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ABSTRACT Microbial source tracking analysis has emerged as a widespread technique
for characterizing the properties of complex microbial communities. However, this analy-
sis is currently limited to source environments sampled in a specific study. In order to
expand the scope beyond one single study and allow the exploration of source environ-
ments using large databases and repositories, such as the Earth Microbiome Project, a
source selection procedure is required. Such a procedure will allow differentiating
between contributing environments and nuisance ones when the number of potential
sources considered is high. Here, we introduce STENSL (microbial Source Tracking with
ENvironment SeLection), a machine learning method that extends common microbial
source tracking analysis by performing an unsupervised source selection and enabling
sparse identification of latent source environments. By incorporating sparsity into the esti-
mation of potential source environments, STENSL improves the accuracy of true source
contribution, while significantly reducing the noise introduced by noncontributing ones.
We therefore anticipate that source selection will augment microbial source tracking anal-
yses, enabling exploration of multiple source environments from publicly available reposi-
tories while maintaining high accuracy of the statistical inference.

IMPORTANCE Microbial source tracking is a powerful tool to characterize the proper-
ties of complex microbial communities. However, this analysis is currently limited to
source environments sampled in a specific study. In many applications there is a
clear need to consider source selection over a large array of microbial environments,
external to the study. To this end, we developed STENSL (microbial Source Tracking
with ENvironment SeLection), an expectation-maximization algorithm with sparsity
that enables the identification of contributing sources among a large set of potential
microbial environments. With the unprecedented expansion of microbiome data
repositories such as the Earth Microbiome Project, recording over 200,000 samples
from more than 50 types of categorized environments, STENSL takes the first steps
in performing automated source exploration and selection. STENSL is significantly
more accurate in identifying the contributing sources as well as the unknown source,
even when considering hundreds of potential source environments, settings in
which state-of-the-art microbial source tracking methods add considerable error.

KEYWORDS feature selection, microbial source tracking, microbiome, mixture models,
sparsity

Complex microbial communities are present in multiple biological domains and play
far-reaching roles in various fields, from human health, through agriculture, to biore-

mediation. The study of these high-dimensional communities offers great opportunities
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for biological discovery, due to the ease of their measurement, the ability to perturb
them, and their dynamic and rapidly evolving nature. These same characteristics, how-
ever, make it difficult to extract informative and reproducible patterns informing the ori-
gins of these ecosystems. Specifically, as microbial community assembly strongly
depends on the dispersal of microbes from a mixture of source environments, the analy-
sis of such communities requires tailored algorithms deconvolving latent structures
regarding community integration.

Over the last decade, several computational techniques have been proposed for
tracking the assembly of such complex microbial communities (1–3). By performing
“microbial source tracking,”methods such as FEAST (1) and SourceTracker2 (2) quantify
the fraction, or proportion, of different microbial samples (sources) in a target microbial
community (sink), while assuming the sink is a mixture of sampled microbial environ-
ments (i.e., known sources) with the possibility of unmeasured ones, collectively
referred to as the “unknown source.” These methods have shown great promise in
revealing new insights, particularly in quantifying contamination and tracking micro-
bial community integration (4–6). However, in many practical scenarios the number of
contributing sources is much smaller than the number of candidate sources considered
in the analysis. Unfortunately, existing methods are suboptimal in such scenarios, hin-
dering the concept of source exploration.

As it may be nearly impossible to obtain sequencing data for all potential source
environments in a study, source exploration using public repositories may augment mi-
crobial source tracking analyses, beyond the scope of any one study. We therefore sug-
gest that in these settings, microbial source tracking can benefit from automated source
exploration and selection. Nonetheless, this process remains largely understudied, with
current methods not suitable for the task, as-is, since the estimation error increases as
the number of sources considered increases. Only one previous study tried to address
this limitation by exploring the utility of Aitchison distance to select “important” sources
that drive community assembly (7). However, as we demonstrate using simulations, the
accuracy of this strategy in the presence of an unknown source is very low.

