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Abstract: Adiponectin is one of the most bioactive substances secreted by adipose tissue 

and is involved in the protection against metabolic syndrome, artherosclerosis and type II 

diabetes. Research into the use of adiponectin as a promising drug for metabolic 

syndromes requires production of this hormone in high quantities considering its molecular 

isoforms. The objective of this study is to produce recombinant human adiponectin by 

Pichia pastoris (P-ADP) as a cheap and convenient eukaryotic expression system for 

potential application in pharmaceutical therapy. For comparison, adiponectin was also 

expressed using the Escherichia coli (E-ADP) expression system. Adiponectin was 

constructed by overlap-extension PCR, and cloned in standard cloning vector and hosts. 

Recombinant expression vectors were cloned in the P. pastoris and E. coli host strains, 

respectively. SDS-PAGE and western blotting were used to detect and analyse expressed 

recombinant protein in both systems. Adiponectin was purified by affinity chromatography 

and quantified using the Bradford Assay. The results of this study indicated that P-ADP 

quantity (0.111 mg/mL) was higher than that of E-ADP (0.04 mg/mL) and both were 

produced in soluble form. However, P-ADP was able to form high molecular weights of 

adiponectin molecules, whilst E-ADP was not able to form isoforms higher than trimer. In 

addition, P-ADP was more active in lowering blood glucose compared with E-ADP. The 
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two types of proteins were equally efficient and significantly decreased blood triglyceride 

and increased high density lipoprotein. We conclude that P. pastoris is able to produce 

high quantity of bioactive adiponectin for potential use in treatment of metabolic syndromes. 

Keywords: adiponectin; Pichia pastoris; E.coli; recombinant protein; biological activity 

 

1. Introduction  

Adipose tissue has been shown to play an important role in the regulation of body energy 

homeostasis and metabolism, lipid storage and as an endocrine organ. One of the most important 

factors secreted by adipose tissue is adiponectin (ADP) [1]. There is obvious correlation between 

plasma ADP levels and metabolic syndrome [2–4] and various studies have shown a noticeable 

decrease in ADP levels in patients with obesity, type II diabetes and with the accumulation
 
of visceral 

adipose tissue [5–7]. In recent years, ADP has attracted much consideration as a novel therapeutic tool 

for diabetes and metabolic syndromes.  

It is generally accepted that the choice of heterologous protein expression system has profound 

influence on characteristics of the recombinant protein [8]. Compared to prokaryotic expression 

systems like Escherichia coli, the advantages of eukaryotic expression system such as the 

methylotrophic yeast Pichia pastoris are many. These advantages include an efficient recombinant 

protein secretion pathway for ease of purification, the availability of eukaryotic post-translational 

modifications, fast growth on economic salt-based media and little risk of contamination with  

endo-toxins or oncogenic or viral DNAs [9]. Exclusively, P. pastoris has a very low maintenance 

energy
 
demand, which makes it well suited for high cell density fermentation. The availability of 

strong and tightly regulated
 
promoters makes this yeast a very attractive host for recombinant

 
protein 

production [10].  

Different groups have reported expression of different versions of human ADP in various types of 

host. The globular domain of ADP have been successfully expressed in E. coli and P. Pastoris [11,12] 

whilst the full-length protein have been expressed in E. coli and in baculovirus based expression 

systems [13]. Each reported varying degree of success in terms of yield and functionality of the 

recombinant protein. However, the expression of recombinant adiponectin in P. pastoris and 

evaluation of its activity have not been fully investigated. Therefore, in this study we examined the 

activity of recombinant adiponectin which was produced by P. pastoris (P-ADP) compared with that 

produced by E. coli (E-ADP). The results of this study showed that P-ADP underwent post translation 

modification and has better bioactivity than E-ADP. In addition, P. pastoris expression system was 

efficient in producing high quantity and quality of biologically active recombinant ADP compared 

with E. coli expression system. 
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2. Results  

2.1. Construction and Cloning of Human ADP in P. pastoris and E. coli 

The results of the overlap-extension PCR showed that the full-length ADP (735 bp) was 

successfully obtained using this procedure. The full length ADP encoded variable, collagenous and 

globular
 
domains of ADP (Figure 1). Cloning of ADP downstream of the signal peptide and MBP 

sequences was successful in producing MBP-E-ADP periplasm fusion protein. Similarly, cloning of 

ADP in pPICZαA vector after the α-factor signal peptide was successful in producing 6× His tagged  

P-ADP that would eventually be secreted extracellularly. 

