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Objective: Immune landscape is a key feature that affects cancer progression, survival,
and treatment response. Herein, this study sought to comprehensively characterize the
immune-related genes (IRGs) in oral squamous cell carcinoma (OSCC) and conduct an
immune-related risk score (IRS) model for prognosis and therapeutic response prediction.

Methods: Transcriptome profiles and follow-up data of OSCC cohorts were curated from
TCGA, GSE41613, and IMvigor210 datasets. An IRS model was established through
univariate Cox, Random Survival Forest, and multivariate Cox analyses. Prognostic
significance was evaluated with Kaplan–Meier curves, ROC, uni- and multivariate Cox,
and subgroup analyses. A nomogram was conducted and assessed with C-index, ROC,
calibration curves, and decision curve analyses. Immune cell infiltration and immune
response were estimated with ESTIMATE and ssGSEA methods.

Results: An IRSmodel was constructed for predicting the overall survival and disease-free
survival of OSCC, containing MASP1, HBEGF, CCL22, CTSG, LBP, and PLAU. High-risk
patients displayed undesirable prognosis, and the predictive efficacy of this model was
more accurate than conventional clinicopathological indicators. Multivariate Cox analyses
demonstrated that this model was an independent risk factor. The nomogram combining
IRS, stage, and age possessed high clinical application values. The IRS was positively
associated with a nonflamed tumor microenvironment. Moreover, this signature enabled to
predict immunotherapeutic response and sensitivity to chemotherapeutic agents
(methotrexate and paclitaxel).

Conclusion: Collectively, our study developed a robust IRS model with machine learning
method to stratify OSCC patients into subgroups with distinct prognosis and benefits from
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immunotherapy, which might assist identify biomarkers and targets for immunotherapeutic
schemes.

Keywords: oral squamous cell carcinoma, prognosis, tumor microenvironment, immunotherapeutic response,
chemotherapy

INTRODUCTION

Oral squamous cell carcinoma (OSCC) represents a heterogeneous
malignancy arising from the mucosal lining of the oral cavity (Chai
et al., 2020). This disease has a relatively low survival rate and an
increasing incidence in some geographical areas (Almangush et al.,
2020). The mainstays of OSCC therapy are surgery resection,
chemotherapy, radiotherapy, or a combination of these
modalities, which depend on the degree of this disease and
patients’ comorbid factors (Chai et al., 2020). At present,
prognostic biomarkers of OSCC patients mainly depend on the
TNM staging system. However, the system cannot be insufficiently
and inaccurately predictive of patients’ survival rate because the
prognosis of patients in the same category varies greatly (Lydiatt
et al., 2017). Although immune checkpoint inhibitors have been
proven for improving prognosis of patients with recurrent or
metastatic OSCC, there is still a lack of reliable biomarkers to
stratify OSCC patients and predict therapeutic responses
(Kenison et al., 2021). So far, the immune background and
clinical implication of OSCC remain uncertain.

Tumorigenesis is a complex process, which involves
interactions between tumor cells, tumor microenvironment,
and immune system, affecting tumor onset and progression
(Niu et al., 2022). The complex interplay of tumor cells with
the immune system facilitates tumor immune evasion, eventually
leading to tumor growth, metastasis, and treatment failure (Chen
L. et al., 2021). Accumulating evidence demonstrates that
immune cells and immune-related genes (IRGs) in the tumor
microenvironment exert essential accessory roles in prognosis,
progression, resistance, and immunotherapeutic responses of
OSCC patients (Kondoh et al., 2019). For instance, high
CXCL14 expression contributes to decreased tumor growth
and enhanced lymphocyte infiltration in OSCC (Parikh et al.,
2020). Hence, in-depth characterization of immune landscape in
OSCC may facilitate to uncover the critical functions of immune
surveillance and evasion triggering OSCC initiation and
progression as well as offer necessary evidence for informing
rational treatment design and predicting therapeutic responses
and patients’ survival outcomes.

