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Abstract

Background: Electroencephalogram (EEG) acquisition is routinely performed to support an epileptic origin of paroxysmal
events in patients referred with a possible diagnosis of epilepsy. However, in children with partial epilepsies the interictal
EEGs are often normal. We aimed to develop a multivariable diagnostic prediction model based on electroencephalogram
functional network characteristics.

Methodology/Principal Findings: Routinely performed interictal EEG recordings at first presentation of 35 children
diagnosed with partial epilepsies, and of 35 children in whom the diagnosis epilepsy was excluded (control group), were
used to develop the prediction model. Children with partial epilepsy were individually matched on age and gender with
children from the control group. Periods of resting-state EEG, free of abnormal slowing or epileptiform activity, were
selected to construct functional networks of correlated activity. We calculated multiple network characteristics previously
used in functional network epilepsy studies and used these measures to build a robust, decision tree based, prediction
model. Based on epileptiform EEG activity only, EEG results supported the diagnosis of with a sensitivity and specificity of
0.77 and 0.91 respectively. In contrast, the prediction model had a sensitivity of 0.96 [95% confidence interval: 0.78–1.00]
and specificity of 0.95 [95% confidence interval: 0.76–1.00] in correctly differentiating patients from controls. The overall
discriminative power, quantified as the area under the receiver operating characteristic curve, was 0.89, defined as an
excellent model performance. The need of a multivariable network analysis to improve diagnostic accuracy was emphasized
by the lack of discriminatory power using single network characteristics or EEG’s power spectral density.

Conclusions/Significance: Diagnostic accuracy in children with partial epilepsy is substantially improved with a model
combining functional network characteristics derived from multi-channel electroencephalogram recordings. Early and
accurate diagnosis is important to start necessary treatment as soon as possible and inform patients and parents on
possible risks and psychosocial aspects in relation to the diagnosis.
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Introduction

Epilepsy is a common neurological disorder, yet, accurate

diagnosis and classification at an early stage still poses a challenge

to the clinician. The diagnosis of epilepsy is primarily based on the

clinical history and may be supported by information provided by

interictal EEG recording. For proper classification of the epilepsy

syndrome the EEG is indispensable. Additional neuroimaging or

sleep deprivation EEG is often used when the initial clinical

diagnosis is not conclusive or when more information is needed for

classification of the epilepsy syndrome and assessment of

prognosis. Clinical diagnosis has a high interobserver variation.

One study found that 25 percent of patients were incorrectly

diagnosed as having had a seizure at the initial presentation [1]. In

addition, evaluation of EEG abnormalities may be subjective [2]

and is not very sensitive. For example, epileptiform activity is

demonstrated only in 29 to 55 percent of patients on routinely

performed EEG recordings [3]. To a lesser extent, EEG

abnormalities may also be found in healthy controls, especially

in children [4]. Together, interictal EEG recordings are supportive

but often not conclusive in the initial clinical diagnosis of epilepsy.

Developing EEG measurements with increased sensitivity and

specificity would be highly valuable in the early clinical diagnosis

of epilepsy. Accurate diagnosis at an early stage may allow more
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rapid optimization of treatment and improve counselling with

regard to lowering risks with necessary life rules and restrictions.

Particularly children with partial epilepsy could benefit from early

and accurate diagnosis, since interictal epileptiform EEG activity is

often absent [4], possibly causing a delay in diagnosis and decision-

making.

In this study we used the expanding knowledge on functional

neural network organization in normal and diseased brain [5].

Brain network organization is typically summarized using multiple

network characteristics such as global efficiency, local clustering,

power-law degree distribution and centrality measures [6].

Recently, it has been shown that interictal functional network

characteristics differ between controls and patients with chronic

partial epilepsy [7,8,9,10,11].

We aimed to explore the clinical value of functional network

characteristics by investigating network characteristics separately

and combined in a multivariable diagnostic prediction model. We

hypothesized that functional network characteristics enhance

sensitivity and specificity of diagnosis of partial epilepsy in children

at initial assessment.

