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SUMMARY

Spatial epidemiology recognizes the impact of environmental factors on human infectious diseases
through disease vectors. The expansion of Aedes aegypti and Aedes albopictus raises concerns about
health risks due to their changing distribution. However, current mosquito mapping methods have low
spatial resolution and limited focus on long-term trends and factors. This study develops a high-resolution
framework (500 m) to map mosquito distribution in Southeast Asia from 1960 to 2020. It includes a spe-
cies distribution model, a spatial autocorrelation model, and a geographical detector model. The study
produces Southeast Asia’s first 500 m resolution map of mosquito suitability, revealing significant in-
creases in mosquito suitability in most cities over the past 60 years. The analysis indicates a shift in
high-suitability areas from coastal to inland regions, with nighttime land surface temperature playing a
key role. These findings are crucial for regional risk assessments and mitigation strategies related to vec-
tor-borne diseases.

INTRODUCTION

The interaction between the environment and infectious disease vectors can perpetuate and expand the transmission scope of diseases,

thereby increasing people’s vulnerability and presenting a significant public health concern.1 Spatial epidemiology, when studying infectious

diseases, discerns their spatial distributions and investigates the intricate relationship between vector exposure to environmental variables

and the etiology of diseases.2Aedes albopictus andAedes aegypti, the primary vectors for several infectious diseases, including dengue virus

and chikungunya virus, play a pivotal role in the transmission dynamics of these viruses.3,4 Southeast Asia is a critically affected region

impacted by the Aedesmosquito, with dengue fever alone resulting in over three million reported cases andmore than 5,000 fatalities annu-

ally.5,6 Therefore, mapping and estimating changes in the ‘‘environmental suitability’’ for these mosquito species in Southeast Asia is of great

value and importance, as it can provide insights into helping mitigate the transmission of mosquito-borne diseases such as dengue and

reduce the associated health burden in the region.

The environmental determinants influencing the suitability of Aedes mosquito species are typically categorized into three main groups:

meteorological, socioeconomic, and topographic.7,8 A substantial body of evidence underscores the pivotal role of meteorological factors,

such as temperature, in shaping the suitability of Aedesmosquito habitats.8–11 Environments conducive to high suitability for mosquitoes can

directly impact mosquito populations by shortening the incubation period of mosquito larvae and extending the lifespan of adult mosqui-

toes.12–14 Elevated meteorological suitability conditions correspondingly result in an increased mosquito biting rate, thereby enhancing

the prospects of mosquito-borne virus transmission.15–17 Conversely, socioeconomic factors, such as urbanization, give rise to complex ther-

mal dynamics and contribute to expanding human populations, often resulting in suboptimal sanitation and public services.18 These condi-

tions, in turn, increase the availability of larval habitats, thus accelerating the developmental rates of mosquito larvae.19,20 Consequently,

these factors bring mosquitoes closer to human populations, augmenting the potential for mosquito-borne epidemics.18,21 Regarding topo-

graphic factors, while their influence on elevating mosquito suitability has yet to be comprehensively evaluated, studies suggest that terrain

characteristics can constrain disease geographical dispersion by restricting the availability of mosquito habitats, particularly in elevated areas

inaccessible to mosquitoes.22
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The term ‘‘environmental suitability’’ concerning Aedes species has been widely employed in studies to assess the propensity of these

species for mosquito-borne virus transmission to humans.23 Currently, two principal modeling approaches are utilized to evaluate environ-

mental suitability for Aedes aegypti and Aedes albopictus, which indicate disease transmission potential: mechanistic modeling and statis-

tical modeling.24,25 Mechanistic modeling focuses on identifying a specific range of temperature that accurately delineates the suitability for

the development of mosquitoes and the transmission of the mosquito-borne virus to humans.26 On the other hand, statistical modeling,

particularly through the lens of species distribution models, assesses the probability of vector species occurrence within particular environ-

mental settings, indicating the suitability level for mosquito-borne disease transmission in those specific areas.27 It is acknowledged that

mechanistic modeling falls short of incorporating socioeconomic factors comprehensively and faces challenges in unraveling the physiolog-

ical links between virus transmission and factors other than temperature.24 Consequently, statistical modeling emerges as the primary choice

for large-scale assessments of disease transmission suitability.24,28

A range of studies has used statistical modeling to understand the distribution of mosquito suitability at diverse geographical scales and

regions.Machine learningmethods, such as random forest, are particularly effective in assessing the non-linear relationships between species

occurrence records and environmental conditions, making them a preferred choice over traditional statistical methods like generalized linear

models.29,30 At a global scale, Campbell et al.31 applied maximum entropy models, integrating meteorological data, to elucidate the influ-

ence of climatic conditions on the distribution of Aedes aegypti and Aedes albopictus, achieving a spatial resolution of 18 km. Subsequently,

Nsoesie et al.3 and Dickens et al.32 enhanced the spatial resolution to 4 km and expanded the analysis by integrating remote sensing data,

such as vegetation indices and socioeconomic factors, including land use types. Kraemer et al.33 further expanded the research by incorpo-

rating human movement data and employing boosted regression trees to scrutinize historical and future tendencies in the dispersion of

Aedes mosquitoes, maintaining a resolution of 4 km.