Figure 1. In vitro construction of ADP fragment using overlap-extension PCR. ADP 

fragment was amplified by PCR through 32 cycles include denaturing step (95 °C for 45 s), 

annealing step (60 °C for 45 s) and elongation step (72 °C for 1 min). The two fragments 

were then purified and joined through 10 cycles of overlap-extension PCR include 

denaturing step at 95 °C for 45 s, annealing step at 60 °C for 45 s and elongating step at 

72 °C for 1 min. L1: PCR product of exon 2 (204 bp). L2: PCR product of exon 3 (531 bp). 

L3: the full length of ADP fragment (734 bp). M: 100 bp DNA marker. 

 

2.1. Expression of ADP in E. coli and Protein Purification  

ADP was inserted downstream of the mal E of E. coli that encodes the maltose binding protein 

(MBP) resulting in the expression of an MBP fusion protein. As such, the amylose resin column 

system was used for purification of this fusion protein. SDS-PAGE results indicated that the expected 

size of the fusion protein was approximately 75 kDa (Figure 2). As mentioned previously, MBP was 

linked to adiponectin protein by four amino acids (ile-glu-gly-arg). This link can be recognized by 

Factor Xa for cleavage and separation of adiponectin from MBP. The expected size of adiponectin 

after digestion with Factor Xa was approximately 30 kDa (Figure 3).  
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Figure 2. SDS-PAGE analysis of adiponectin expression before and after induction with 

IPTG. The expected size of fusion protein (MBP-adionectin) was approximately 75 kDa 

and this can be seen in reference to the protein marker (M). The band of fusion protein was 

faint before induction (L1). However, after induction with IPTG, the fusion protein was 

more detectable (arrow) after 2 h (L2) and 3 h (L3). 

 

 

It is shown that there was no clear difference between protein samples after digestion with Factor 

Xa for different time points. In the positive control that contains crude protein digested with Factor Xa, 

the estimated molecular weight of MBP was higher than that of the adiponectin protein and this protein, 

like other E. coli native proteins, was totally removed after second purification by amylose resin 

column (Figure 3). The second purification was carried out to eliminate MBP residues. This 

purification was performed by passing the fusion protein cleavage product through the hydroxyapatite 

column to remove maltose residues. The eluted protein was then loaded into the amylose resin column 

and the flow through factions were collected. Protein in the flow through was free of MBP protein and 

consists of adiponectin protein with a total amount of 0.04 mg/mL (Figure 3).  
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Figure 3. SDS-PAGE for optimization of Factor Xa digestion. This figure showed that 

there was no clear difference between protein digestion with Factor Xa for 2 h (L1),  

4 h (L2) and 8 h (L3). Digestion of crude protein with Factor Xa showed that the expected 

size for maltose binding protein (MBP) is approximately 45 kDa whereas the expected size 

of adiponectin protein is approximately 30 kDa (L4). 

 

2.3. Expression of ADP in Pichia pastoris and Protein Yield Optimization   

A time course study was performed to determine optimal methanol induction times, maximum yeast 

growth rate and the best time for protein harvesting (Table 1). SDS-PAGE results showed that the 

expression of adiponectin protein was detected from 12 h after the beginning of methanol induction 

until the 96th hour of induction (Figure 4). Western blot analysis corroborated PAGE results with the 

estimated recombinant protein size of approximately 30 kDa (Figure 5). The highest concentration of 

expressed P-ADP protein was 0.11 mg/mL obtained at  60 h after the start of methanol induction  

(Table 1). P-ADP with 6× His tag was subsequently purified by one step affinity chromatography 

nickel column.  

Figure 4. SDS-PAGE of time-course expression shows the exponential increase in band 

(arrow) densities starting from 12 h to 60 h of P-ADP expression after methanol induction.  
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Figure 5. P-ADP molecules were detected by western blot analysis for time course 

expression using adiponectin monoclonal antibody.  

 

Table 1. The differences in the optical density reading, total cells mass and protein 

concentration after methanol induction. 