Materials and Methods

Patients
Children referred, between January 2006 and December 2010,

to the outpatient department of pediatric neurology, University

Medical Center Utrecht, The Netherlands after one or more

suspected epileptic event(s) were eligible for our study. We

included children who were eventually diagnosed with new onset

partial epilepsy. Children with neurological or psychiatric co-

morbidities, including developmental delay, were excluded. The

clinical diagnosis of epilepsy was defined by at least two

unprovoked seizures within one year, judged by two neurologists

to be of epileptic origin. The clinical diagnosis was supported in a

subset of patients by epileptiform abnormalities (interictal epilep-

tiform discharges (IEDs) such as sharp waves, (poly) spikes or (poly)

spike-wave complexes or abnormal slowing), on routinely

performed EEG. In patients clinically diagnosed with epilepsy

but with a normal routine EEG recording, the diagnosis was

confirmed by subsequent sleep deprivation EEG recordings,

neuroimaging or clinical follow-up with history of more highly

suspected events. An MRI was performed in all children diagnosed

with epilepsy, not classified as idiopathic focal epilepsy. Epilepsy

was excluded in the control group, based on clinical history, EEG

results, and at least one year of uneventful follow up. This control

group was individually matched with the patient group on gender

and age. Neither patients nor controls had a history of febrile

seizures, generalized epilepsy, or were on (chronic) anticonvulsive

medication.

The institutional ethical committee approved the study and

concluded that the Dutch Medical Research Involving Human

Subjects Act did not apply, and written informed consent was not

required.

Data acquisition and selection
Routinely performed interictal EEG recording was available for

each child. Interictal EEGs were recorded according the

international 10–20 system (SystemPlus Evolution, Micromed) in

awake and eyes closed (resting-state) condition against an average

reference electrode. Impedance of each electrode was kept below 5

kV. Data was high- and low-pass filtered at 0.16 and 70 Hz,

respectively. Sampling frequency was 512 Hz.

All EEG recordings contained 21 scalp electrodes (F8, F4, Fz,

F3, F7, T8, C4, Cz, C3, T7, P8, P4, Pz, P3, P7, O1, O2, Fp1, Fp2,

A1, and A2) and were visually inspected (EvD). To assure stable

EEG brain dynamics for the calculation of network characteristics,

for each subject we selected four epochs (eight seconds each) at the

beginning of the interictal EEG recording [12,13]. All epochs were

free of IEDs, abnormal slowing, and electrocardiographic or

motion-induced artifacts. Two frontoparietal and basal temporal

electrodes (Fp1, Fp2, A1, and A2) were excluded to minimize eye-

movement artifacts. The epochs were independently re-inspected

by a clinical epileptologist (FEJ) on artifacts and IEDs. Finally, all

selected EEG epochs were converted to ASCII files to enable

functional network analysis. All data were additionally filtered to

obtain standard broadband frequencies in the range of 0.5 to

45 Hz.

To check whether subjects with partial epilepsy could be

distinguished from controls by means of spectral analysis, we

computed the relative and absolute power spectral densities

averages over epochs and subjects [14].

Computation of functional network characteristics
Individual functional EEG networks were constructed for each

subject using their broadband filtered data. Functional network

organization is based on the relatively new concept of functional

connectivity. The statistical interdependencies for each pair of

EEG electrode time series are considered as functional connec-

tivity and used to construct a functional network per subject for

each of the four epochs and were averaged per subject. Multiple

complementary methods exist to estimate the statistical interde-

pendency between two time series [15]. We based our functional

network construction on a functional connectivity index that was

previously applied in epilepsy studies, namely the synchronization

likelihood (SL) [13,16,17,18]. SL detects both linear and nonlinear

dependencies between the time series and is considered to be a

measure of generalized synchronization [19]. The SL expresses the

functional connectivity as a value between 0 and 1, and allows the

construction of weighted functional networks (i.e., the connectivity

strength between two electrodes is preserved) [20]. Weighted SL

networks were constructed using the freely available BrainWave

software (http://home.kpn.nl/stam7883/brainwave.html).