Furthermore, advancing research endeavors to encompass regional and national dimensions is critical for pinpointing specific areas at

heightened risk of mosquito-borne transmission.29 Despite the predominant utilization of 4 km resolution at these scales, it is noteworthy

that such resolutions predominantly facilitate the identification of overarching patterns and may not capture the diverse environmental

conditions across different locales.26 For instance, mapping efforts specific to the WHO Eastern Mediterranean Region incorporate local

monitoring and surveillance data, which has revealed areas of high mosquito environmental suitability that differ significantly from those

identified at the global level at the same 4 km resolution.34 This trend is corroborated by additional studies conducted within Europe35 and

the Hong Kong Special Administrative Region.10 There remains a need for higher resolution at regional and national levels, as high-res-

olutionmapping facilitates a detailed examination of areas, thereby enabling the prioritization of locales with greater propensities formos-

quito habitation.10,21 Yin et al.10 recently exemplified this advancement by achieving a 10m resolution within a localized setting in the Hong

Kong Special Administrative Region, which holds substantial promise for mosquito-borne diseases mitigation through the strategic place-

ment of mosquito traps.

Based on the aforementioned discussion, we have identified several limitations in previous studies regarding the suitability of map-

ping mosquitoes. A primary concern is the questionable quality of the data utilized, casting doubts on the reliability of the results pro-

duced by current models.24,29 Data sources like Worldclim.com present a challenging dilemma as they offer either high-resolution data-

sets confined to specific time frames (1970–2000) or extensive temporal coverage with a limited selection of meteorological variables,

creating a mismatch between the availability of mosquito occurrence records and accessible data, which in turn raises questions about

the precision of the models.21 Moreover, real-world systems are intricate, but the existing work at the larger geographical scales

(i.e., world or regional) tends to use coarse maps or only consider a specific range of impervious surfaces to represent urban land

use conditions.15,19 Such a simplified assumption has resulted in a low resolution of the mosquito suitability map (i.e., 4 km), which dis-

torts the relationship between vector presence and environmental conditions within species distribution models.24,36 Furthermore,

despite existing studies on the distribution of mosquito environmental suitability, there is a gap in examining the spatiotemporal ele-

ments that influence this suitability.28 The omission hinders the ability to discern trends and detect the critical factors of changes in

suitability, ultimately impeding the provision of data-driven recommendations for targeted regional mosquito-borne disease

management.28,37

Therefore, this study introduces a framework to create high-resolutionmaps (i.e., 500m) and assess changes in environmental suitability for

Aedes mosquitoes in Southeast Asia to address the aforementioned challenges. The framework consists of a species distribution model to

evaluate mosquito environmental suitability, a spatial autocorrelation model for suitability hotspot identification and comparison, and a

geographical detector model for factor exploration. We address historical data limitations and enhance data quality by utilizing comprehen-

sive meteorological, socioeconomic, and topographic data from multiple sources on a cloud computing platform, covering the period from

1960 to 2020.

RESULTS

Mapping high-resolution environmental suitability changes

We employed a species distribution model to generate high-resolution suitability maps for 1960–2000 and 2001–2020. The resulting maps,

displayed in Figures 1 and 2, use darker red hues to denote areas of higher mosquito suitability. Specifically, Figures 1A and 1B reveal exten-

sive regions highly conducive to Aedes albopictus in Southeast Asia, predominantly along the coastal areas. Countries such as Malaysia and

the Philippines exhibit notable high-suitability zones along their coastlines. Additionally, distinct pockets of high suitability are observable

inland, particularly in Thailand and Myanmar.
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The spatial pattern for Aedes aegypti, as shown in Figures 2A and 2B, shares similarities with that of Aedes albopictus but also pre-

sents crucial differences. Using specific regions in Thailand as an example, areas highly suitable for Aedes aegypti are observed on a

smaller scale, appearing as discrete clusters as opposed to the extensive continuous zones typical of Aedes albopictus habitats in Fig-

ure 1. These areas of high suitability for Aedes aegypti are predominantly located within urban environments, such as the Bangkok

metropolitan area in Thailand, Jakarta in Indonesia, and Phnom Penh in Cambodia. Additionally, the pattern of outward diffusion

from these urban centers represents a notable observation that, to the best of our knowledge, has not been previously documented

in the scientific literature.

Further analysis involves a pixel-level comparison of the suitability maps across the two time frames (Figures 3 and 4). Yellow regions in

Figure 3 on these maps signify areas where suitability has significantly increased, with some regions experiencing changes exceeding 0.2

over the six decades. Both Aedes albopictus and Aedes aegypti show enhanced suitability across a large portion of Southeast Asia, with

marked increases, particularly in Indonesia and Malaysia. Figure 4 analyzes the mean suitability changes over this period for districts within

each Southeast Asian country. The results indicate widespread changes in mosquito distribution, suggesting an expansion in the affected

areas. Notably, Singapore is the only country where 100% of districts show a decrease in Aedes albopictus suitability, with 80% also showing

a decrease in Aedes aegypti suitability.

Model validation

The area under the receiver operating characteristic curve (AUC) obtained for both mosquito species and periods demonstrated excellent

performance, with values surpassing 0.9 (Figure 5). Specifically, the accuracy for Aedes albopictus was 0.992 for 1960–2000 (Figure 5A) and

0.921 for 2001–2020 (Figure 5B). Regarding Aedes aegypti, the accuracy was 0.992 for 1960–2000 (Figure 5C) and 0.921 for 2001–2020 (Fig-

ure 5D). The mean absolute error for both species across the two periods does not exceed 0.2, and the root-mean-square error is not higher

than 0.3 (Table S3). In conclusion, utilizing high-quality datasets and rigorous validation, our species distribution model provides reliable and

accurate insights into the spatial distribution and changes of Aedes aegypti and Aedes albopictus in Southeast Asia.

Multi-scale spatiotemporal analyses

This study illustrates two spatiotemporal implications by harnessing high-resolution mapping results. Firstly, our attention is directed toward

multi-scale hotspot identification and comparison. Secondly, we delve intomulti-scale spatial analysis to detect underlying factors. These two

case studies are the foundation for future research on multi-scale analyses of mosquito suitability based on high-resolution mapping.