MATERIALS AND METHODS

Curation of OSCC Cohorts and Data
Preprocessing
Level 3 RNA sequencing (RNA-seq) data and clinical features of
328 OSCC samples were curated from The Cancer Genome Atlas
(TCGA) via the Genomic Data Commons (GDC) Data Portal
(https://portal.gdc.cancer.gov/) utilizing TCGAbiolinks package
(Colaprico et al., 2016). Raw expression data (fragments per

kilobase million (FPKM)) were processed into Transcripts Per
Kilobase Million (TPM). Microarray expression profiling and
clinical information of 97 OSCC patients were retrieved from the
GSE41613 dataset through the Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/geo/) based on the
GPL570 platform (Lohavanichbutr et al., 2013). The raw
“CEL” file of microarrays was standardized with robust
multiarray averaging method utilizing affy (Gautier et al.,
2004) and simpleaffy packages (Wilson and Miller, 2005).
Supplementary Table S1 listed the patient demographics of
the TCGA and GSE41613 datasets. 2,498 immune-related
genes (IRGs) were curated from the Immunology Database
and Analysis Portal (IMMPORT; https://www.immport.org)
(Bhattacharya et al., 2018).

Establishment and Verification of an
Immune-Related Risk Score
Univariate cox regression models were conducted for the
evaluation of the associations of IRGs with OSCC prognosis in
the TCGA dataset. IRGs with p < 0.05 were significantly
associated with the OSCC prognosis. The Random Survival
Forest algorithm was adopted for ranking the relative
importance of prognostic IRGs (Wang and Zhou, 2017). The
number of Monte Carlo iterations was set as 100, and the number
of steps forward was 5. The IRGs whose relative importance as
characteristic genes were >0.4. Afterwards, a multivariate cox
regression model was conducted. The calculation formula of the
IRS model was as follows: risk score � ∑n

k−1ExpkpeHRk, where N
represented the number of characteristic IRGs, Expk represented
the expression level of characteristic IRGs, and eHRk meant the
regression coefficient of genes. Based on the median value of IRS,
OSCC patients in the TCGA or GSE41613 cohort were separated
into high- and low-risk groups. Kaplan–Meier (K-M) curves with
the log-rank test were adopted for assessing the statistical
significance of overall survival (OS) and disease-free survival
(DFS) rates between groups utilizing the survival package.
Receiver operating characteristic (ROC) curves at 1-, 3-, and
5-year OS or DFS were conducted through the survivalROC
package. Meanwhile, the area under the curve (AUC) was
determined at each time-point for evaluating the
discrimination (Heagerty et al., 2000). In the GSE41613
dataset, prognostic significance of each characteristic IRG was
assessed with the K–M curves.

Assessment of Predictive Performance
of IRS
Through ROC curves, the predictive efficacy in the OSCC
prognosis of IRS was compared with clinicopathological

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 8701332

Zhang and Wang Immune-Related Gene Signature in OSCC

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


factors in the TCGA dataset. Uni- andmultivariate cox regression
models were conducted for evaluation of the predictive
independency of IRS and clinicopathological factors in the
OSCC prognosis. TCGA OSCC patients were separated into
distinct subgroups according to clinicopathological factors, and
the K–M curves of OS were conducted between high- and low-
risk patients.

Construction and Evaluation of a Prognostic
Nomogram
A nomogram comprising IRS and clinicopathological features
was established with the rms package. The Harrell’s concordance
index (C-index) was calculated for assessing the performance of
the constructed nomogram and each variable in this nomogram.
Discrimination was verified through ROC curves at 1-, 3-, and 5-
year follow-up. Prediction accuracy was evaluated via
comparison of predicted and actual survival by calibration
plots. Moreover, the decision curve analysis (DCA) was
utilized for examining the clinical utility of this model via
quantification of the net benefit at distinct threshold probabilities.

Genetic Mutation Analysis
Somatic variant profiles of 508 OSCC patients stored in the
mutation annotation format (MAF) were curated from the
TCGA project, which were analyzed with the maftools package
(Mayakonda et al., 2018). The tumor mutation burden (TMB)
score was evaluated for each OSCC patient (Robinson et al.,
2017). According to whether the top five genes were mutated or
not, OSCC patients in the TCGA dataset were separated into
mutated and nonmutated subgroups. In each subgroup, the K–M
curves of OS were carried out between high- and low-risk
patients.

