariate stepwise regression Cox analy-
sis was performed to establish a prognostic risk model. The
risk score was calculated as the sum of multivariate Cox
regression coefficient (β)-weighted expression levels of
lncRNAs: Risk score = βgeneð1Þ × expression level of geneð1
Þ + βgeneð2Þ × expression level of geneð2Þ +⋯+βgeneðnÞ ×
expression level of geneðnÞ. The training cohort was then
separated into high-risk and low-risk groups based on the
median risk score. We generated a receiver operating charac-
teristic (ROC) curve to evaluate the predictive power of the
risk score. The same analysis was adopted in the testing
cohort to assess the performance of the signature. Addition-
ally, we built a nomogram using the R package “rms” based
on the results of multivariate Cox regression analysis to eval-
uate the prognosis of ccRCC. Lastly, the C-index and calibra-
tion curve were used to assess the performance value.

2.6. Independence Verification of the Risk Signature and
Performance Evaluation. Univariate and multivariate Cox
regression analyses were performed to investigate the inde-
pendence of the risk signature as a predictive factor from
the traditional clinical features (including age, sex, ISUP
grade, and AJCC stage) in both the training and validation
cohorts.

2.7. Statistical Analysis. In this study, all analyses were per-
formed using R 4.0.2. A p value < 0.05 was considered statis-
tically significant. The correlation matrix was constructed by
R software based on Pearson correlation coefficients. The
relationship between autophagy-related lncRNAs and overall
survival was analyzed through the Kaplan-Meier curve,
which was evaluated by the log-rank test. Time-dependent
ROC curves were used to analyze the sensitivity and specific-
ity of the prognostic prediction model. The nomogram was
constructed with the regression coefficients based on the
Cox analysis, and its performance was assessed by the c-
index and calibration curve. Univariate and multivariate
Cox regression analyses were performed to investigate the
independence of the risk signature as a predictive factor,
and Student’s t-test was used to compare the clinicopatho-
logical features between different risk-score groups.

3. Results

3.1. Data Processing and Prognostic ARlncR Acquisition. We
obtained transcriptome data and clinical data from the
TCGA dataset. The basic clinical characteristics of the
ccRCC patients in the TCGA database are shown in
Table 1. Based on a total of 232 autophagy-related genes
from the Human Autophagy Database (HADb, http://
autophagy.lu/clustering/index.html), we screened 813
autophagy-related lncRNAs. Nineteen ARlncRNAs closely
connected to prognosis were identified in the training
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Figure 1: Network of prognostic lncRNAs with coexpressed autophagy genes in ccRCC. In the centric position, red nodes indicate lncRNAs,
and blue nodes indicate autophagy genes. The coexpression network was visualized by CYTOSCAPE software 3.8.0.
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cohort through univariate Cox regression analysis (p value
< 0.01), and then, a network of prognostic 19 lncRNAs
with coexpressed 17 autophagy genes in ccRCC and a San-
key diagram for visualization were built. The results are
shown in Figures 1 and 2.

3.2. Enrichment Analyses. To further identify the Gene
Ontology (GO) annotation and KEGG pathway in which
the above lncRNAs were enriched, GO term and KEGG
pathway enrichment analyses were performed via DAVID
functional annotation tool. The visualization of results
was achieved by “ggplot2” packages in R software. GO
analysis showed that changes in the biological processes
(BPs) of autophagy-related lncRNAs were enriched in
mitophagy, peptidyl-threonine phosphorylation, positive
regulation of translation, macroautophagy, and others
(Table 2, Figure 3(a)). Changes in cell components (CCs)
included the autophagosome, late endosome, and mito-
chondrion (Table 2, Figure 3(a)). Changes in molecular
functions (MFs) were mainly enriched in kinase activity,
protein kinase activity, protein serine or threonine activity,
and others (Table 2, Figure 3(a)). KEGG pathway enrich-
ment analysis indicated that those autophagy-related
lncRNAs were involved in multiple tumor progressions
and signaling pathways such as NOD-like receptor signal-
ing pathway and mTOR signaling pathway (Table S5,
Figure 3(b)).