Figure 1. Environmental suitability for Aedes albopictus in Southeast Asia

Illustrating the suitability during 1960–2000 (A) and 2001–2020 (B).
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Hotspot identification and comparison

This case study utilizes three administrative levels to analyze Aedes albopictus hotspot identification and comparison, illustrated in Figures 6,

7, and 8. Figure 6 details the hotspot identification across scales, while Figure 10 focuses on their comparison. At level 1 (provincial level),

primary hotspots are identified in Cambodia, Malaysia, Indonesia, and the southern regions of Vietnam, Thailand, and Laos (Figure 6A).

Refining to level 2 reveals an expansion of hotspot areas in Thailand and Indonesia, with the emergence of hotspots in the Philippines

and Myanmar (Figure 6B). Further refinement to level 3 accentuates the contrast between hotspot and coldspot areas (Figure 6C). Compar-

ative analysis of hotspot trends between 1960–2000 and 2001–2020 at level 1 shows expansion predominantly in Indonesia and Malaysia

Figure 2. Environmental suitability for Aedes aegypti in Southeast Asia

Illustrating the suitability during 1960–2000 (A) and 2001–2020 (B).

Figure 3. Changes in environmental suitability for mosquitoes in Southeast Asia

Depicting Aedes albopictus (A) and Aedes aegypti (B).
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(Figure 8A). However, a more detailed trend emerges at level 3, where hotspots in Indonesia, the Philippines, and southern Thailand expand

from coastal to inland regions. In contrast, Laos, Cambodia, and Vietnam shifted from inland to coastal areas (Figure 8C). This detailed

approach provides a comprehensive understanding of the spatial dynamics of Aedes albopictus hotspots over time.

Figure 4. Proportion of the number of districts in each country with suitable changes for mosquitoes in Southeast Asia

(A) Aedes albopictus and (B) Aedes aegypti.

Figure 5. ROC-AUC curves for model validation

Evaluating the performance for Aedes albopictus in 1960–2000 (A) and 2001–2020 (B), and for Aedes aegypti in 1960–2000 (C) and 2001–2020 (D).
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ForAedes aegypti, the hotspot identification and comparison results showcase distinct patterns compared toAedes albopictus (Figures 7,

8C, 8D, and 8F). At the level 1 administration, hotspot areas are primarily distributed in Cambodia, the southern regions of Vietnam, Thailand,

and Laos (Figure 7A). However, when we refine the administrative level, hotspot areas becomemore concentrated in Cambodia, the northern

and central regions of the Philippines, the southern regions of Indonesia and Thailand, and the eastern part of Vietnam (Figures 7B and 7C). In

the hotspot comparison forAedes aegypti between 1960–2000 and 2001–2020, finer administrative levels also providemore detailed insights

into hotspot changes, revealing an expansion of hotspot areas from coastal regions and a reduction in the inland across countries in Southeast

Asia (Figures 8D–8F).

Detecting underlying factors contributing to suitability variations

Our second study employed ten potential explanatory variables across three administrative levels to investigate spatial heterogeneity and

changes in mosquito suitability in Southeast Asia. The variables included continuous environmental and socioeconomic conditions, with

country region as a categorical variable. Due to administrative level constraints and minimal change over time, land use and topography

were excluded.

Using a geographical detector-based approach comprising spatial-scale effect analysis, factor detector, and interaction detector, we first

employed the geographical detector to ascertain the optimal analysis scale by evaluating the spatial effects of different administrative levels.

This revealed varying impacts of meteorological and socioeconomic factors across spatial units (Figure 9), identifying administration level 1

(province level) as the optimal scale for assessing contributions to suitability changes.

In the next analysis phase, we used factor and interaction detectors to ascertain the suitability of single ormultiple variable contributions to

mosquitoes. The primary contributors were identified as land surface temperature, monthly minimum air temperature, and vapor pressure

(Figure 10). For Aedes albopictus, nighttime land surface temperature initially dominated, later shifting toward minimum monthly tempera-

ture, with all variables showing an increasing trend in influence over time. Surface shortwave radiation’s interaction with daytime land surface

temperature was notably impactful, especially when combined with minimum temperature in the last two decades (Figures 11A and 11B).

For Aedes aegypti, the influence of nighttime land surface temperature consistently rose, with most meteorological variables’ impacts

intensifying, except for precipitation (Figures 10C and 10D). Socioeconomic factors like population showed a slight increase in influence, while

the country region’s effect decreased. Interaction detector analysis underscored land surface temperature’s critical role, interacting with

shortwave radiation and maximum temperature in different periods to account for a significant part of the suitability variation

(Figures 11C and 11D).

Figure 6. Hotspots for mosquito environmental suitability in Southeast Asia

Indicating Aedes albopictus hotspots in administrative regions (province level: A, C; city level: B, E; district level: C, F) during the periods 1960–2000 (A–C) and

2001–2020 (D–F).
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DISCUSSION

It is imperative to accurately assess mosquito-borne risk by creating a continuous, long-term, and large-scale suitability map for Aedes ae-

gypti and Aedes albopictus. However, this crucial task faces substantial challenges in Southeast Asia due to inadequate vector surveillance

systems, particularly the absence of comprehensive mosquito surveillance repositories. Moreover, the lack of high-resolution data on micro-

climatic and socioeconomic factors further complicates matters, resulting in the unavailability of 500 m resolution maps that can adequately

capture the region’s historical and current state of mosquito suitability.24 To generate detailed mosquito suitability maps for 1960–2020, we

merged over 38,000 Aedes occurrence records (17,661 Aedes aegypti and 20,739 Aedes albopictus) from 1960 to 2014. The training dataset

comprises a high-resolution, long-termmeteorological, socioeconomic, and topographic variables dataset. We employed the random forest

model to assess mosquito suitability, enabling the evaluation of mosquito environmental suitability for six decades. Importantly, our model

consistently yielded high accuracy under three criteria for Aedes aegypti andAedes albopictus across the two specified periods. These attest

to the reliability and robustness of the mosquito environmental suitability assessments conducted in this study. Furthermore, building upon

the high-resolution suitability maps, we present two spatial-temporal applications: multi-scale hotspot identification and comparison and

multi-scale geographical detection. These applications advance the analysis of mosquito suitability changes, offering valuable insights for

health support planning, particularly in developing countries, and formulating effective mosquito-borne mitigation strategies.