We have chosen to include network characteristics used to study

functional networks in epilepsy and published recently in

neuroscience papers (for review see [6]). For each weighted

network, we calculated the following characteristics: weighted

degree centrality (strength), weighted shortest path length,

weighted clustering coefficient, weighted betweenness centrality,

weighted closeness centrality and weighted eigenvector centrality.

An additional characteristic was the powerlaw distribution index

[21,22]. Apart from mean values of each network characteristic

across all network nodes, we calculated both minimal and

maximal values to increase the information used for building a

multivariable diagnostic prediction model. The mathematical

forms of the network characteristics are provided in the next

paragraph.

Mathematical forms of the network characteristics
Network construction. For each of the 70 subjects we

constructed a weighted undirected network, described by the

graph G = (N, W), where N is the set all 17 EEG electrodes and

W~fwijgis the N6N symmetric weight matrix, where wii = 0 and

wij the synchronization likelihood index determined between

electrode i and j [19].

Weighted degree centrality (strength). Four network

characteristics of edge centrality were included in the model,

which determined the relative importance of a node within the

graph [23]. The weighted degree centrality, or strength for node i

Diagnostic Prediction Model in Childhood Epilepsy
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was defined as

dw
i ~

Xn

j=i

wij

The minimal, mean and maximal strength were defined as

Dw
min~ minfdw

i g

Dw
mean~

1

n

Xn

i~1

dw
i

Dw
max~ maxfdw

i g

Weighted shortest path length. For a given node i in the

graph, the shortest path algorithm finds the path with lowest cost

(i.e. the shortest path length) between that node and every other

node. For the weighted shortest path length, the path between two

nodes i and j is find by minimizing the sum of weights assigned to

the edges on their path. The average shortest path length for node

i to all other nodes is defined as

lw
i ~

1

n{1

X
i=j

minflw
ij g

Here, minflw
ij g is the weighted shortest path length between

node i and j. We considered high values of the synchronization

index as close functional distance and low values of the

synchronization index as large functional distance (i.e.

lw
ij ~1

�
wij ). In our dataset no disconnected nodes were present.

The minimal, mean and maximal weighted shortest path were

defined as

Lw
min~ minflw

i g

Lw
mean~

1

n

Xn

i~1

lw
i

Lw
max~ maxflw

i g

Weighted closeness centrality. Edges that have short

distances to other edges have high closeness; this principle is used

in the calculation of the weighted closeness centrality. Formally

ccw
i ~

Xn

j=i

lw
ij

" #{1

The minimal, mean and maximal weighted closeness centrality

were defined as

CCw
min~ minfccw

i g

CCw
mean~

1

n

Xn

i~1

ccw
i

CCw
max~ maxfccw

i g

Weighted betweenness centrality. The weighted between-

ness centrality relies on the identification of the number of

weighted shortest paths that pass through a node. The more

passages the higher the betweenness centrality. The weighted

betweenness centrality is defined as

bcw
i ~

1

(n{1)(n{2)

Xn

j=k,k=i,j=i

gw
jk(i)