3.3. Establishment of the Autophagy-Related lncRNA
Signature for ccRCC. To improve our prognostic ability fur-
ther, we employed stepwise multivariate Cox regression anal-
ysis to further evaluate the aforementioned ARlncRNAs. As a
result, 7 lncRNAs were eventually pulled out to construct the
signature. Herein, the risk score was assigned using a linear
combination of the expression levels of the 7 identified
lncRNAs weighted by their regression coefficients (β)
(Table 3, Figure 4). Then, the ccRCC patients were divided
into high-risk and low-risk groups around the median risk
score. As a result, the risk score distribution of the
patients on the basis of the prognostic signature is shown
in Figure 5(a). Survival status scatter plots for the patients
based on the prognostic model are shown in Figure 5(b),
indicating that patients in the high-risk group had a
higher mortality than those in the low-risk group. A sig-
nificant difference in overall survival between the two
groups was seen (Figure 5(c), p < 0:0001), and the AUCs
at one, three, and five years were 0.754, 0.791, and 0.808,
respectively (Figures 5(d)).

3.4. Evaluation of the Prediction Performance of the
Signature. Next, we assessed the predictive ability of the
prognostic signature in the validation cohort to further eval-
uate its performance. The risk scores of the above 7 lncRNAs
were recalculated for each patient in the validation cohort. As
shown in (Figure 6(a)), the risk score distribution of the
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patients based on the prognostic model presented similar
results as in the training cohort. Survival status scatter plots
for the patients on the basis prognostic model are presented
in (Figure 6(b)). Survival differences were significant in the

validation cohort (Figure 6(c)), p < 0:0001). The AUCs at
one, three, and five years were 0.686, 0.673, and 0.711, respec-
tively (Figures 6(d)). In addition, we constructed a nomo-
gram to forecast the overall survival in the entire cohort

Regulation of autophagy

Pancreatic cancer

Bladder cancer

Colorectal cancer

Type II diabetes mellitus

NOD-like receptor signaling pathway

Non-small cell lung cancer

mTOR signaling pathway

Shigellosis

M
ol

ec
ul

ar
 fu

nc
tio

n

Prostate cancer

Chronic myeloid leukemia

Toxoplasmosis

ErbB signaling pathway

Hepatitis B

Neurotrophin signaling pathway

Tuberculosis

Focal adhesion

Pathways in cancer

20 40 60

Enrichment fold

80

–Log (FDR)

8

7

6

5

4

Set size

100

200

300

(b)

Figure 3: GO and KEGG pathway enrichment analysis. (a) GO enrichment analysis. Red nodes represent the changes in biological processes
(BPs), green nodes represent the changes in cell components (CCs), blue nodes represent the changes in molecular functions (MFs). The x
-axis represents enrichment fold. (b) KEGG pathway enrichment analysis. The node color changes gradually from red to green in
ascending order according to the –log(FDR) va. The size of each node represents the number of gene sets.

Table 3: Multivariate Cox regression analysis of prognostic autophagy-related genes.

ID Coef HR HR.95 L HR.95H p value

SNHG3 -0.647762 0.523215 0.281957 0.970904 0.040017

SNHG17 0.966878 2.629724 1.453059 4.759232 0.001400

MELTF-AS1 0.528276 1.696006 1.094015 2.629247 0.018193

HOTAIRM1 0.496232 1.642520 1.098048 2.456972 0.015726

EPB41L4A-DT -1.617247 0.198444 0.104238 0.377789 8.51E-07

AP003352.1 -0.910912 0.402157 0.168855 0.957802 0.039653

AC145423.2 0.511553 1.667880 0.923432 3.012484 0.089907
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with ccRCC according to the clinicopathological features
and risk scores (Figure 7(a)), of which the C-index was
0.773. The calibration curve for the nomogram suggested
good performance. Thus, the nomogram proved to be of
value in the prediction of the prognosis of ccRCC patients
(Figures 7(b) and 7(c)).

3.5. Independence Verification of the Signature as a Prognostic
Predictor. To further investigate whether the risk score could
be predictive for ccRCC independent of conventional clinico-
pathological features (age, sex, ISUP grade, and AJCC state),
univariate and multivariate Cox regression analyses were
run. The risk score proved to be independent of the afore-
mentioned clinical features in the entire cohort (Figure 8)
(HR, 1.074, 95% confidence interval: 1.036-1.113, p < 0:001
). The independence of the signature was further validated
by stratified clinical features.

We conducted analyses to explore the value of the
ARlncRNA signature in different clinicopathological sub-
groups, including age, sex, ISUP grade, AJCC stage, T stage,
and M stage. Comparing the two results of each stratified fea-
ture revealed that the overall survival time of the high-risk
group was shorter than that of the low-risk group in all clin-
icopathological subgroups (Figure 9). These results further
indicated that the autophagy-related lncRNA signature can
independently predict the prognosis of ccRCC patients.