Our high-resolution mapping differentiates the spatial patterns of Aedes aegypti and Aedes albopictus, highlighting their distinct habitat

preferences. While previous maps have shown slight variation between these species’ habitats in tropics and subtropics regions,11,38,39 our

analysis reveals a significant divergence. According to our results, Aedes aegypti primarily inhabits areas near human settlements, creating

discrete clusters of suitable habitats that align with densely populated urban centers in Southeast Asia. In contrast, Aedes albopictus exhibits

a more widespread distribution across various environments.Aedes aegypti’s preference for urban environments and its tendency to feed on

humans result in a higher overlapwith humanpopulations, increasing the risk ofmosquito-borne disease transmission.17,20 On the other hand,

Aedes albopictus, known for its adaptability, can thrive in rural and urban areas.16,20 Given its adaptability, its presence in densely populated

regions cannot be ignored, as it carries a substantial risk of transmitting diseases to humans. In summary, our study provides a nuanced un-

derstanding of the habitat preferences of these two critical mosquito-borne diseases vectors, emphasizing the importance of considering

their distinct spatial distributions in disease prevention and control efforts.

Our research confirms previous findings, particularly about the environmental suitability of Aedes albopictus relative to Aedes aegypti. This

reaffirms that Aedes albopictus not only shares a similar level of environmental suitability with Aedes aegypti but also sometimes surpasses it.

Historically, research has often associated locations with sustained high mosquito-borne diseases such as dengue incidence and explosive

Figure 7. Hotspots for mosquito environmental suitability in Southeast Asia

Indicating Aedes aegypti hotspots in administrative regions (province level: A, C; city level: B, E; district level: C, F) during the periods 1960–2000 (A–C) and 2001–

2020 (D–F).
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outbreaks with Aedes aegypti as the primary (if not the exclusive) vector.4,40 This led to the prevailing notion that Aedes aegypti had a higher

competence for disease transmission than Aedes albopictus. However, Brady et al.,41 based on the examination of factors such as extrinsic in-

cubation period and adult survival modeling, also revealed that even the highest temperature suitability values for Aedes aegypti were only

marginally superior to those of Aedes albopictus.Our study not only corroborates Brady’s findings by producing a suitability map that exhibits

a broader range of highly suitable areas forAedes albopictus compared toAedes aegypti but also builds upon this by incorporating bothmete-

orological and non-meteorological factors into our modeling and evaluation process. Furthermore, our research aligns with previous laboratory

experiments that establishedAedes albopictus as having a longer lifespan thanAedes aegypti.42,43 This extended lifespan createsmore suitable

habitats for Aedes albopictus and increases the time available for them to become infectious and sustain their infectious state compared to

Aedes aegypti. These findings strongly support that Aedes albopictus possesses a disease transmission potential equivalent to, if not greater,

Aedes aegypti. Additionally, the changing suitability maps for Aedes aegypti and Aedes albopictus over the past six decades indicate that the

suitability area forAedes albopictus has expanded significantlymore than that forAedes aegypti (Figures 3 and 4). This expansion suggests that

the regions suitable forAedes albopictus are increasing in size. Given these insights, we propose that Aedes albopictusmay emerge as a more

efficient vector, even though the complete demonstration of risk from Aedes albopictus transmission awaits further research.

To harness the full potential of our high-resolution map, we present two distinct multi-scale analyses as case studies, which establish a

comprehensive and cohesive framework for future research on mosquito suitability changes in Southeast Asia. Historically, investigations

into changes in mosquito distribution across Southeast Asia have primarily focused on individual countries or single cities, often lacking

the integration of analyses across multiple scales. This fragmented approach has hindered the development of a unified framework for un-

derstanding the region’s expanding geographic patterns of mosquito distribution. Our research aims to address this gap by illustrating how

multi-scale analyses can offer a more systematic and holistic approach. In our first case study, we demonstrate the application of multi-scale

hotspot identification and comparison across three different administrative levels: province, city, and district. Notably, finer-scale analyses,

especially at the district level, exhibit a greater capacity to elucidate suitability changes in Southeast Asia. Our findings reveal that hotspots

of suitability for both Aedes albopictus and Aedes aegypti are expanding from coastal areas into the hinterlands. This expansion suggests a

correlation with human activities influencing the spread of mosquito suitability.30 However, our second case study, which delves into the

spatial effect analysis at different scales using geographical detectors, presents a nuanced perspective. Here, we observe that the coarsest

scale, namely administration level 1 (province level), exhibits the highest spatial effect in geographical detectors. This finding suggests that

administration level 1 offers a more suitable scale for detecting the underlying factors driving dynamic changes in mosquito suitability across

Southeast Asia andmay have the best effects on disease control. Furthermore, our detector results highlight land surface temperature during

nighttime as a key shared influence on the spatial heterogeneity of Aedes aegypti and Aedes albopictus suitability. This aligns with prior

Figure 8. Hotspot comparison of mosquito environmental suitability in Southeast Asia

Results for Aedes albopictus are presented for administrative regions: province level (A), city level (B), and district level (C), while results for Aedes aegypti are

displayed for province level (D), city level (E), and district level (F).
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research indicating that urban heat islands influencemosquito suitability.44,45 Urban heat islands are known to increase the availability of mos-

quito habitats and expedite developmental rates. Additionally, our results suggest that El Niño events, which lead to rising land surface tem-

peratures,46 may indirectly impact mosquito suitability.