Function Enrichment Analysis
After separating TCGA OSCC patients into high- and low-risk
groups, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways underlying the IRS were investigated through the Gene
set enrichment analysis (GSEA) software (Subramanian et al.,
2005). The “c2. cp.kegg.v6.1. symbols” from the Molecular
Signatures Database (MSigDB; http://www.broadinstitute.org/
msigdb) acted as the reference set (Liberzon et al., 2015). The
number of random sample permutations was set at 1,000. The 50
hallmark gene sets were also collected from the MSigDB. The
Single-Sample Gene Set Enrichment Analysis (ssGSEA) function
of the Gene-set variation analysis (GSVA) (Hänzelmann et al.,
2013) was utilized for estimating the enrichment score of
hallmark pathways.

Analysis of Immune Cell Infiltration
The estimation of stromal and immune cells in malignant tumors
using the Expression data (ESTIMATE) (Yoshihara et al., 2013)
was utilized for inferring the fractions of stromal and immune
cells, and stromal score, immune score, tumor purity, and
ESTIMATE score were determined, respectively. Through the
ssGSEAmethod, the relative abundance of 29 immune signatures
was quantified across OSCC specimens based on 29 published

immune-related genes (comprising immune cell types, functions,
and pathways).

Analysis of Immunotherapeutic Responses
Immunotherapeutic responses were evaluated according to
human leukocyte antigen (HLA), immune checkpoints, Tumor
Immune Dysfunction and Exclusion (TIDE), and cancer
immunity cycle. TIDE was scored based on two mechanisms
of tumor immune evasion: inducing T-cell dysfunction in tumors
with enhanced infiltrations of cytotoxic T lymphocytes (CTLs)
and preventing T-cell infiltrations in tumors with reduced
infiltrations of CTLs (Jiang et al., 2018). The cancer immunity
cycle may reflect the antitumor immune response (Chen and
Mellman, 2013). The activity of each step was quantified with the
ssGSEA method based on the gene expression profiles of OSCC
specimens.

Collection of an Immunotherapeutic Cohort
Transcriptome profiles and follow-up information of patients
with advanced urothelial cancer who received anti-PD-L1
therapy were curated from the IMvigor210 cohort
(Mariathasan et al., 2018). Following the normalization, with
the same formula, the IRS of each patient was calculated and the
K–M curves of OS were conducted between high- and low-risk
groups. The predictive efficacy of IRS was verified through the
ROC curves.

Analysis of Sensitivity to Anticancer Drugs
Through establishing the ridge regression model on the basis of
Genomics of Drug Sensitivity in Cancer (GDSC; www.
cancerrxgene.org/) (Yang et al., 2013), The pRRophetic
package was adopted for predicting the half-maximal
inhibitory concentration (IC50) of OSCC patients in the
TCGA cohort (Geeleher et al., 2014). The IC50 values of
anticancer drugs were utilized for inferring the drug sensitivity.

Statistical Analysis
All data were analyzed with the R software, version 3.6.3. Survival
curves were conducted with the K–M method, and the log-rank
test was adopted for estimating the statistical significance.
Comparisons between groups were presented with the
Wilcoxon rank-sum test. Associations of variables were
determined with the Spearman coefficients. The statistical test
was two-sided, and the significance level was set at p < 0.05.

RESULTS

Construction of an IRS Model for Prediction
of OS and DFS of OSCC
This study collected IRGs from the IMMPORT project.
Univariate cox regression analysis uncovered that 172 IRGs
were significantly associated with the OSCC prognosis, of
which 86 were protective factors while 86 were risk factors
(Supplementary Table S2). Through the Random Survival
Forest algorithm, feature selection was presented. The
relationships of error rate with number of taxonomic trees
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were utilized for revealing IRGs with relative importance >0.4 as
characteristic genes (Figure 1A). Finally, the characteristic IRGs
were screened, and the relative importance ranking of the out-of-
bag scores for the characteristic IRGs are shown in Figure 1B.

Through the multivariate cox regression analysis, an IRS model
was established in the line with the following formula: risk score =
MASP1 expression * (−0.31342) + HBEGF expression * 0.206009
+ CCL22 expression * (−0.20744) + CTSG expression *