Hours after methanol 

Induction 

Culture density 

(OD600) 
Total cells mass (g) 

Protein concentration 

(µg/mL) 

12 27.75 1.02 5 

24 36.57 1.49 22 

36 35.5 1.51 25 

48 52.8 1.60 93 

60 49.25 1.60 111 

72 51.33 1.80 78 

86 49.0 1.62 48 

96 43.15 1.78 77 
  

2.4. Analysis of Recombinant Adiponectin Protein Produced by E.coli and P.pastoris 

SDS-PAGE under non-reducing condition was performed to detect the oligomerization process in 

adiponectin protein using anti-adiponectin anti-body. The expected size of the adiponectin monomer 

was approximately 30 kDa for each of the two types of protein. However, the recombinant adiponectin 

protein produced by E. coli showed less oligomers compared with adiponectin protein types that can 

be produced by P. pastoris (Figure 6).  
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Figure 6. SDS-PAGE without denaturing condition showed less oligomers for adiponectin 

protein produced by E. coli compared with that produced by Pichia pastoris. M: Protein 

marker L1: Recombinant adiponectin produced by Pichia pastoris. L2: Recombinant 

adiponectin produced by E. coli. 

 

2.4. Comparison of Biological Activity Between P-ADP and E-ADP 

Comparison of biological activity between P-ADP and E-ADP showed that both types of 

recombinant protein significantly lowered blood glucose throughout the experiment period (Figure 7). 

Additionally, it was also observed that both types of proteins have significant effects on blood lipids 

by decreasing triglyceride levels and increasing HDL levels at the end of the experiment period. 

However, both these proteins showed no significant effect on total cholesterol and LDL levels  

(Figure 8). It is also important to note that P-ADP was significantly more active in lowering blood 

glucose comparing with E-ADP on the experiments conducted above. 

Figure 7. P-ADP and E-ADP significantly lowered blood glucose (t-test, p < 0.01) and there 

was significant difference (t-test, p < 0.05) between P-ADP and E-ADP in lowering blood 

glucose. Data were calculated by mean ± SEM. 
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Figure 8. Effect of P-ADP and E-ADP on lipid profile after four hours from the first 

injection. The two types of protein significantly (t-test, p < 0.01) lowered the triglyceride 

levels, whereas these proteins caused significant increase (t-test, p < 0.05) in HDL levels. 

There were no significant effects on total cholestrol levels or LDL levels . Also, there were 

no significant differences between P-ADP and E-ADP. Data were calculated by mean ± SEM. 

 

3. Discussion 

It has been shown previously that adiponectin functions as regulators of insulin sensitivity, glucose 

homeostasis and lipid metabolism [14–16]. The failure of adiponectin monomers to assemble into 

trimers would result in impaired secretion from the cell, and subsequently results in the diabetic 

phenotype with hypoadiponectinemia, as shown to be true for some adiponectin mutants [17]. 

Therefore, there is a need to be able to produce appropriately functional adiponectin in high quantities 

for pharmaceutical purposes, using cheap and convenient expression systems. 

It is a general fact that quantity and quality of the recombinant protein as well as the cost of 

production are important considerations in producing pharmaceutical therapies. The recombinant 

proteins which are produced by different host cells vary in protein characteristic such as effective 

translation due to codon specificity, post-translational modifications, as well as the size of the resulting 

protein which is dependent on the degree of glycosylation [8]. For instance, certain recombinant 

proteins expressed in E. coli required extra processing steps for denaturation and refolding, in order to 

obtain biologically active forms [18]. Furthermore, recombinant proteins which are produced inside or 

outside host cells differ in the extent of accumulation in inclusion bodies [18]. In previous studies, 

recombinant globular domain of human adiponectin produce by P. pastoris was biologically active [12]. 

However, it was also reported that the full length protein showed higher activity than the shorter form 

(globular domain) [19]. Globular domain adiponectin is also limited in its ability to induce cellular 

response, as it had been shown to only affect one of two types of adiponectin receptors [20]. In view of 

that, we chose P. pastoris as a cheap alternative expression system to extracellularly produce full 

length adiponectin, which are more effective biomolecules, without the need for refolding treatments 

or additional steps of purification. Adiponectin protein produced by E. coli showed good solubility, but 
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the level of post translation modification was lower than that of P. pastoris. The MBP tag was 

important in facilitating the production of soluble protein by E. coli. However, there would then be the 

requirement of additional purification steps to remove MBP. This is definitely disadvantageous 

compared to one step purification in the case of expression in P. pastoris.  