Limitations of the study

However, this study has limitations that warrant consideration in future research. Firstly, while the majority of our data possess a reasonable

temporal resolution, encompassing the period from 1960 to 2020, it is essential to acknowledge that land cover and land surface temperature

data were only available from 2001 to 2000, respectively. Our decision to utilize land cover data from 2001 and land surface temperature data

from 2000 stems from a strategic compromise to glean insights into historical trends, given the limitations of available data. This methodol-

ogy, though based on assumptions, aligns with commonpractices in riskmappingwhere direct historical data are scarce. For instance, studies

using the WorldClim dataset for variables covering only 1970 to 2000 for bioclimatic are still considered valuable references despite not

including the most current data, as they contribute to risk estimation insights.29,34,38,47 Inspired by such precedents, we believe our dataset

selection facilitates the estimation of long-term trends essential to our study’s goals. Although this limitation is noteworthy as real-world

changes over this four-decade spanmay introduce potential biases into ourmodeling, it does not undermine our study’s overarching findings

and conclusions. Our analysis aims to uncover broad patterns and trends, rather than detailing specific historical conditions. Secondly, mos-

quito suitability does not guaranteemosquito presence, and evenwhenmosquitoes are present, their biting behavior influences human infec-

tion rates.28,48 Thirdly, the incongruence between hotspot analysis and areas identified as highly suitable in the maps is acknowledged as a

study limitation known as a modifiable areal unit problem because hotspots may be confined to specific locales within district settlements.49

Additionally, while research has shown that socioeconomic factors substantially influence mosquito suitability, the precise drivers behind

these influences remain somewhat ambiguous. In future endeavors, it becomes essential to establish a comprehensive microclimate and so-

cioeconomic database with a vector surveillance repository conducive to long-term standardized analyses, particularly in developing coun-

tries where resources and data management can be challenging. Moreover, future directions should encompass causal analyses to elucidate

Figure 9. Differences in the Spatial effects of explanatory variables for Q values and the 90% quantile

(A) and (B) represent the analysis of Aedes albopictus suitability, while (C) and (D) depict the analysis of Aedes aegypti suitability (ADM: country; LST_Night:

nighttime land surface temperature; Pr: monthly precipitation accumulation; Tmax: monthly maximum temperature; VAP: monthly vapor pressure; LST_Day:

daytime land surface temperature; Pop: population; Srad: monthly surface downwelling shortwave radiation; WS: monthly wind speed at 10 m; Tmin:

monthly minimum temperature).
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the relationship between mosquito suitability and human infection. This inquiry seeks to determine whether a highly suitable mosquito envi-

ronment directly leads to disease outbreaks and, if so, which key factors drive this phenomenon. Furthermore, network analyses are essential

for investigating the interactions between humans and mosquitoes in the propagation of mosquito-borne disease.
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and Paul, R.E. (2016). Urban climate versus
global climate change-what makes the
difference for dengue? Ann. N. Y. Acad. Sci.
1382, 56–72. https://doi.org/10.1111/nyas.
13084.

45. Nakhapakorn, K., Sancharoen, W.,
Mutchimwong, A., Jirakajohnkool, S.,
Onchang, R., Rotejanaprasert, C.,
Tantrakarnapa, K., and Paul, R. (2020).
Assessment of Urban Land Surface
Temperature and Vertical City Associated
with Dengue Incidences. Rem. Sens. 12, 3802.
https://doi.org/10.3390/rs12223802.

46. Eboy, O.V., and Kemarau, R.A. (2023). Study
Variability of the Land Surface Temperature
of Land Cover during El Nino Southern
Oscillation (ENSO) in a Tropical City.
Sustainability 15, 8886. https://doi.org/10.
3390/su15118886.

47. Mordecai, E.A., Ryan, S.J., Caldwell, J.M.,
Shah, M.M., and LaBeaud, A.D. (2020).
Climate change could shift disease burden
from malaria to arboviruses in Africa. Lancet
Planet. Health 4, e416–e423. https://doi.org/
10.1016/S2542-5196(20)30178-9.

48. Ramirez, B.; TDR-IDRC Research Initiative on
Vector Borne Diseases and Climate Change,
and Climate, C. (2017). Support for research
towards understanding the population health
vulnerabilities to vector-borne diseases:
increasing resilience under climate change
conditions in Africa. Infect. Dis. Poverty 6, 164.
https://doi.org/10.1186/s40249-017-0378-z.

49. Wong, D.W. (2004). The modifiable areal unit
problem (MAUP). In WorldMinds:
geographical perspectives on 100 problems:
commemorating the 100th anniversary of the
association of American geographers 1904–
2004 (Springer), pp. 571–575.

50. Xu, Z., Bambrick, H., Yakob, L., Devine, G., Lu,
J., Frentiu, F.D., Yang, W., Williams, G., and
Hu, W. (2019). Spatiotemporal patterns and
climatic drivers of severe dengue in Thailand.
Sci. Total Environ. 656, 889–901. https://doi.
org/10.1016/j.scitotenv.2018.11.395.

51. Castro, L.A., Generous, N., Luo, W., Pastore Y
Piontti, A., Martinez, K., Gomes, M.F.C.,
Osthus, D., Fairchild, G., Ziemann, A.,
Vespignani, A., et al. (2021). Using
heterogeneous data to identify signatures of
dengue outbreaks at fine spatio-temporal
scales across Brazil. PLoS Neglected Trop.
Dis. 15, e0009392. https://doi.org/10.1371/
journal.pntd.0009392.