gw
jk

where gw
jk is the shortest path between two nodes and gw

jk(i) is

the number of those nodes that pass through node i. The mean

and maximal weighted betweenness centrality were defined as

BCw
mean~

1

n

Xn

i~1

bcw
i

BCw
max~ maxfbcw

i g

Eigenvector centrality. Eigenvector centrality is based on

the greatest eigenvector of the weight matrix W [24]. The

eigenvectors of the weight matrix indicate the nodes that show

high connections with most other nodes. In contrast to the

weighted degree centrality, it specifically favors nodes that are

connected to nodes that are themselves central within the network

[25]. If l is the largest eigenvalue and ecw the corresponding

eigenvector, then W|ecw~l|ecw or similar ecw~
1

l
W|ecw

and ecw
i ~m

Pn
j

wijecw
j , where m~

1

l
is the proportionality factor so

that ecw
i is proportional to the sum of connectivity scores of all

nodes connected to it. We used the minimal, mean and maximal

values of the eigenvector in our model, defined as

ECw
min~ minfecw

i g

ECw
mean~

1

n

Xn

i~1

ecw
i

ECw
max~ maxfecw

i g

Weighted clustering coefficient. The clustering coefficient

is a measure of degree to which nodes in a graph tend to cluster

together. We used the weighted clustering coefficient [26,27]. The

Diagnostic Prediction Model in Childhood Epilepsy
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weighted clustering coefficient for each node i was defined as

cw
i ~

P
j=i

P
h=(i,j)

w
1
3
ijw

1
3
ihw

1
3
jh

dw
i (dw

i {1)

and takes into account the weights of all edges in a triangle,

excluding weights not participating in any triangle. The minimal,

mean and maximal weighted clustering coefficient were defined as

Cw
min~ minfcw

i g

Cw
mean~

1

n

Xn

i~1

cw
i

Cw
max~ maxfcw

i g

Power law scaling index. The collection of (weighted)

degree centrality measures dw
i in a functional brain network often

forms a distribution, p(d), that decays as a power law [28]. This

power law decay ranges from a minimal value dmin to the maximal

value, and scales with the index a as p(d)~(a{1)da{1
min d{a. The

power law scaling index a was one of the network characteristics

Figure 1. (power spectral density plots of patients and controls). Mean absolute and relative power spectral densities between 0 and 45 Hz
averaged over epochs and subjects per group. Variation, defined as the standard deviation, is indicated by cross bars. Spectral densities between
groups largely overlap.
doi:10.1371/journal.pone.0059764.g001
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included in the prediction model. The calculation of dminand a
was done by a robust maximum likelihood method [21].

Model development
The diagnostic prediction model was built with available

software packages in the open-source R environment [29,30].

The predictive diagnostic model has been based on a robust

ensemble algorithm, namely the random forest classifier [31] using

a free implementation provided as the random forest package [32]

The core of the random forest classifier is the binary decision tree,

a data type that stores elements hierarchically in nodes. Each

decision tree is grown on different bootstrapped sample collections

(i.e., randomly drawn instances with replacement from the original

dataset) on a randomly selected subset of all available predictors.

The random selection of predictors increases the generalizability of

the individual decision trees, whereas the collection of multiple

decision trees in one forest increases model performance [31].

For our data, a subset of 5 random predictors for each decision

tree was found to give highest accuracy. After building the random

forest diagnostic prediction model, we assessed the ability to

differentiate between subjects with and without partial epilepsy

using the area under the Receiver Operating Characteristic

(ROC) curve (AUC) [33]. An AUC higher than 0.8 reflects

excellent discrimination [34]. However, the AUC is typically

considered to be too optimistic when the diagnostic model is tested

on the same data that is used to build the model. Internal

validation methods correct for this. We used the regular boot-

strapping approach for internal validation, which is the preferred

method when dealing with relative small datasets [35,36]. With

this method, the model is rebuild on multiple random samples

drawn with replacement from the full dataset. In this study we only

report the bootstrap corrected results.

Statistical analysis
Group differences on all network characteristics were individ-

ually assessed with the independent Student T-test. Each

diagnostic prediction model was fit on 1000-bootstrapped

realization of the original dataset. We calculated a bootstrap

corrected average ROC curve and corresponding average AUC,

sensitivity, specificity, positive predictive and negative predictive

values. All statistical analyses were performed in R using the

pROC [37] package [29].

Results

Patient characteristics
A total of 419 children visited the outpatient department of

pediatric neurology, between January 2006 and December 2010,

after a recent event of possible epileptic origin. In total, 75 children

were diagnosed with generalized epilepsies, 69 with partial

epilepsy and 38 with febrile seizures. In 52 cases, diagnosis

remained undetermined but clinical follow-up revealed no event(s).