Here we introduce STENSL, a scalable algorithm that unveils the latent structure of
a given microbial community by modeling it as a convex combination of (1) contribut-
ing sources (observed sources with a nonzero contribution to the sink), (2) nuisance or
noncontributing sources (observed sources with zero contribution), and (3) unob-
served or unknown sources. We use the term candidate sources to describe the union
of the former two. STENSL enables the incorporation of multiple candidate sources
from publicly available repositories without the need for manual selection. Unlike cur-
rent microbial source tracking methods, multiple sources can be considered without
increasing the error in estimating the underlying mixing proportions. We demonstrate
that, when considering both contributing and noncontributing source environments,
STENSL is significantly more accurate than state-of-the-art methods. Thus, by leverag-
ing sources from publicly available repositories, STENSL can provide more accurate
estimates of the origin of complex microbial communities.

RESULTS
A brief description of the model. STENSL detects a core group of source environ-

ments within a larger group of candidate environments and quantifies their contribu-
tion to the formation of complex microbial communities. STENSL takes an input a
microbiome sample (called the sink) as well as a separate group of microbial samples
(called the candidate sources), detects a core group of contributing sources and esti-
mates the fraction of the sink community that was contributed by each of these core
environments. By virtue of these mixing proportions summing to less than the entire
sink, STENSL also reports the fraction of the sink attributed to other, unobserved, ori-
gins (Fig. 1). STENSL is based on a least-squares optimization with an L1-norm regulari-
zation, acting as a source selection procedure, integrated into the microbial source
tracking mixture model. In STENSL, we also introduce a procedure to analytically
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reconstruct the best representation of the unknown source. Specifically, we leverage
the regularized least-squares solution of the mixture model to identify taxa which are
accurately reconstructed and are thus not unlikely to originate from the unknown
source (Materials and Methods). STENSL identifies three types of sources: (1) contribut-
ing sources (sources observed and having a nonzero contribution), (2) nuisance sour-
ces, also called noncontributing sources (observed and having zero contribution), and
(3) unobserved sources, collectively referred to as the unknown source. In other words,
our method explicitly differentiates between two types of known sources introduced
into the model (i.e., contributing and nuisance). As we demonstrate below, these modi-
fications are significant in denoising and exploring a cohort of candidate sources.
Specifically, we show that STENSL is significantly more accurate than existing methods
when considering a large number of nuisance sources, a setting in which the identifica-
tion of truly contributing sources becomes nontrivial.

Model evaluation using data-driven simulations. We use simulations to compare
the accuracy of STENSL to FEAST, SourceTracker2, and RAD, methods previously sug-
gested for microbial source tracking. The samples used in these simulations are based
on real microbial samples documented and processed as part of the Earth Microbiome
Project (8). The synthetic sink samples were generated as a convex combination of real
microbial samples (i.e., contributing sources) and an unknown source, hidden from the

FIG 1 Overview of the STENSL algorithm. The source-tracking task involves estimation of the relative contribution of sources to the
formation of a sink. STENSL performs sparse estimation which makes source tracking more accurate for large numbers of sources and
allows consideration of sources that may not contribute to the sink.

Microbial Source Tracking with ENvironment SeLection mSystems

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00995-21 3

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00995-21


algorithm. Our evaluation extends the source tracking problem by introducing to the
algorithm numerous additional sources unrelated to the sink such that all methods con-
sider both contributing and nuisance sources. To measure accuracy, we compared the
estimated mixing proportions with the true ones using mean-squared error (Figure 2A,
Table S1). Overall, we found that STENSL was the only method to consistently estimate
the level of real sources’ contribution, with significantly lower mean-squared error (MSE)
across positive unknown contributions up to 90% (SourceTracker2, P , 9.13 � 1027;
FEAST, P , 1.01 � 1026; RAD, P , 9.13 � 1027; Wilcoxon signed-rank test). The ability of
each method to distinguish truly contributing sources was further assessed by summing
non-zero weight attributed to nuisance sources. We term this metric the “false positive
rate” (see Materials and Methods).