52. Gan, S.J., Leong, Y.Q., Bin Barhanuddin,
M.F.H., Wong, S.T., Wong, S.F., Mak, J.W.,
and Ahmad, R.B. (2021). Dengue fever and
insecticide resistance in Aedes mosquitoes in
Southeast Asia: a review. Parasites Vectors 14,
315. https://doi.org/10.1186/s13071-021-
04785-4.

53. Swan, T., Russell, T.L., Staunton, K.M., Field,
M.A., Ritchie, S.A., and Burkot, T.R. (2022). A
literature review of dispersal pathways of
Aedes albopictus across different spatial
scales: implications for vector surveillance.
Parasites Vectors 15, 303. https://doi.org/10.
1186/s13071-022-05413-5.

54. Kraemer, M.U.G., Sinka, M.E., Duda, K.A.,
Mylne, A.Q.N., Shearer, F.M., Barker, C.M.,
Moore, C.G., Carvalho, R.G., Coelho, G.E.,
Van Bortel, W., et al. (2015). The global
distribution of the arbovirus vectors Aedes
aegypti and Ae. Elife 4, e08347.
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Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Dr.Wei Luo (geowl@nus.edu.sg).

Materials availability

Newdatasets generated in this study have been deposited to the project public repository: https://github.com/GeoSpatialX/SEA_Arbo_Env.

Data and code availability

Analyses in this study were conducted using ArcGIS Pro (Version 3.2) and R. All the data is publicly available and has been detailed in the

article and the key resources table. Codes used in this study can be accessed from the project public repository: https://github.com/

GeoSpatialX/SEA_Arbo_Env.

Data

� Data have been deposited at https://github.com/GeoSpatialX/SEA_Arbo_Env and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table.

Code

� All original code has been deposited at: https://github.com/GeoSpatialX/SEA_Arbo_Env.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Methods

Study area

Southeast Asia, located between the Indian and PacificOceans, comprises 11 countries across 4,340,700 km2, with a total population of nearly

690 million in 2023. Southeast Asia is profoundly affected by mosquito-borne disease such as dengue, with alarming statistics showing over

3 million annual cases and more than five thousand deaths attributed to this disease.5,6 Several factors contribute to this critical situation. Pri-

marily, the region’s climate is dominated bymonsoonal patterns, characterized by warm temperatures and substantial rainfall, which are high-

ly conducive to breeding Aedes mosquitoes.5,50 Moreover, lower socio-economic conditions in the region contribute to an increase in po-

tential mosquito breeding sites, such as slums with high populations and poor waste management, which contribute to making suitable

habitats for larvae.5,51 Given the socio-economic diversity across Southeast Asia, there is a critical need for localized analyses to understand

mosquito distribution patterns concerning socio-economic factors.51 Although previous high-resolution studies have primarily focused on

individual Southeast Asian countries (e.g., Thailand), a comprehensive regional approach remains necessary.26,52 Furthermore, the prevalent

use of mechanistic modeling in these studies may not sufficiently account for the socio-economic complexities of the region, an essential

aspect of understanding disease transmission patterns.24,53,54

Data

Mosquito presence dataset. Our dataset consolidates records of two principal vectors,Aedes albopictus andAedes aegypti, offering pre-

cise, georeferenced occurrences (i.e., mosquito presence records). Originating from diverse sources, including peer-reviewed publications

like Kraemer et al.25 and crowd-sourced platforms like ‘‘inaturalist.com,’’ each source has its benefits and drawbacks. While peer-reviewed

datasets provide high-quality, reliable data, they can be outdated due to lengthy publication processes.36 On the other hand, contributions

from individuals offer real-time updates but may lack reliability and representativeness.36,37

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Explanatory Variables https://developers.google.com/earth-engine/datasets

Mosquito Presence Dataset https://datadryad.org/stash/dataset/doi:10.5061/dryad.47v3c

Software and algorithms

R and Javascript Codes https://github.com/GeoSpatialX/SEA_Arbo_Env
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In our research, emphasizing the need for reliable training data for species distribution modeling, we utilized the peer-reviewed dataset

from Kraemer et al.,25 encompassing global records from 1960 to 2014 with a resolution of 5 kilometers. We integrated 80% of these records

into our training set, reserving 20% from Southeast Asia for validation. To enhance timeliness and ensure validation credibility, we supple-

mented our data with records from the Global Biodiversity Information Facility (GBIF) spanning 2014 to 2020 within Southeast Asia.55 Our

consistency check using a Student’s t-test between the Kraemer et al. (2015) and GBIF datasets from 2000 to 2014 revealed no significant

differences (P > 0.5), affirming our validation approach. Moreover, we employed sampling correction processes by the CoordinateCleaner

function in the R package CoordinateCleaner (version 2.0).56 As a result, our training dataset encompasses 20,739 occurrence records for

Aedes albopictus and 17,661 occurrence records for Aedes aegypti across a global scale. For the validation dataset specific to Southeast

Asia, we identified 22 occurrence records for Aedes albopictus spanning the period from 1960 to 2000 and 124 occurrence records from

2001 to 2020. Similarly, for Aedes aegypti, we compiled 45 occurrence records from 1960 to 2000 and 162 occurrence records from 2001

to 2020.

Mosquito pseudo-absence dataset. The Kraemer et al.25 training dataset is a presence-only compilation of mosquito occurrence re-

cords. Recent literature has highlighted the drawbacks of employing solely presence-only datasets in modeling, pointing out the po-

tential for diminished accuracy and inaccurate distribution estimations.57 To counteract these issues and bolster the model’s validity and

output value, we integrated pseudo-absence points generated through specific protocols to simulate non-occurrence locations of the

mosquitos.