FIGURE 1 | Construction of an IRS model for prediction of OS and DFS of OSCC in the TCGA cohort. (A) Associations of error rate with number of classification
trees. (B) Relative importance ranking of 15 out-of-bag genes. (C) Visualization of survival time of each OSCC patient. (D) Distribution of survival status and expression
patterns of characteristic IRGs in high- and low-risk groups. (E) The K–M curves of OS between two groups. (F) ROC curves at 1-, 3-, and 5-year OS based on the IRS.
(G)Distribution of disease-free status and expression patterns of characteristic IRGs in high- and low-risk groups. (H) The K–Mcurves of DFS between two groups.
(I) ROC curves at 1-, 3- and 5-year DFS based on IRS.
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(−0.29364) + LBP expression * 0.417348 + PLAU expression *
0.1248 + MAP2K1 expression * 0.442468 (Table 1). OSCC
patients in the TCGA cohort were stratified into high- and
low-risk groups at the median cut-off of IRS. In Figure 1C,

we observed the prominently shorter survival time in high- than
low-risk groups. There was higher percentage of dead patients in
high-risk groupscompared with low-risk groups (61% vs. 31%;
Figure 1D). Meanwhile, CTSG, LBP, MASP1, and CCL22
expressions displayed marked upregulation, while HBEGF,
PLAU, and MAP2K1 expressions exhibited prominent
downregulation in high-risk groupdthan in low-risk groups
(Figure 1D). Low-risk patients displayed marked advantage in
OS than those with high-risk (Figure 1E). The AUCs at 1-, 3-, and
5-year OS were separately 0.721, 0.747, and 0.729, indicative of
the sensitivity and accuracy of IRS in the prediction of OS
(Figure 1F). In Figure 1G, we noticed a lower percentage of
disease-free patients in high-risk groups compared with low-risk
groups (45% vs. 71%). Heat map depicted the prominent
heterogeneity in the expression of the characteristic IRGs
between the two groups. Compared with the low-risk group,

TABLE 1 | Multivariate cox regression analysis of characteristic IRGs among
OSCC patients in the TCGA cohort.

IRGs Coefficient HR HR.95L HR.95H p value

MASP1 −0.31342 0.730943 0.600768 0.889324 0.001736
HBEGF 0.206009 1.228765 1.038503 1.453883 0.016389
CCL22 −0.20744 0.812666 0.691191 0.955489 0.012033
CTSG −0.29364 0.745543 0.615232 0.903456 0.002738
LBP 0.417348 1.51793 1.276406 1.805155 2.36E-06
PLAU 0.1248 1.132921 0.964931 1.330158 0.127503
MAP2K1 0.442468 1.556544 1.156869 2.0943 0.003474

FIGURE 2 | External verification of predictive performance of IRS in OSCC prognosis in the GSE41613 cohort. (A) Distribution of survival status and expression
patterns of characteristic IRGs in high- and low-risk groups. (B) The K–M curves of OS between two groups. (C) ROC curves at 1-, 3-, and 5-year OS based on the IRS.
(D–J) The K–M curves of OS between high and low expression of (D) CCL22, (E) CTSG, (F) HBEGF, (G) LBP, (H) MAP2K1, (I) PLAU, and (J) MASP1 groups.
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markedly unfavorable DFS was investigated in the high-risk
group (Figure 1H). The AUCs at 1-, 3-, and 5-year DFS were
0.720, 0.660, and 0.669, respectively, indicating that IRS possessed
the potential in predicting the OSCC recurrence or progression
(Figure 1I).

External Verification of Predictive
Performance of IRS in OSCC Prognosis
The predictive efficacy of IRS was externally verified in the
prediction of OSCC survival outcomes in the GSE41613
cohort. With the same formula, we determined the IRS of
each patient. As expected, the increased percentage of dead
patients was investigated in high-risk groupsthan in low-risk
groups (Figure 2A; 71% vs. 35%). The prominent
heterogeneity in the expression of the characteristic IRGs was
confirmed between groups. In Figure 2B, high-risk patients
displayed more undesirable OS in comparison with those with
low-risk. The AUCs at 1-, 3-, and 5-year OS were separately 0.696,
0.730, and 0.734 (Figure 2C), confirming the favorable
performance in the predicting OS. We also evaluated the
prognostic significance of each characteristic IRG in OSCC
patients. The upregulation of CCL22 and CTSG expressions

indicated more desirable OS (Figures 2D,E), while high
expressions of HBEGF, LBP, MAP2K1, and PLAU were in
relation to more unfavorable OS (Figures 2F–I). Nevertheless,
MASP1 did not markedly affect OS of OSCC patients (Figure 2J).