We found that using STENSL, the false positive rate was significantly reduced com-
pared to the other methods (Figure 2B; SourceTracker2, P , 9:13� 1027; FEAST,
P, 1.67 � 1026; RAD, P, 9:13� 1027; Wilcoxon ranked-sum test). We note that lower
false positive rates correspond to improvements in the identification of truly contribut-
ing sources as well as estimation of the unknown source proportions. Conversely, we
found that for FEAST, RAD, and SourceTracker2, noncontributing sources were consis-
tently assigned positive weights and the misattributions increased with an increasing
number of candidate sources. Notably, in the absence of nuisance sources, STENSL is
as accurate as FEAST, the state-of-the-art method.

We next quantified the accuracy of the estimated unknown proportion through abso-
lute error (AE) against the true simulated unknown proportion ranging from 0% to 90% in
the sink. To visualize how unknown proportions affect estimation, we correlated the esti-
mated unknown proportions with the true unknown proportions in Fig. 2A. We found that
STENSL is significantly more accurate in estimating the unknown source contribution
whenever there was positive unknown presence (SourceTracker2, P, 2.04 � 1026; FEAST,
P , 1.63 � 1025; RAD, P , 9.13 � 1027; Wilcoxon rank-sum test; Table S1). For the small-
est simulated setting of three true sources and six total candidate sources, we found that
all methods were accurate in estimating the unknown source contribution (Fig. S2).
However, as the number of candidate sources increased, existing methods significantly
underestimated the unknown proportion due to both false identifications of sources and
overestimation of truly contributing sources. In addition to stimulated sinks, we also exam-
ined the effectiveness of STENSL in discerning sources with commonality in descriptive
features from the Earth Microbiome Project (EMP). We gathered samples as candidates
from up to 10 separate EMP studies and found that STENSL estimated proportions highly
for sources from the study where the sink was originally found (Fig. S6).

In vitromodel validation. To validate the sparsity assumption introduced by STENSL,
which models a microbial community as a convex combination of contributing sources,
and to further demonstrate the utility of our method, we created an in vitro data set. In
this data, we generated in vitro sinks as a mixture of microbial samples acquired from the
digestive systems of three human subjects and three mice subjects (Materials and
Methods). Twenty-four in vitro sinks were assembled, each sink consisting of two to three
microbial samples at varying mixing proportions. When performing microbial source track-
ing analyses on this set of contributing sources and sinks, we added a group of 50 addi-
tional noncontributing sources (Materials and Methods). Our analysis considered STENSL,
SourceTracker2, FEAST, and RAD. We evaluated the accuracy of these methods by using
MSE between the lab-generated ground-truth and the estimated mixing proportions. As
part of our analysis, for each sink, we withheld one or two contributing sources to create
settings in which the unknown proportions range between 0% to ;80%. Similar to our
simulation results, we found that in real data, STENSL was significantly more accurate than
other methods (Fig. 3; SourceTracker2, P , 2.2 � 10216; FEAST, P , 2.1 � 10216; RAD,
P , 2.8 � 10216; Wilcoxon ranked-sum test). The breakdown of estimated source propor-
tions for a subset of sink samples are visualized in Fig. S5.