Applying the Third Law of Geography, asserting that similar conditions yield comparable target variable values,58 we employed k-means

clustering to segregate the global environment into two distinct strata. The first aligns closely with mosquito presence records, while the sec-

ond, differing significantly, forms the basis for our pseudo-absence points. We equated the number of pseudo-absence and presence points

globally to ensure balance and data integrity.59 This approach led to a balanced dataset, blending presence and pseudo-absence mosquito

data, thereby minimizing biases in our modeling process.

Meteorological conditions. Temperature, precipitation, and their interaction with humidity play crucial roles in determining the behavior

and survival of Aedes aegypti and Aedes albopictus mosquitoes, influencing factors such as survival rates and biting rates.41,60 Our analysis

focuses on monthly accumulated precipitation, highest and lowest temperatures, and vapor pressure to capture the complex interplay be-

tween temperature and humidity.15,28 Additionally, we integrate land surface temperatures to account for microclimates and urban heat

islands,8 including both daytime and nighttime temperatures, as well as monthly surface downwelling shortwave radiation and wind speed

for a comprehensive assessment.44,61 Our selection of variables is grounded in a comprehensive review of the literature fromprevious studies.

These variables have been demonstrated to effectively represent suitability predictions.

We obtained meteorological data, excluding land surface temperature, spanning 1960 to 2020 from the Climatology Lab62 and land sur-

face temperature data from 2000 to 2020 from the MOD11A2 MODIS product.63 All data are monthly averages at pixel-level resolution. The

non-land surface temperature data covers 1960—2020, while land surface temperature data is available only for 2000-2020. All maps are re-

sampled to a 500-meter resolution using the nearest neighbor method for uniformity. The nearest neighbor method preserves data integrity

by assigning new pixel values from the nearest original pixels, which is ideal for high-resolution mapping.22,64,65

Socio-economic conditions. Socioeconomic conditions are pivotal in mosquito-borne disease transmission, exhibiting significant varia-

tion across different regions.66 Multiple datasets, such as deprivation indices, exist to quantify these conditions.67 However, these datasets

often present challenges due to their limited applicability to broader research areas, such as climate change’s impact on mosquitoes’ envi-

ronmental suitability.28 One primary issue is the variability in the definitions within these indices, which complicates comparisons with results

from other studies, even when indices seemly describe similar conditions.15,24 Additionally, these datasets are constructed based on diverse

standards and modeling techniques, making it difficult for researchers to apply them in predictive studies, such as projecting the effects of

climate change on mosquito habitats due to challenges in replication and forecasting.24,28

In contrast, population and land use data have shown a high correlation with socioeconomic development and have been commonly uti-

lized in previous research.60,68 This consistency makes the results from these datasets more comparable with historical studies and facilitates

easier reproduction and prediction for future research. Therefore, we selected these two data types to represent the socioeconomic variables

in our analysis. For population data, we extracted figures from the Global Human Settlement for the years 1975-1990 at a 250m resolution and

fromWorldpop for data post-2000 at a 100m resolution, aggregating both to a 500m resolution using Google Earth Engine.69,70 Our analysis

utilizes the International Geosphere-Biosphere Programme’s land-use categories. We use data representing the year 2001 to reflect changes

spanning from 1960 to 2000, and we incorporate subsequent data from the next 20 years, provided by MODIS MCD12Q1 dataset at a 500m

resolution.71

Topographic conditions. Topographic conditions encompass tangible geological attributes like slope and elevation. By incorporating

these factors, we introduce an additional dimension of analysis that complements the more traditional weight-based approach. To glean in-

sights from these dimensions, we turn to the Shuttle Radar Topography Mission (SRTM), a National Aeronautics and Space Administration

(NASA) initiative that offers digital elevation data with a resolution of 30 meters.72 This dataset forms the foundational source for generating

slope and elevation data.
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Framework for suitability assessment

This study develops a framework to generate high-resolution maps and quantify changes in mosquito environmental suitability. The frame-

work includes three steps:machine learning techniques formosquito environmental suitability estimation,machine learningmodel validation,

and spatiotemporal implementation for multi-scale analysis. Figure S2 demonstrates how our model has been structured to create a frame-

work to achieve precision and confidence in our species distribution modeling. We also highlighted the steps in carrying out spatiotemporal

analyses formulti-scale investigations. Our primary aim is to illustrate the changes occurring before and during the 21st century, thereby eluci-

dating the alterations in mosquito environmental suitability over time. Furthermore, we contend that the observed variations between these

periods logically support our assessment and, importantly, offer a foundation for establishing baselines in climate change impact studies. This

underscores the significance of utilizing extended periods of data rather than relying on single-year observations. We split the study periods

into two segments: 1960—2000 and 2001—2020, which allows us to compare the variations of environmental suitability for twomosquito spe-

cies before and during the 21st century.

Species distribution model for mosquito environmental suitability estimation. This study employs a species distribution model using

machine learning to generate suitability maps forAe. aegypti andAe. albopictus. We choose the random Forest algorithm for suitability anal-

ysis due to its efficacy in handling complex geospatial data. This method synthesizes decisions from multiple decision trees, enhancing pre-

diction accuracy and robustness against overfitting.73 Such capabilities render it particularly apt for addressing the nonlinear relationships and

complex interactions among environmental variables that influence mosquito suitability. Additionally, Random Forest effectively manages

collinearity among predictors, ensuring reliable performance even when data variables exhibit high correlation.30 Finally, its capacity to pro-

cess large datasets with numerous input variables and provide consistent outcomes solidifies its role as a valuable tool for comprehensive

geospatial analyses.74 Leveraging the inherent capabilities of the Random Forest methodology, themodel is implemented within the Google

Earth Engine (GEE) platform.75 We configured the model with 1,000 trees, using the square root of the variables per split, a minimum of 10

training sets for node creation, and bagging 0.5 fraction of inputs per tree, thereby optimizing for both robust performance and computa-

tional efficiency in one setup.30,34 To enhance predictive accuracy and reduce uncertainty, a tenfold execution approach is employed. This

involves running the model ten times and aggregating the results to obtain mean values for each 500m * 500m pixel.