Assessment of the Reliability and
Independency of IRS in OSCC Prognosis
We compared the predictive efficacy of IRS with
clinicopathological factors via ROC curves. Our results
demonstrated that the IRS possessed the highest AUC value,
indicated that the IRS was superior to conventional clinical
features in predicting the prognosis of OSCC (Figure 3A).
Through uni- and multivariate cox regression models, IRS,
stage, and age acted as independent risk factors of OSCC
prognosis (Figures 3B,C). Subgroup analysis was presented for
the assessment of the predictive sensitivity of IRS in OSCC
survival outcomes. According to clinicopathological factors,
OSCC patients were stratified into distinct subgroups,
including age ≥65 and <65; female and male; G1-2 and G3-4;
stage I-II and stage III-IV. We noticed that high-risk patients
possessed poorer OS than those with low-risk in each subgroup
(Figures 3D–K).

FIGURE 3 | Assessment of the reliability and independency of IRS in OSCC prognosis in the TCGA cohort. (A)Comparison of the predictive efficacy of the IRS with
clinicopathological factors via ROC curves. (B,C) Uni- and multivariate cox regression models for the associations of IRS and clinicopathological factors with OSCC
prognosis. (D–K) The K–M curves of OS between high- and low-risk patients in each subgroup, including age ≥65 and <65; female and male; G1-2 and G3-4; stage I-II
and stage III-IV.
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Development of a Prognostic Nomogram
for OSCC
A prognostic nomogram derived from independent risk variables
(IRS, stage, and age) was conducted, which enabled the
determination of each patient’s score of each variable and the
estimation of the survival probability (Figure 4A). C-index was
calculated for assessing the predictive ability. The nomogram
displayed more favorable accuracy in predicting OS prediction

with a higher C-index compared with IRS, stage, and age
(Figure 4B). Moreover, the AUCs at 1-, 3-, and 5-year OS
were 0.731, 0.774, and 0.755, indicative of the favorable
predictive performance of the nomogram (Figure 4C).
Calibration curves for the probabilities of 1-, 3-, and 5-year
survivals were indicative of the desirable agreement between
the nomogram prediction and actual outcomes (Figures
4D–F). In DCA, the constructed nomogram exhibited a higher
net benefit together with a broader range of threshold

FIGURE 4 | Development of a prognostic nomogram for OSCC patients in the TCGA dataset. (A) The nomogram covering IRS, stage, and age for prediction of 1-,
3-, and 5-year survival probabilities. (B) C-index of age, stage, IRS, and nomogram in predicting OS. (C) ROC curves at 1-, 3-, and 5-year OS based on this nomogram.
(D–F) Calibration curves of this nomogram in prediction of 1-, 3-, and 5-year OS. (G–I) DCA of nomogram, age, stage, and IRS in terms of OS of OSCC patients. X-axis
indicated the threshold probability, and Y-axis demonstrated the net benefit.
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probabilities in comparison with age, stage, and IRS (Figures
4G–I). Therefore, this nomogram exhibited powerful predictive
capacity for the prognosis of OSCC patients.

IRS Model Is Independent of Genetic
Mutations in Predicting Prognosis
Across 508OSCC samples, 310 occurred somaticmutations (61.02%).
The first 20 mutated genes are shown in Figure 5A. According to the
mutation frequency, TP53 (44%), TTN (22%), FAT1 (16%),
CDKN2A (14%), and MUC16 (10%) were the top five mutation
genes. Compared with the high-risk group, significantly a reduced

TMB score was found in the low-risk group (Figure 5B). OSCC
patients were stratified into distinct subgroups according to mutated
or nonmutated TTN, CDKN2A, FAT1, MUC16, and TP53. We
found that high IRS was indicative of worse OS than low IRS in each
subgroup (Figures 5C–L). Thus, the IRSmodel could be independent
of genetic mutations in predicting the prognosis of OSCC patients.