Of the 69 patients who were eventually diagnosed with partial

epilepsy, only 35 patients both met our strict inclusion criteria and

had an EEG recording of sufficient quality for functional network

analysis (11 girls and 24 boys, mean age 10.163.4 years). In 185

children, epilepsy was excluded and an alternative clinical

diagnosis was made for the paroxysmal event(s). From this group,

35 controls were selected; individually match on age and gender

with the patient group (mean age 9.963.1 years). Detailed clinical

characteristics are provided as supplemental information (for

patients Table S1 and for controls Table S2). None of the children

had paroxysmal event in the days prior or post EEG recording,

thereby excluding pre- or postictal changes of the EEG signal [16].

Epileptiform interictal EEG activity was present in 77% (27 out of

35) of patients and supported clinical diagnosis. Subsequent sleep

deprivation EEG was performed in 5 patients showing epilepti-

form activity in all cases. In the remaining 3 patients, the diagnosis

of epilepsy was reconfirmed by clinical follow-up. The average

number of seizures prior to presentation at the outpatient

department was 5 (range: 1–36). The events of the children in

the control group were eventually diagnosed as syncope (11 cases),

Figure 2. (individual network characteristics of patients and controls). Mean and standard deviation of all network characteristics, used in
the predictive model, calculated for the broadband frequency. No significant differences were found for each characteristic between groups.
doi:10.1371/journal.pone.0059764.g002
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behavioural/psychogenic events, including tic and stereotypy (11

cases), staring/non-attentiveness without epileptic origin (7 cases),

pavor nocturnus (3 cases), arrhythmia (1 case), segmental non-

epileptic myoclonic jerks (1 case) and breath holding spells (1 case).

In the control group, aspecific EEG abnormalities were present in

9% (3 out of 35).

Power spectrum and network characteristics
Power spectral density revealed no differences between patients

and controls (Figure 1). None of the individual network character-

istics was significantly different between groups (Figure 2). The lack

of discriminatory power in the frequency analysis and individual

network characteristics emphasized the need for a multivariable

model. The network characteristics used in the multivariable

model contained unique information, as shown in our correlation

matrix (Figure 3).

Diagnostic model
The ROC curve for the predictive model using broadband

network characteristics is shown in Figure 4. The model had a

mean sensitivity of 0.96 [95% confidence interval (CI): 0.78 –

1.00], mean specificity of 0.95 [CI: 0.76 – 1.00], mean positive

predictive value of 0.96 [CI: 0.82 – 1.00] and a mean negative

predictive value of 0.96 [CI: 0.81 – 1.00]. The model performance

was excellent, with an AUC of 0.89 [CI: 0.80 – 0.95]. We found

similar results in terms of model performance if the analysis was

repeated for specific frequency bands including delta band (0.5–

4 Hz), theta band (4–8 Hz), alpha band (8–12 Hz), beta band (12–

30 Hz) and gamma band (30–45 Hz) (data not shown).

In an additional sub analysis, we bootstrap validated the model

specifically using only the subset of 8 epilepsy patients of whom

routinely performed EEG recordings were judged normal,

resulting in a sensitivity of 0.86 [CI: 0.64 – 1.00]. Similarly, we

tested the subset of 3 controls in whom routinely performed EEG

recordings contained aspecific abnormalities and in these patients

the model was found to have a good performance as well with a

specificity of 0.81 [CI: 0.33 – 1.00].

Conclusions

In this study we were able to build a highly accurate diagnostic

prediction model to distinguish children with partial epilepsy from

children who were judged to have had non-epileptic events, with

network analysis on resting-state epochs of routinely performed

interictal EEG recordings. The diagnostic power was high:

sensitivity and specificity of 0.96 and 0.95 respectively. The values

obtained by the diagnostic model clearly exceed the sensitivity and

specificity based on epileptiform EEG activity only, namely 0.77

and 0.91 respectively.