3.6. Exploring the Predictive Value of the Signature for Tumor
Progression. In order to get a deeper insight into the predic-
tive value of the signature for ccRCC patients with regard
to tumor progression, correlation analyses between the
autophagy-related prognostic signature and clinicopatholog-
ical features were performed. The risk score of stage III–IV

ccRCC was higher than that of stage I–II (p = 5:525e − 05,
Figure 10(a)). The risk score of G3–4 was higher than that
of G1–2 (p=4.247e−07, Figure 10(b)). The risk score of
T3–4 was higher than that of T1–2 (p = 6:71e − 05,
Figure 10(c)). The risk score of M1 was higher than that of
M0 (p = 0:015, Figure 10(d)), and the risk score of N1 was
higher than that of N0 (p = 1:104e − 04, Figure 10(e)). Taken
together, these results indicated that as the risk score
increased, the malignancy of ccRCC increased. Thus, the
prognostic signature was of unique value for predicting the
progression of ccRCC.

3.7. Relationships between the Prognostic ARlncRNAs and
Clinicopathological Features. Subsequently, we investigated
the connection between those ARlncRNAs and clinico-
pathological features. The purpose was to help develop a
deeper understanding of the autophagy process, and the
results shown in Table 4 revealed that each of those prog-
nostic ARlncRNAs was significantly associated with clini-
copathological features that are closely connected with
tumor progression, including ISUP grade, AJCC stage, T
stage, and N stage. SNHG17 and AP003352.1 were signif-
icantly associated with age. However, only EPB41L4A-DT
was significantly associated with sex. Overall, these results
indicated that the aforementioned ARlncRNAs can pro-
mote tumor progression.

4. Discussion

ccRCC is well known for its heterogeneity, exhibiting molec-
ular diversity, morphological variability, and metabolic
reprogramming. Late diagnosis without early warning signs
and limited response to chemotherapy or radiotherapy are
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Figure 4: Kaplan-Meier survival curves for the 7 prognostic lncRNAs for ccRCC. The 7 autophagy-related lncRNAs were found to be of value
in predicting prognosis in ccRCC patients.
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the main culprits of poor prognosis [25]. Although novel
biomarkers, especially autophagy-related genes and mole-
cules, are emerging as predictive factors thanks to in-
depth cancer genetics and molecular biology discoveries
[26, 27], the value of autophagy-related lncRNAs as prog-
nostic indicators has not been addressed. Unlike previous
studies that focused on the role of autophagy-related genes
in tumorigenesis and progression [28–30], our study is
aimed at improving prognostic prediction by finding

autophagy-related lncRNAs associated with the poor prog-
nosis of ccRCC through comprehensive bioinformatics
analysis in TCGA databases.

We first identified 813 lncRNAs on the basis of the
lncRNA-autophagy gene coexpression network. By using a
univariate Cox regression model, we identified 19 ARlncR-
NAs associated with the prognosis of ccRCC patients. Seven
ARlncRNAs were further screened using multivariate Cox
regression analysis, including SNHG3, SNHG17, MELTF-
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Figure 5: Prognostic analyses between the patients in the high-risk group and low-risk group in the training cohort. (a) Risk score
distribution of patients from the prognostic signature. (b) Survival status scatter plots for patients in the prognostic signature (green dots:
alive; red dots: death). (c) The Kaplan-Meier plot (high-risk vs. low-risk group) of the training cohort. (d) Time-dependent receiver
operating characteristic curves assessed the predictive efficiency of the risk score for the training cohort. AUC: area under the curve; FP:
false positive; TP: true positive.
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AS1, HOTAIRM1, EPB41L4A-DT, AP003352.1, and
AC145423.2. GO analysis was conducted to discover the
main biological characteristics of these ARlncRNAs. Next,
we constructed a risk score-based prognostic signature that
separated ccRCC patients into low-risk and high-risk groups.
The OS time in the high-risk group was shorter than that in
the low-risk group. The prediction performance was vali-
dated in the validation cohorts.