Biological Phenotypes Underlying IRS
Model
GSEA uncovered that the cell cycle, oocyte meiosis, p53 signaling
pathway, spliceosome, and ubiquitin-mediated proteolysis were

FIGURE 5 | IRS model is independent of genetic mutations in predicting prognosis of OSCC patients from the TCGA cohort. (A) Waterfall plots showing the
mutation distributions of the first 20 most frequently mutated genes. The upper panel showed the mutation frequency in each OSCC specimen. The central panel
depicted the mutation types across OSCC patients. The bar plots on the right side showed the frequency and mutation types of genes. The bottom panel meant the
legends for mutation types. (B) Comparison of TMB score in high- and low-risk groups. *p < 0.05. (C–L) K–M curves of OS between high- and low-risk patients in
each subgroup, including mutated and nonmutated TTN, CDKN2A, FAT1, MUC16, and TP53.
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markedly activated in high-risk OSCC specimens (Figure 6A).
Meanwhile, arachidonic acid metabolism and primary
immunodeficiency were significantly activated in low-risk
OSCC specimens (Figure 6B). Through the ssGSEA method,
we noticed the prominent activity of immune activation pathways
such as IL6-JAK-STAT3 signaling, allograft rejection,
inflammatory response, complement, and IL2-STAT5 signaling
in the low-risk group (Figure 6C). Moreover, carcinogenic
activation pathways like TGF-beta signaling, PI3K-Akt-mTOR
signaling, E2F targets, MYC targets, and mTORC1 signaling
displayed increased activity in the high-risk group.

High IRS Is in Relation to a Nonflamed
Tumor Microenvironment
Through the ESTIMATE method, we investigated that high-
risk OSCC specimens exhibited reduced stromal score,

immune score, and ESTIMATE score but increased tumor
purity in comparison with low-risk specimens (Figures
7A–D). In Figure 7E, low-risk OSCC displayed significant
increase in aDCs, CD8+ T cells, DCs, HLA, iDCs,
inflammation-promoting, macrophages, mast cells, MHC
class I, neutrophils, NK cells, pDCs, and type II IFN
response. Moreover, we investigated the prominent increase
in the mRNA expression of HLA genes including HLA-DQB1,
HLA-DQB2, HLA-DQA1, HLA-DMA, HLA-DRB1, HLA-
DRB5, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DMB, and
HLA-DPA1 in low-risk OSCC specimens (Figure 7F). In
Figure 7G, most of immune checkpoints exhibited
prominent upregulation in low-risk patients, including
ADORA2A, BTLA, CD244, CD27, CD28, CD40LG, CD48,
CTLA4, ICOS, LAG3, LGALS9, PDCD1, TIGIT, TNFRSF4,
TNFRSF8, and TNFRSF9. This indicated that high IRS was in
relation to a nonflamed tumor microenvironment of OSCC.

FIGURE 6 | Biological functions involving the IRS model. (A,B) GSEA delineated biological pathways associated with the IRS model based on “c2. cp.kegg.v6.1.
symbols” gene set. OSCC specimens in the TCGA dataset were separated into high- and low-risk groups. Each run was presented with 1,000 permutations. Enriched
pathways with prominent correlations between two groups were separately depicted. (C) Heat map showing the activity of hallmark pathways in high- and low-risk
groups.
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IRS Predicts Immunotherapeutic Response
We investigated the increased TIDE score and T-cell exclusion as
well as the reduced IFNG and T-cell dysfunction in high-risk
groupsthan in low-risk groups (Figures 8A–D). Moreover, there
were reduced activities of nearly all steps in the cancer immunity
cycle (including cancer antigen presentation, priming and
activation, B-cell recruiting, CD4+ T-cell recruiting, CD8+

T-cell recruiting, dendritic cell recruiting, eosinophil recruiting,

macrophage recruiting, MDSC recruiting, NK cell recruiting,
T-cell recruiting, Th1 cell recruiting, Th17 cell recruiting, Th2
cell recruiting, Treg cell recruiting, infiltration of immune cells
into tumors, recognition of cancer cells by T cells, and killing of
cancer cells) in high-risk groupscompared with low-risk groups
(Figure 8E). In the IMvigor210 cohort, relatively higher clinical
responses to anti-PD-L1 therapy were found in high-risk patients
(Figures 8F,G). Moreover, the IRS was markedly reduced in a