In this study, two important factors facilitated high quantity production of ADP by P. pastoris. 

Firstly, the expression of ADP was driven by the strong and tightly regulated AOX1 promoter. 

Secondly, a time-course study of adiponectin expression enabled us to determine the specific time of 

high expression of recombinant protein and low proteolytic activity. The culture at sixty hours after 

methanol induction yielded 0.111 mg/mL, and this is a reasonably good quantity compared with that 

produced by E. coli (0.1 mg/mL [11], 0.04–0.08 mg/mL [13]), 0.01 mg/mL by baculovirus [13] and 

0.05 mg/mL globular adiponectin expressed by P. pastoris [12]. The SDS-PAGE and western blotting 

analysis established that the approximated size of human adiponectin protein obtained in this study 

was similar to those previously reported [11,17]. 

Consistent with previous findings [19,21]
 
ADP was effective in lowering blood glucose and 

triglycerides. ADP as full length proteins has the ability to effectively influence both AdipoR1 and 

AdipoR2 receptors, which stimulate glucose uptake and fatty acids oxidation [22,23]. Likewise, ADP 

has also been shown to be beneficial on blood lipid profile through decreasing triglycerides and 

increasing HDL. As such, our findings and results from several other studies corroborate the 

suggestion that ADP potentially has anti-atherogenic properties [24–26].  

4. Experimental Section 

4.1. Culture Media 

Escherichia coli strain JM109 and TB1 were cultured in standard LB broth and selective LB-agar. 

The selective LB-agar medium contains 2% agar, 0.5 mM isopropylthiogalactoside (IPTG), 80 µg/mL 

of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) and 100 µg/mL ampicillin. E. coli 

strain TOP10 was cultured in low salt LB medium (LSLB) and LSLB-Agar with zeocin™ (salt 

concentration < 90 mM and pH 7.5 for zeocin to be active). LSLB medium contains 1% peptone, 0.05% 

NaCl, 0.5% yeast extract and 1.5% agar with 25 g/mL Zeocin™ for solid medium. 

Escherichia coli expression strain TB1 were cultured in LB rich medium containing 100 μg/mL 

ampicillin, 1% peptone, 0.5% yeast extract, 0.5% NaCl and 0.2% dextrose. Whereas, P. pastoris were 

cultured in YPD broth, containing 2% peptone, 1% yeast extract, 2% dextrose and 100 mg/L Zeocin™ 

YPDS-agar was made by including 2% agar and 18% sorbitol. For gene expression purposes, the 

BMMY and BMGY media was used. These buffered complex media contained 2% peptone, 1% yeast 

extract, 4 × 10
−5

 % biotin, 1.34% yeast nitrogen base, 0.1 M potassium phosphate buffer, pH 6.0 and 1% 

glycerol for BMGY growth medium, or 1% methanol for BMMY induction medium.  

 

4.2. Gene Construction and Cloning 

Adiponectin gene reference sequence was obtained from GenBank under the reference number 

NC_000003.11. Exon 2 and exon 3 of the ADP fragment was amplified individually by polymerase 

chain reaction (PCR). The PCR conditions through 32 cycles were 95 °C for 45 s as denaturing step, 
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60 °C for 45 s as an annealing step and 72 °C for 1 min as an elongation step. The two fragments were 

then joined by overlap-extension PCR. The reaction conditions of an overlap-extension PCR through 

10 cycles were denaturing step at 95 °C for 45 s, annealing step at 60 °C for 45 s and elongating step at 

72 °C for 1 min. The pMAL™-p4 vector (New England Biolabs, UK) was used to produce ADP in  

E. coli periplasm. This vector was digested with Xmn I and Hind III restriction enzymes (Promega, 

USA). At the same time, ADP fragment which prepared to express by E. coli was digested with Hind 

III restriction enzyme. The ligation mixture was prepared by adding digested vector and digested ADP 

fragment with DNA ligase and its suitable ligation buffer (New England Biolabs, UK).  