Figure 3. (correlation matrix included network characteristics). Pearson correlation matrix of all network characteristics for the broadband
frequency. Red color indicates positive correlation, blue color indicates negative correlation. Tensor anisotropy indicates strength of correlation (0
correlation, circular; full correlation, single line).
doi:10.1371/journal.pone.0059764.g003
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There is a rising interest in understanding brain functioning

from a network perspective. However, only few studies have aimed

to explore the clinical value of these functional networks in

epilepsy. For example, two studies have used a functional network

approach to predict post-surgical outcome in epilepsy surgery.

Wilke and colleagues studied invasive corticography recordings

during epilepsy surgery to correlate betweenness centrality, to the

resected cortical regions. They found that the betweenness

centrality was correlated with the resected areas of patients who

became seizure-free after surgery [38]. Yet another study, found

that functional connectivity in patients with seizure-recurrence

after epilepsy surgery was less lateralized compared to those who

were seizure free [39,40]. Although these results are promising, the

study domain has been limited to epilepsy surgery and data

acquisition has been applied to specific patients only.

This study was undertaken to bridge the gap between the field of

more fundamental computational neuroscience and daily clinical

practice. The use of network characteristics in diagnosing epilepsy

extends the method used in a recent study [13]. Douw and

colleagues used EEG functional connectivity to diagnose epilepsy

after a first suspected seizure and found a specificity of 0.76 and

sensitivity of 0.62. The higher sensitivity and specificity values

obtained in our study argue for a multivariable prediction design

and machine learning models, such as the random forest classifier,

although one may argue that the high sensitivity and specificity may

be partly due to the homogeneity of our patients. Douw and

colleagues found the theta frequency band to be most sensitive in

terms of prediction. In our study we found excellent results using the

broadband frequency, suggesting that the discriminatory power is

not restricted to one specific frequency band.

A potential limitation of our study is that the inclusion was

restricted to children diagnosed with partial epilepsy. Hence, this

prediction model can be applied in children with partial epilepsy

only. In addition, selecting resting-state EEG epochs in very young

children can be challenging since EEG recordings may have

motion-induced artifacts. Clear instructions and longer registra-

tions could potentially overcome this limitation. Clearly, its clinical

value will increase with extended inclusion of adults and other

epilepsy syndromes.

Early accurate diagnosis is particularly valuable in young

children to inform and guide parents, to prompt treatment

decisions and to limit the period of uncertainty and unnecessary

risks [1]. To explore the true diagnostic value of our proposed

predictive model, larger studies are required, especially using

external validation, although we corrected for too optimistic model

results using stringent internal validation. The use of freely

available software packages for model development validation

should facilitate the process of external validation

[29,30,31,32,37]. Our prediction model, based on routinely

performed EEG, is appealing due to the immediate clinical

availability. Further, standard EEG epoch selection is straightfor-

ward, network calculations are relatively fast and software is freely

available. Although current selection of epochs was performed

manually, software is available to reduce the time spent to select

‘resting state’ epochs semi-automatically [41].

Indications for future research are multiple. Use of other

modalities such as resting-state functional magnetic resonance

imaging, high density EEG and magnetoencephalogram may lead

to development of diagnostic models with even higher accuracy

due to their superior spatial resolution of functional networks.

Figure 4. (ROC curve). ROC curve (dark blue) and 95% confidence interval for the network characteristics based on the broadband frequency.
doi:10.1371/journal.pone.0059764.g004
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In conclusion, although more and larger studies are needed, this

study clearly shows that functional network characteristics are

promising and clinically useful in the early diagnosis of partial

epilepsy in children after their first seizure(s).

Supporting Information

Table S1 Clinical characteristics of 35 children with
new onset partial epilepsy.
(DOCX)

Table S2 Clinical characteristics of 35 controls.
(DOCX)
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