FIGURE 7 | High IRS is in relation to a nonflamed tumor microenvironment in OSCC specimens from the TCGA dataset. (A–D) Comparisons of stromal score,
immune score, tumor purity, and ESTIMATE score in high- and low-risk groups. (E)Comparisons of the abundance levels of immune cell types, functions, and pathways
in high- and low-risk groups. (F,G) Comparisons of mRNA expression of HLA genes and immune checkpoints in two groups. Ns: not significant; *p < 0.05; **p < 0.01;
and ***p < 0.001.
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FIGURE 8 | IRS predicts immunotherapeutic response. (A–D)Comparisons of TIDE score, T-cell receptor interferon-gamma (IFN-G), T-cell dysfunction, and T-cell
exclusion in high- and low-risk groups. (E) Differences in each step of the cancer immunity cycle in high- and low-risk groups. (F) Distribution of IRS among patients who
had different responses (CR, complete response; PR, partial response; PD, progressive disease; SD, stable disease) to anti-PD-L1 therapy in the IMvigor210 cohort. (G)
Percentage of different responses to anti-PD-L1 therapy in high- and low-risk groups. (H)Comparisons of IRS in diverse tumor cell populations. (I)Comparisons of
IRS in diverse tumor cell types. (J) The K–M survival curves between high- and low-risk patients treated with anti-PD-L1 therapy. (K) ROC curves of survival based on
IRS. Ns: not significant; *p < 0.05; **p < 0.01; and ***p < 0.001.
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deserted phenotype, TC0 (tumor cells with the lowest PD-L1
expression) and IC0 (immune cells with the lowest PD-L1
expression), as shown in Figures 8H,I. A survival analysis was
then presented for assessing whether the IRS could predict the
survival outcomes of patients treated with anti-PD-L1 therapy.
High IRS was indicative of more undesirable clinical outcomes
(Figure 8J). The AUC was 0.636, indicative of the wonderful
performance in predicting patients’ prognosis (Figure 8K). Thus,
IRS possessed the potential in predicting the immunotherapeutic
response.

IRS Predicts Anticancer Drug Responses of
OSCC Patients
We evaluated the differences in IC50 values of common
chemotherapeutic agents (bleomycin, cisplatin, docetaxel,
methotrexate, and paclitaxel) between high- and low-risk groups.
As a result, the high-risk group hadmarkedly reduced IC50 values of
methotrexate and paclitaxel than low-risk group (Figure 9A). This
indicated that high-risk patients displayed higher responses to
methotrexate and paclitaxel. We also evaluated the associations of
each characteristic IRG with IC50 values of anticancer drugs across
OSCC patients. We observed that CTSG expression was negatively
correlated to IC50 values of anticancer drugs, while PLAU
expression displayed positive correlations to most anticancer
drugs (Figure 9B). This indicated that IRS predicted anticancer
drug responses of OSCC patients.

DISCUSSION

OSCC occupies about 90% of all oral cancer cases, which is
characterized by high metastasis and recurrence rates and
undesirable survival outcomes (Diao et al., 2021). Hence, it is
crucial to determine specific and effective markers to forecast
theOSCC prognosis. Evidence suggests that complicated
alterations in IRGs contribute to the occurrence and
progression of OSCC (Zhao et al., 2021). Nonetheless, critical
IRG signatures and their prognostic value in OSCC require
further exploration, which could deepen our comprehending
of OSCC and assist determine certain patients who may
benefit from immunotherapy. This study conducted an IRS
model (containing MASP1, HBEGF, CCL22, CTSG, LBP, and
PLAU) for the prediction of OS and DFS of OSCC patients. High-
risk patients were indicative of poorer survival outcomes. The
ROC curves confirmed the well predictive efficacy of this
signature, which was superior to conventional clinical factors.
The multivariate Cox analyses uncovered that IRS model was an
independent risk factor of OSCC prognosis. More prospective
cohorts should be adopted for verifying this prognostic model.

Secretion of HBEGF by M2 macrophages induces
radioresistance of human papilloma virus-negative head and
neck squamous cell carcinoma (HNSCC) (Fu et al., 2020).
Moreover, HBEGF upregulation contributes to acquired
cetuximab-resistance in HNSCC (Hatakeyama et al., 2010).
HBEGF expression is in relation to HNSCC patients’ OS (Liu