Furthermore, through univariate and multivariate Cox
regression analyses, the risk score based on the signature
was shown to be a prognostic factor for ccRCC independent

of conventional clinicopathological features (age, sex, ISUP
grade, and AJCC stage). Further evaluation demonstrated
that the ARlncRNA signature can independently predict
the progression of ccRCC, which means that the higher the
risk score was, the worse the prognosis and the greater the
degree of malignancy were. Finally, we established a nomo-
gram based on the risk score of the signature, and the C index
and calibration curve indicated that the predictive perfor-
mance of the nomogram was good. Overall, these results
indicate that our ARlncRNA signature can play an important
role in predicting the prognosis of ccRCC patients.
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Figure 6: Prognostic analyses between the patients in the high-risk group and low-risk group in the validation cohort. (a) Risk score
distribution of patients from the prognostic signature. (b) Survival status scatter plots for patients in the prognostic signature (green dots:
alive; red dots: death). (c) The Kaplan-Meier plot (high-risk vs. low-risk group) of the training cohort. (d) Time-dependent receiver
operating characteristic curves to assess the predictive efficiency of the risk score in the training cohort. AUC: area under the curve; FP:
false positive; TP: true positive.
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Figure 7: (a) Nomogram predicting 1-, 3-, and 5-year overall survival for patients with ccRCC. The calibration curve for predicting patient
survival at (b) 3 years and (c) 5 years in the TCGA datasets. The nomogram-predicted probability of overall survival is plotted on the x-axis;
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Autophagy is significantly connected to the prognosis
of cancer; however, the complicated process and the
numerous molecular interactions make autophagy play
contradictory roles in cancer [31]. Long noncoding RNA
small nucleolar RNA host gene 17 (SNHG17) was
reported to be a critical regulator of tumorigenesis, and
studies have reported its role in promoting tumor invasion
and proliferation by activating the PI3K/AKT pathway [32,
33]. Jiang et al. [34] have reported that MELTF-AS1 can
serve as a prognostic indicator and is associated with
immunological processes. Our study further validates its
prognostic value in association with the autophagy pro-
cess, indicating that MELTF-AS can play distinct roles in
multiple physio-pathological processes. HOTAIRM1 can
promote glioblastoma progression [35], but in ccRCC, it
is downregulated, serving as a suppressor of HIF1-

dependent angiogenic pathways [36]. Thus, in vivo and
in vitro experiments are required to illustrate the full
effects of HOTAIRM1. Although we are the first to reveal
the predictive value of EPB41L4A-DT, AP003352.1, and
AC145423.2, their actual functions remain to be
determined.

The common methods to detect lncRNA for clinical
applications currently include microarray, lncRNA sequenc-
ing, and quantitative RT-PCR. Although the microarray can
facilitate large-scale detections, its cost is relatively high [37].
LncRNA sequencing enables the detection to be more effi-
cient and break the limit of traditional methods but leaving
the library construction work tedious and expensive [38].
Quantitative RT-PCR is also a common method used to
detect lncRNAs. It has been widely used because of its sim-
plicity and low cost though it is still a low-throughput and
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Figure 8: Univariate (a) and multivariate (b) Cox regression analyses for the TCGA cohort of ccRCC patients.
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Figure 9: Continued.
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Figure 9: Kaplan-Meier survival curves for the high-risk group and low-risk group stratified by clinicopathological features. (a, b) Sex. (c, d)
Age. (e, f) Stage. (g, h) Grade. (i, j) T stage. (k, l) M stage. T: tumor size; M: metastasis.
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Figure 10: Evaluation of the predictive value of the signature for progression. (a) Stage. (b) Grade. (c) T stage. (d) M Stage. (e) N stage. T:
tumor size; M: metastasis; N: lymph node metastasis.
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low-specificity method [39]. Given those shortages, a com-
prehensive and personalized detection method of lncRNAs
with further research achievements could be actually inte-
grated into future precision medicine strategies.

Despite our novel findings, there are still limitations to
this study. First, more basic experiments are required to clar-
ify the mechanisms of action of ARlncRNAs in ccRCC tumor
progression. Second, an external data set should be employed
for validation, instead of our limited internal data set, to
assess the consistency, reliability, and applicability of the
autophagy-related signature.

5. Conclusion

In conclusion, we established an autophagy-related signature
that independently predicted the prognosis of ccRCC
patients. It can be used to guide individualized treatment reg-
imens. Our study could help broaden the understanding of
autophagy-related lncRNAs and narrow the gap between
theoretical research and clinical practice, but the underlying
mechanisms still urgently need to be understood to clarify
the importance of our findings.
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