Source selection in the Human Microbiome Project. To demonstrate the utility
of STENSL when using large public repositories, we sought to assess the origins of a
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FIG 2 (A) Estimation of mixing proportions using STENSL. In a simulated setting of M = 50 total candidates (K = 10 contributing sources
within), mean-squared error of the estimated mixing proportion was evaluated for STENSL, SourceTracker2, FEAST, and RAD. The accuracy of
estimating the simulated unknown proportion was also measured using absolute error. Experiments were repeated with increasing unknown
presence of 0%, 20%, 40%, 70%, and 90%. Error bars indicate standard deviation in error for tested sinks within each group. (B) Breakdown
of estimated mixing proportions. For the group of sinks where we simulated intermediate unknown proportion (40%), we label how each
method attributes mixing proportion weights across truly contributing sources, false positive sources, and the unknown proportion, in the
setting of 50 candidate and 10 contributing sources. STENSL maintained the lowest proportion of false positive attributions in comparison to
similar methods which were overwhelmed adversely by the increased number of candidates (significantly lower with P , 7.47 � 1024 across
all methods, Fig. S1).
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microbiome sample taken from a single individual found in the Human Microbiome
Project (9). To construct the source selection problem, we defined the sink to be a sa-
liva microbiome sample, which is one of several orally acquired samples including
tongue, palate, and buccal mucosa. The candidate sources were then defined to be all
the microbiome samples from the focal subject from which saliva was sampled
(excluding saliva) as well as all other available microbial samples originating from 15
body sites across 88 individuals. In Fig. 4A, we outline results of applying both STENSL
and SourceTracker2 to the same source tracking problem, with a substantially higher
false positive rate attributed to the latter. Specifically, STENSL attributed a total of
43.1% to other oral microbiome samples belonging to the focal subject from which
the sink was sampled (17.2% from buccal mucosa, 15.3% from tongue dorsum, and
10.6% from throat), while SourceTracker2 attributed only 4.9% to the other oral micro-
biome samples belonging to the focal subject from which the sink was sampled (3.6%
from buccal mucosa, 0.6% from tongue dorsum, and 0.7% from throat). In addition,
STENSL estimated an unknown contribution of 26% while estimating zero contribution
for most noncontributing sources originating from other individuals. In contrast,
SourceTracker2 assigned nonzero weights to the majority of sources from all other
individuals (i.e., nuisance sources) and estimated a negligible unknown proportion
(0.1%). We next performed a follow-up analysis, only considering samples from the
focal individual (1 individual, 15 samples across body sites) and examined the results
of this problem with no external individuals, a setting with little to no nuisance sour-
ces. Both methods estimated that the oral sites would contribute largely to the saliva
(STENSL estimated 22.3% buccal mucosa, 22.1% tongue dorsum, and 20.5% throat;
SourceTracker2 estimated 14.9% buccal mucosa, 12.0% tongue dorsum, and 9.1%
throat), and an unknown proportion of approximately 20% (STENSL estimated 23.4%
unknown, while SourceTracker2 estimated 23.7% unknown). These estimates agreed
best with the results of STENSL in the full setting of 88 individuals and 997 samples.
STENSL specifically highlighted tongue, buccal mucosa, and throat samples as the top
contributors, which remained consistent when analyzing one subject or including the
entire cohort. In addition to SourceTracker2, we also evaluated FEAST and RAD

FIG 3 Analysis of in vitro data set of sinks created from mixture of human and mice gut samples. The
accuracy of STENSL, SourceTracker2, and FEAST was evaluated using mean-squared error (MSE) against
the true mixing proportion used to create in vitro sinks with unknown proportions ranging from 0% to
;80% and in the presence of 50 noncontributing sources.
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FIG 4 A single microbial sample can be strongly attributed to its original subject in a database-wide analysis of the Human
Microbiome Project using STENSL. STENSL is applied in analyzing a saliva sample from one human subject as a composition of
any choice of 997 samples which were collected from other body sites from the same subject and from other human subjects.
(A) Using STENSL, we identify several samples with high contributions which originate from the same human subject. (B) To verify
the database-wide analysis, we compared it with the results of applying both methods to the set of 15 sources belonging to the
original human subject and no additional candidate sources from other human subjects.
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estimates on the HMP data, where we continued to observe little to no detection of
the saliva samples and no identification of unknown presence (Fig. S4).

DISCUSSION

In this work we present STENSL, an expectation-maximization algorithm with sparsity
that enables the identification of contributing sources among a large set of potential
source environments. With the unprecedented expansion of microbiome data repositories,
such as the Earth Microbiome Project, recording over 200,000 samples from more than 50
types of categorized environments, STENSL takes the first steps in performing automated
source exploration and selection. Using simulations, we found that STENSL is significantly
more accurate in identifying the contributing sources as well as the unknown source, even
when considering hundreds of candidate sources; settings in which state-of-the-art micro-
bial source tracking methods add considerable error.