Model validation. To assess ourmodel’s performance, we rely on the Area under the ReceiverOperatingCharacteristics curve (AUC) as our

performance metric. This selection is based on its proven ability to be independent of prevalence, rendering it an effective measure of a

model’s discriminatory ability for probabilistic models.76,77 Within the AUC curve, the false positive rate occupies the ‘‘X’’ axis, while the

true positive rate resides on the ‘‘Y’’ axis. A curve that aligns more closely with the ‘‘Y’’ axis signifies heightened precision in model predic-

tions.78 The true positive rate indicates the model’s effectiveness in correctly predicting positive instances, while the false positive rate rep-

resents the proportion of negative instances that are incorrectly identified as positive.77,78 A model’s predictive precision is higher when its

curve closely approaches the Y-axis, underscoring its capability to accurately distinguish between the presence and absence of a condition.77

With values ranging from 0 to 1, a higher AUC value indicates superior model performance.78 An AUC exceeding 0.8 suggests the model’s

potential to distinguish suitable from unsuitable areas for the species.39 Additionally, we employ root mean square error (RMSE) and mean

absolute error (MAE) to validate model performance, in accordance with methodologies outlined in relevant literature.79 The equations for

RMSE and MAE are defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ð bY m � YmÞ2

r
(Equation 1)

MAE =
1

N
j bY m � Ymj (Equation 2)

In these equations, Ym (where m=1,., N) represents the actual observations of mosquito presence and pseudo-absence, with suitability

equal to 1 indicating presence and suitability equal to 0 indicating pseudo-absence. bYm represents the predicted suitability. Lower values of

RMSE or MAE indicate better model performance. We validate the 1960—2000 and 2001—2020 periods, thus confirming our model’s utility

for analysis and interpretation across these distinct temporal intervals. We utilized the pROC R package (version 1.18.0) for the AUC assess-

ment and the Metrics R package (version 0.1.4) for the RMSE and MAE calculations.

Spatiotemporal implementation for multi-scale analysis. After generating high-resolution suitability maps for Aedes aegypti and Aedes

albopictus spanning 1960—2000 and 2001—2020, we delve into a landscape of spatiotemporal exploration. Our high-resolution suitability

maps broaden the scope for a wide range of spatiotemporal analyses, particularly in multi-scale investigations into changes in mosquito envi-

ronmental suitability and their underlying factors. To further highlight the application prospect of our high-resolution maps, we illuminated

two case studies that comprehensively demonstrate the spatiotemporal dynamics of mosquito environmental suitability changes across three

administrative levels in Southeast Asia and the associations between meteorological and socioeconomic factors and suitability.

Multi-scale hotspot analysis (HSA). Our case study unfolds with a spatial autocorrelation model for multi-scale hotspot analysis (HSA) to

identify mosquito suitability hotspots. HSA stands as a prevalent approach in public health risk assessment, aimed at pinpointing areas
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characterized by high values (hotspots) and low values (cold spots).80 The process comprises two stages. The first entails hotspot identification

using theGetis-Ord Gi* statistic, which yields z-scores and p-values. Regions with elevated z-scores and low p-values are tagged as hotspots,

while those with diminished z-scores and p-values signify cold spots. The subsequent stage encompasses hotspot comparison, unveiling

areas that change the risk profile. Our HSA case study aims to unearth the most pivotal areas of suitability for Aedes aegypti and Aedes al-

bopictus across Southeast Asia, unraveling shifts across 60 years. We utilized the hotspot analysis tools in ArcGIS Pro (version 3.2.0).

Multi-scale geographical detector (GD). Our second case study involves harnessing the Geographical Detector (GD) to unearth the un-

derlying factors driving mosquito suitability variations. GD operates under the premise that if an explanatory variable significantly impacts a

response variable, it should exhibit similar geographical distributions.81 The GD framework, widely used for exploring connections between

physical/socioeconomic factors and response variables like greenspace exposure and H1N1 flu incidence distribution, helps uncover the un-

derlying drivers of mosquito environmental suitability changes.81,82 We deploy factor geographical detectors and interaction detectors. Fac-

tor geographical detectors probe the spatial heterogeneity of mosquito environmental suitability, quantifying the relative importance of

explanatory variables—both meteorological and non-meteorological—using Q values that range from 0 to 1. Elevated Q values signify a

link between explanatory variables and spatial suitability heterogeneity, spotlighting the most influential factors shaping distribution. Com-

plementing these efforts, interaction detectors bridge the gap left by factor detectors by examining how explanatory variables collectively

impact the response variable. These interaction detectors juxtapose the Q values of two explanatory variables, revealing the interplay be-

tween these variables and the response. Building upon these insights, spatial effects are compared across different scales of analysis, unveil-

ing the optimal spatial scale for future explorations of suitability heterogeneity.

We explored spatial heterogeneity and temporal shifts in mosquito environmental suitability within Southeast Asia by utilizing ten poten-

tial explanatory variables across three administrative levels. These variables encompassed a range of continuous environmental and socio-

economic factors, including country region as a categorical variable to minimize variable bias and control for unmodeled confounders.83

Due to constraints at the administrative level and the negligible changes observed over time, variables such as land use and topography

were not considered. The selected variables for our geographical detector analysis are detailed in Table S2. We focus on analyzing the Q

value differences between the two periods, with changes in these variables indicating shifts in their contributions to the heterogeneity of mos-

quito suitability. We conducted spatial heterogeneity analysis using the geographical detector from the GD R package (version 1.1).
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