Adiponectin fragment was cloned in pGEM
®
-T cloning vector (Promega, USA). After sequence 

verification, the recombinant plasmid was double digested with EcoRI and NotI restriction enzymes to 

generate fragments with cohesive termini. Digested fragments were purified using the QIAquick Gel 

Extraction kit (Qiagen, USA), as described in the manufacturer’s protocol. To clone in P. pastoris, 

ADP fragment were then ligated to the pPICZαA plasmid which had been digested with EcoRI and 

NotI, followed by phenol-chloroform extraction and ethanol precipitation. Following sequence 

verification, the pPICZαA-ADP recombinant plasmid was linearized with SacI and transformed into 

competent X-33 P. pastoris cells using the EasyComp™ (Invitrogen, Netherlands) procedure.  

4.3. Expression in E. coli 

Single colony of cells containing fusion plasmid was used to inoculate 10 mL of LB broth and 

grown overnight at 37 °C. An overnight culture was used to inoculate one litre of an expression 

medium. The subculture was grown at 37 °C with good aeration (250 rpm shaking) until OD600 was 

approximately 0.5. An aliquot sample of 1 mL was taken as non-induced cells and centrifuged for  

2 min. Then, cell pellet was resuspended in 50 µL of 1X SDS-PAGE sample buffer and frozen at 

−20 °C. For induction, IPTG was added to the remaining culture to a final concentration of 0.3 mM 

and the culture was incubated at 37 °C and 250 rpm shaking for 4 h. At each hour after induction a 

sample of 1 mL was taken and prepared for SDS-PAGE analysis.  

4.4. Expression and Optimization of Adiponectin Production by P. pastoris  

The recombinant X-33 single colony was inoculated in BMGY medium and grown at 30 °C until 

OD600 was 2–6. The cell pellet was resuspended in BMMY media (or BGMY medium for control 

culture) at OD600 = 1, and grown at 30 °C with shaking at 220 rpm. Methanol induction was carried out 

at 12 h intervals to a final concentration 0.5%, and harvesting was carried out at 12, 24, 36, 48, 60, 72, 

84 and 96 h after induction. Glycerol was added to the BMGY medium as a substitute for methanol. 

Supernatants were collected from harvested cultures and secreted proteins were analysed by  

SDS-PAGE and western blot using anti-ADP antibody. In another experiment, five tubes containing 

10 mL YPD medium were inoculated with single recombinant X-33 colony and incubated for 16–18 h 

until OD600 reached 2 to 6. For growth phase culture, the harvested cells were transferred to five  

250 mL flasks containing 50 mL BMGY media and cultured as previously described until OD600 

reached 2 to 6. Next, the harvested cells were resuspended in five 1 L flasks containing 200 mL 

BMMY media, and cultured until OD600 = 1. For induction phase, 100% methanol was added to a final 

concentration of 0.5% every 12 h for 60 h at 30 °C in a shaking incubator (250–300 rpm). To 
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precipitate the secreted P-ADP, three volumes of acetone were added to the collected supernatants 

followed by incubation at −20 °C overnight. The dissolved protein was resuspended with PBS buffer, 

subsequently purified by affinity chromatography and quantified using the Bradford method.  

4.5. Protein Purification 

4.5.1. E-ADP Purification by Amylose Resin Column 

The amylose resin was poured into a disposable polypropylene column of 25 mL volume (BioRad 

Econo-Pac™, U.S.A.). The bed volume was 5 mL and the column volume was 20 mL. The column 

was washed with 8 column volume of column buffer (20 mM Tris-HCl, 200 mM NaCl and 1 mM 

EDTA). Then, the crude extract was loaded into the column at a flow rate about 1 mL/min. The 

column was turned off for 15 min to enable optimal binding between the fusion protein and the 

amylose resin. Later, the column was washed with 12 column volume of column buffer. In order to 

elute the bound protein, one column volume of elution buffer (column buffer with 10 mM maltose) 

was added and the fractions (3 mL) were collected and kept at −80 °C. 

4.5.2. Cleavage, Denaturing and Re-Purification of E-ADP 

First, a pilot experiment was carried out using small portion of protein sample to optimize the 

suitable time for Factor Xa ( Biolabs, UK) cleavage. Factor Xa final concentration of 1% was added to 

the protein sample, the positive control was a protein sample before purification (crude protein) 

incubated with same concentration of Factor Xa. All samples were incubated for 2, 4 and 8 h. From 

each reaction 5 μL were added to 5 μL of 2× SDS-PAGE sample buffers and saved at 4 °C.  