The utility of STENSL is established using two real data sets. The first is an in vitro
data set we generated, in which we mixed six microbial environments, samples from
the gut of humans and mice, and generated over two dozen sink samples. As this data
set provides the ground truth rather than a simulation, we validated, for the first time,
the generative model of common microbial source tracking methods (i.e., a sink is a
convex combination of known and unknown sources). Next, we demonstrated the
added value of STENSL, by showing it is robust to the presence of nuisance sources
(i.e., sources that didn’t contribute to the formation of the sink). The second data set is
the Human Microbiome Project. In this analysis, we showed STENSL’s ability to accu-
rately identify the latent contributing sources, even in the presence of hundreds of nui-
sance ones, while significantly reducing estimation error.

Overall, using simulated and real sequencing data, we demonstrated that STENSL
significantly improves the accuracy of microbial source tracking analysis over compara-
ble methods by minimizing the contribution of nuisance sources and highlighting the
actual contributing ones. By performing source selection that is robust to the presence
of hundreds of nuisance sources, STENSL enables efficient source exploration using
publicly available repositories thereby augmenting microbial source tracking analysis.

MATERIALS ANDMETHODS
The STENSL model. Consider a single sink sample represented by a vector x where

xj corresponds to the abundance of taxa j; 1 # j # N. We define our model over M
sources among which only a few sources may truly contribute to the sink, and therefore
refer to them as candidates. Each source is represented by a vector Yi, where yij is the
observed abundance of taxa j in source i ð1 # i # MÞ. Additionally, we assume there is

an unobserved source (denoted as source M1 1). Let Ci ¼
XN

j¼1
yij and C ¼

XN

j¼1
Xj

be the total taxa counts of the candidate sources and sink respectively. With this nota-
tion, the generative model is as follows: we assume that there are mixture proportions—
a vector a of length M1 1—where ai corresponds to the fraction of source i in the

sink, hence
XM11

i¼1
ai ¼ 1. Thus far, the proposed model is similar to previous methods

of estimating microbial mixtures by modeling it as a convex combination of sources (1).
However, this model is limited when the number of sources is very large. To address
such scenarios, we introduce the assumption that the vector a is sparse. Formally, we
assume that the fraction of each source ai follows an exponential distribution with the
hyperparameter l . In keeping a a valid mixing proportion from 1. . .M 1 1, we work

with the constraints that
XM

i¼1
ai # 1. The hyperparameter l represents the level of

sparsity in the contribution from the observed sources in our model. We also assume
that the underlying relative abundance for each of the sources is unobserved, and that
Yi are noisy realizations of these relative abundances. Formally, for each source i, we
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have a vector gi, where
XN

j¼1
gij ¼ 1. Each gij represents the true relative abundance

of taxa j in source i. Thus, the complete generative model for STENSL is given by:

b j ¼
XM11

i¼1

aigij

Yi ; Multinomial ½Ci; gi1; . . .giNð Þ�; i 2 ½M�

YM11 ; Multinomial ½CM11; gM11;1; . . .gM11;Nð Þ�

x ; Multinomial ½C; b 1; . . . b Nð Þ�

a1...M ; ExpðlÞ 1
XM

i¼1

ai # 1

8<
:

9=
;

We use an indicator function 1
XM

i¼1ai # 1
n o

which is 1 when the condition pa-
rameter is true and 0 otherwise, such that we constrain the exponential distribution in
a valid range. As we do not observe YM11, we use a data-driven plug-in estimate ŶM11

as described below.
Inference of STENSL parameters. Under the STENSL model, we need to estimate

the parameters a;g;l . Given the observed taxa counts in the candidate sources and
sink, several inference algorithms could be used to estimate the parameters. For a fixed
l , we use expectation-maximization to infer parameters a and g. We further introduce
an initialization procedure according to the sparse model, as the initialization of the ex-
pectation-maximization (EM) algorithm (which attempts to optimize a nonconvex prob-
lem) is critical to the accuracy of the final estimates. For hyperparameter l , we describe
a grid-search algorithm to perform EM across a range of values, returning the set of pa-
rameters which obtains the highest likelihood as given by the generative model. The
likelihood of the model is:

Pðx; y1; . . . ; yMja; g; lÞ ¼ C
x1; . . . ; xN

� � YN

j¼1

XM11

i¼1

aigij

0
@

1
A

xj

YM
i¼1

Ci

yi1; . . . ; yiN

� �YN

j¼1

gij
yij

2
64

3
75

YM
i¼1

le2lai1
XM

i¼1

ai # 1

8<
:

9=
;

The following log likelihood is defined under the constraint that
XM

i¼1ai # 1:

l ða; g; lÞ ¼ logPðx; y1; . . . ; yMja; g; lÞ

¼
XN

j¼1

xj log
XM11

i¼1

aigij

0
@

1
A1

XM

i¼1

XN

j¼1

yij logðgijÞ

2

XM

i¼1

lai1Mlogl1const

Given l which is assumed to be fixed in one instance of the EM algorithm, we
obtain the expected complete log likelihood (Q) in terms of a andg ; we also introduce
a(t) andg(t) which are the parameters estimated in the previous iteration of the EM.
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Qða; g ; aðtÞ; gðtÞÞ ¼ E½logP� ¼
XM11

i¼1

XN

j¼1

xj pði j jÞ logðaigijÞ1
XM

i¼1

XN

j¼1

yij

logðgijÞ2l

XM

i¼1

ai1MlogðlÞ

where

p i j j� � ¼ ai
ðtÞgij

ðtÞ=
XM11

i¼1

gij
ðtÞai

ðtÞ

To complete the EM, we then maximize the E[LL] with respect to the parameters a
and g. We derive the maximization objective for a, for which l appears as a sparsity
hyperparameter and p(i j j) was obtained in the expectation step.

aðt11Þ ¼ argmaxa

XM11

i¼1

XN

j¼1

xj pði j jÞ logðaiÞ2l jj a1:M jj1

s.t.

XM

i¼1

ai # 1; a$0

Maximization forgij:

gij
ðt11Þ ¼ xj pði j jÞ 1 yijXN

j¼1
xjpði j jÞ 1 yij

In summary, STENSL obtains the locally best solution for a and g for given hyper-
parameter l . We then test for increasing values of l , the solution which reaches the
highest likelihood under the model. The following pseudocode describes the steps of
the STENSL algorithm.

STENSL Algorithm
Inputs: â;ĝ; ŶM11 (initializations) and l1, . . .,lK
Outputs:amax;gmax;lmax
Repeat steps below for k ¼ 1 . . . K

1. Initialize the EM problem with â;ĝ; ŶM11. Fix l ¼ lk as
the given value for this problem

2. Perform EM to infer ak and gk
3. Qk is the final likelihood obtained for the k-th problem

From Q1 . . .QK, return ak;gk; lk, which obtained the highest likelihood

Source selection. STENSL assumes that only a sparse subset of the candidate sour-
ces contributes to the formation of the sink. To obtain a sparse selection of sources, we
define a heuristic approach to infer the mixing proportions a under a sparsity assump-
tion. In practice, inferring the latent taxa variables depend heavily on the observed
taxa counts and motivates a heuristic that uses the observed counts directly to obtain
an approximation of the hidden variables, with an added benefit that the approxima-
tion leads to an optimization problem that can be efficiently solved for large numbers
of sources. A convenient choice for the initial values of g are the observations

Yij=
XN

j¼1
Yij, and we find that the observations are a sufficient proxy of gij in approxi-

mating a. We next perform inference by formulating a least-squares problem between
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x and YTa while ensuring that a is sparsely approximated by L1 regularization. We spe-
cifically choose the L1 regularization (Lasso), which follows this formulation, with

added constraints that each proportion must be nonnegative and
XM

i¼1
ai # 1. In lev-

eraging Lasso, we assume the presence of underlying noise which is normally distrib-
uted when forming the sink. We leverage this underlying noise to estimate the abun-
dance profile of the unknown source. We therefore seek to optimize the following
objective function, where we determine an optimal value for hyperparameter l

through cross-validation (Fig. S3):

â ¼ argmin jj YTa2X jj221l jj a jj1

subject to
XM

i¼1

ai # 1; ai $ 0

The objective describes a least-squares problem which is solvable as a quadratic
program with the stated constraints. From the initial sparse approximation of a, we
consider candidate source i, for which contribution is positive ai .0, to be highly
likely to be contributing to the sink. We use the sparsely estimated proportions a as
initialization values, denoted as â, in proceeding with expectation-maximization
according to our model.