FIGURE 9 | IRS predicts anticancer drug responses of OSCC patients. (A) Comparisons of IC50 values of chemotherapeutic agents in high- and low-risk groups.
(B) Spearman correlation analysis of the correlations of each characteristic IRG with IC50 values of anticancer drugs.
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et al., 2020). HBEGF acts as an underlying regulator of invasion
capacity of OSCC cells (Ohnishi et al., 2012). CCL22, mainly
synthesized by M2macrophages, contributes to a deterioration of
clinical outcomes of patients with tongue SCC (Kimura et al.,
2019). CCL22 downregulation in tongue and mouth floor SCC
triggers reduced Th2 cell recruitment and expression and predicts
undesirable survival outcomes (Li et al., 2021). Cancer-associated
fibroblast-secreted IL-1β may activate CCL22 signaling in oral
cancer (Huang et al., 2019). CTSG acts as an underlying immune-
relevant marker in OSCC (Huang et al., 2021). PLAU facilitates
cellular proliferation and epithelial–mesenchymal transition in
HNSCC (Chen G. et al., 2021). This study nomogram
incorporating the IRS model, stage, and age was established,
which may enable clinicians to determine individual patient’s
clinical outcomes. This graphical scoring system is easy to
understand in developing the customized therapy as well as
making medical decisions.

An integrative genomic analysis uncovers four main driver
pathways (mitogenic signaling, notch, cell cycle, and TP53) as
well as two additional somatic driver genes (FAT1 and CASP8) in
OSCC (Pickering et al., 2013). Evidence suggests that high TMB
displays an association with an undesirable survival outcome of
HNSCC patients (Zhang et al., 2020). Herein, we noticed that
high TMB patients exhibited significantly increased IRS than
those with low TMB. Our subgroup analysis uncovered that IRS
was predictive of OSCC prognosis independent of somatic
mutations. Moreover, we noticed that cell cycle, oocyte
meiosis, p53 signaling pathway, spliceosome, and ubiquitin-
mediated proteolysis were markedly activated in high-risk
patients, while arachidonic acid metabolism and primary
immunodeficiency were significantly activated in low-risk
patients. Thus, IRS was in relation to the activities of the
above pathways during OSCC progression.

Our ssGSEA results uncovered the marked activity of immune
activation pathways such as IL6-JAK-STAT3 signaling, allograft
rejection, inflammatory response, complement, and IL2-STAT5
signaling in low-risk patients, while carcinogenic activation
pathways such as TGF-beta signaling, PI3K-Akt-mTOR
signaling, E2F targets, MYC targets, and mTORC1 signaling
displayed enhanced activity in high-risk patients. Furthermore,
decrease in stromal score, immune score, immune cell
infiltration, and expression of HLA and immune checkpoints
was found in high-risk specimens. Collectively, IRS might
participate in shaping a nonflamed tumor microenvironment
of OSCC. The cancer immunity cycle reflects the immune
response to cancer (Chen and Mellman, 2017). The activity of
each step in the cancer-immunity cycle determines the complex
immunomodulatory interactions in the tumor
microenvironment (Niu et al., 2022). Herein, we noticed that
the IRS model displayed negative correlations with the activities
of nearly all steps in the cancer immunity cycle including cancer
antigen presentation, priming and activation, recruiting of B cell,

CD4+ T cell, CD8+ T cell, dendritic cell, eosinophil, macrophage,
MDSC, NK cell, T cell, Th1 cell, Th17 cell, Th2 cell, and Treg cell,
infiltration of immune cells into tumors, recognition of cancer
cells by T cells, and killing of cancer cells. In the anti-PD-L1
therapy cohort, this IRS model can predict patients’ clinical
outcomes. Chemotherapeutic agents such as cisplatin, 5-
fluorouracil, and paclitaxel have been the first-line therapeutic
options for OSCC patients (Meng et al., 2021). However, most
patients ultimately acquire drug resistance as well as undesirable
clinical outcomes. Our IRS model possessed the potential in
prediction of responses to methotrexate and paclitaxel in
OSCC patients.

A few limitations of our study should be pointed out. Firstly,
the sample size was relatively small. Secondly, though these
findings were verified in an external cohort, more cohorts will
be obtained for confirming our interesting findings. Thirdly, the
optimal cutoff value of IRS was not determined. Herein, the
median IRS was utilized as the cut-off. At last, more experiments
will be presented for determining the biological significance of
characteristic IRGs in this model.

CONCLUSION

Collectively, our findings conducted an IRS model for OSCC and
determined its clinical significance as a reliable biomarker in the
prediction of patients’ prognosis and therapeutic benefits.
Additionally, we uncovered the critical functions of IRGs on
crosstalk between cancer cells and immune cells underlying oral
carcinogenesis, eventually promoting the development of tailed
immunotherapeutic strategies.
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