SDS-PAGE was applied to determine the suitable time for cleavage. Then, the pilot experiment was 

scaled up for the portion of the fusion protein to be cleaved. Guanidine hydrochloride was added to the 

sample to a final concentration of 6 M. Later, the sample was dialysed against 100 sample volumes 

column buffer (20 mM Tris-HCl, 200 mM NaCl and 1 mM EDTA) three times for 2 h each. In order to 

remove the rest of maltose binding protein, the fusion protein cleavage mixture was loaded onto the 

hydroxyapatite column (BioRad Econo-Pac™, U.S.A.). The column was washed with 80 mL of  

20 mM sodium phosphate, 200 mM NaCl (pH 7.2). The protein mixture was eluted with 0.5 M Na 

phosphate (pH 7.2). The collected fractions were loaded onto amylose column and the flow through 

was collected that should be free of maltose binding protein (MBP).  

4.5.3. P-ADP Purification by Nickel Column 

Protein samples were purified by His GraviTrap™ Flow (Amersham Biosciences, USA) column 

containing precharged Ni Sepharose™ 6 Fast. The column was normalized with 8 mL of phosphate 

buffer (20 mM sodium phosphate buffer and 500 mM NaCl, pH 7.4). The sample (4 mL) was loaded 

into the column and the column was washed with 10 mL of binding buffer (phosphate buffer 

containing 20 mM imidazole, pH 7.4). The recombinant protein was eluted with 4 mL of elution buffer 

(phosphate buffer containing 200 mM imidazole, pH 7.4).  
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4.6. SDS-PAGE and Western Immunoblotting 

Purified P-ADP and E-ADP proteins were separated by SDS-PAGE in denaturing and non-

denaturing (with and without heat and reducing agents) conditions. The proteins were then transferred 

onto polyvinylidene fluoride membrane as described elsewhere [17]. In brief, protein samples were 

loaded into 12% gels SDS-PAGE, and then transferred to a nitrocellulose membrane (1 h, 100 V). 

Following transfer, the membrane was blocked in Tris Buffered Saline with Tween-20 containing  

50 g/L skimmed milk for 2 h, and then incubated with adiponectin monoclonal antibody (abcam, UK) 

for 2 h at room temperature. The strips were washed three times with Tris Buffered Saline (15 min 

each time) and then incubated with mouse anti-IGg antibody conjugated with alkaline phosphatase 

(Sigma, USA) for 2 h, washed again with Tris Buffered Saline as described previously, and finally 

developed with Western Blue
®
 stabilized substrate (Promega, USA). 

4.7. Effect of Recombinant Adiponectin on Blood Glucose and Lipids 

Female ICR mice were used to compare the biological activity of ADP expressed in P. pastoris and 

E. coli. Animals were obtained from the Animal House, Faculty of Medicine, University of Malaya in 

Kuala Lumpur (Ethics No. PM 07/05/2010 MAA (a) (R). Following overnight fasting, animals  

(3 groups, n = 6 each) were gavaged with high fat-sucrose diet. Immediately after feeding, the first 

group was injected with 0.9 mg/kg of bodyweight P-ADP. The second group was injected with  

0.9 mg/kg of bodyweight E-ADP and the final group was injected with 0.3 mL saline for experiment 

control. After one hour of the first injection (or one hour after feeding) a second dose of treatment was 

given to all mice (the total amount of P-ADP and E-ADP being administered for each mouse = 

1.8 mg/kg bodyweight). Blood glucose was measured with a glucometer at one hour intervals for four 

hours. In addition, blood concentration of triglyceride (TG), total cholesterol (CHOL) (Siemens, 

U.S.A.), low density lipoprotein (LDL) and high density lipoprotein (HDL) (Dade Behring, U.S.A.) 

were also measured at the end of the fourth hour of the experiment using available commercial kits.  

4.8. Statistical Analysis 

Values are expressed as means ± S.E.M. The mean value comparisons between two groups were 

performed using the Student t test. Significant differences were considered at p < 0.05. 

5. Conclusions 

It is interesting to note that the P. pastoris expression system was able to produce higher quantity 

with simple purification and higher bioactivity of ADP compared to the expression by E. coli. All 

these factors together make P. pastoris the favourable expression system to produce recombinant 

human adiponectin for treatment of type II diabetes and cardiovascular diseases. 
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