Unknown source initialization. In obtaining an initial estimate of the unknown
abundances counts YM11, we assume that its underlying relative abundance fol-
lows a truncated normal distribution similar to the nonnegative components of
the estimation noise resulting from the selection step. In practice, to remove the
prominent signal stemming from the true known sources, we subtract the scaled
counts of the top contributing source, ranked based on the L-1 regularization and
thus, ŶM11 ¼ maxð0; x � âYargmax âð ÞÞ.

Metrics. We measured the accuracy of the estimated source contributions in terms
of overall error with respect to the ground truth, the identification of, specifically, the
unknown proportion, and the proportion of falsely identified contributions which we
termed “false positive rate.” Overall error of the mixing proportion estimated for M
sources â was measured against the simulated or ground truth proportions a using

mean-squared error MSE ¼
XM

i¼1
ðai2â iÞ2. In evaluating the unknown proportion

identified in the sink, we used absolute error AE ¼ j aM112âM11 j. The false-pos-
itive rate referring to positive proportions incorrectly attributed to known noncontri-

buting sources was calculated as the sum of such proportions, FPR ¼
XM

i¼1
1ai¼0 â i.

Simulation procedure. To examine the accuracy of STENSL, we used multiple
source environments with varying degrees of overlap in their distribution by ran-
domly sampling from the Earth Microbiome Project. Each source environment was
subsampled to contain 10,000 reads. In each iteration of the simulation, we
sampled M 1 1 candidate environments and used them to build a synthetic sink
with different mixing proportions. To simulate an unknown source as well as spar-
sity in source contribution, only K source environments were designated as contrib-
uting sources. We used 30 mixing proportions (corresponding to 30 simulated
sinks) and K = 10 contributing sources in each iteration with M = 50. We drew the
mixing vector of length K from a Pareto distribution, which was scaled to sum to 1
for mixtures with no unknown. To simulate sinks with unknown presence, an
unknown proportion of up to 90% was introduced by scaling the drawn vector to
#1, then appending the unknown proportion. Finally, the sink was generated
under the model as a linear combination of the K contributing sources and the
unknown source. For a detailed description of the simulation, see Supplementary
Material.
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In vitro data generation. To evaluate the performance of STENSL and validate
the mixture model assumed by common microbial source tracking methods, we
generated in vitro data, using the generative model described above following a
16S amplification protocol from Tong et al. (10). The contributing sources were
taken from the digestive systems of three human subjects and three mice. Two of
the human subjects were documented with a pre-Ketogenic diet and the third was
sampled from the Human Altitude Study. Using these sources, we assembled 27 in
vitro sinks, each sink composed of two to three microbial samples at varying mix-
ing proportions (ranging from 20%–80%). For a detailed description of the assem-
bly process and protocols used, see Supplementary Material. To assess the per-
formance of microbial source tracking methods in the presence of
noncontributing sources, we next generated 50 additional synthetic sources by
shuffling the abundances of the six contributing sources described above. The
number of taxa expressed in each synthetic source Ti; ð1# i# 50Þ was determined follow-
ing a uniform distribution Ti;Unif ½min Treal1 ; . . . ; Treal6ð Þ;max Treal1 ; . . . ; Treal6ð Þ�, where
Trealj ; ð1# j# 6Þ is the number of taxa in the six contributing sources described above.
Then, for each taxon-j, we randomly drew, without replacement, a count which was observed
among all nonzero taxa.

Data availability. The code for STENSL is a branch of the FEAST codebase, which
can be found on https://github.com/cozygene/FEAST/tree/STENSL. We also created a
short tutorial of STENSL that can be found on https://github.com/cozygene/FEAST/blob/
STENSL/vignettes/STENSL_example.R.
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