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Abstract

Background: Multiclass classification of microarray data samples with a reduced number of genes is a rich and
challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In
addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection
methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can
be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding
explorations of a search space with thousands of dimensions or classification models based on gene sets of
unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter
case, biased classification models unable to support statistically significant findings may be obtained.

Results: A novel bound on the maximum number of genes that can be handled by binary classifiers in binary
mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that
high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated
multiclass classifiers for microarray data samples.

Conclusions: A comprehensive experimental work shows that the bound is indeed useful to induce accurate and
sparse multiclass classifiers for microarray data samples.

Background
A number of multiclass classification methods for
microarray data have been developed in the recent years
[1,2]. However, their ability to scale well to the number
of classes and to provide accurate and sparse multiclass
classification models essentially free of model selection-
bias remain challenging issues [3,4]. Sparse multiclass
classification models of microarray data samples are use-
ful; they involve a reduced number of input genes and
thus are easy to compute with and to interpret [5].
In this paper, a new gene selection method valid for

binary mediated multiclass classification approaches of
microarray data samples and able to implicitly model a
gene selection sparsity constraint is presented. We rely
on the use of output coding [6] methods allowing the
binary reduction of M-multiclass classification into n
binary classification tasks. We assume a model of inde-
pendent genes, independent binary classifiers and a
principle of information content equipartition among

binary classifiers to derive a bound on the maximum
number of genes that can be handled by binary classi-
fiers in binary mediated multiclass classification
approaches of microarray data samples. The derived
bound scales with the inverse n thus providing a way to
tackle the computational complexity of finding accurate
and sparse multiclass classification models of microarray
data samples: just increase the number n of binary clas-
sifiers and perform bounded optimum gene selection on
lists of predictive genes for individual binary classifiers.
In other words, the blessing face of dimensionality
might be solution for the problem of accurate and
sparse multiclass classifiers of microarray data samples;
we just need to guarantee the induction of a large num-
ber n of independent binary classifiers. However, the
induction of a large number n of independent binary
classifiers by means of output coding methods may be
hard to achieve when training data is scarce like in
microarray data analysis. Hence, we may be forced to
accept the best n with regard to the key independence
factor [7,8] of general output coding methods. Just in
case the best n is sufficiently large, the design of
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accurate and sparse multiclass classifiers of microarray
data samples would be feasible.
Output coding embodies the design of well-known

One Against All (OAA) [9] multiclass classifiers allow-
ing the division of M - multiclass classification problems
into n = M binary classification tasks, each binary task
dealing with the problem of discriminating a given class
against the others. A further generalization of OAA clas-
sifiers leads to the design of Error Correcting Output
Coding (ECOC) classifiers [10,11] allowing the division
of M - multiclass classification problems into n binary
classification tasks, n being determined by the size of
some error correcting code. ECOC classifiers can then
be used to explore the feasibility of accurate and sparse
multiclass classifiers of microarray data samples by let-
ting n approach to infinity. In this paper, the recently
introduced [12] class of ECOC classifiers based on
LDPC codes [13] is considered. Hence, ECOC classifiers
based on LDPC codes of size n up to ⌈15·log2M⌉ and
OAA classifiers of size n = M are evaluated. For OAA
as well as ECOC classifiers, binary linear Support Vector
Machines (SVMs) [14] classifiers are assumed. For the
purposes of selecting most important genes at core
SVMs, univariate ranking information [15] based on the
widely used S2N metric [16-18] is assumed. Using the
above setting, a complete experimental protocol is pre-
sented for the design of accurate and sparse multiclass
classifiers for microarray data samples essentially free of
model selection-bias [19-22]. Our approach is evaluated
on 8 benchmark microarray datasets. Experimental
results confirm the feasibility of our proposed method.

Results and Discussion
An upper bound on the number of genes per binary
classifier
How much information can a set of p independent
genes convey about a set of M phenotypes? Being aware
of such a fundamental limitation could be crucial in the
design of accurate and sparse multiclass classifiers of
microarray data samples. Let S be a microarray dataset
comprising q samples from M ≥ 3 classes, each sample
defined by the gene expression measurements of p
genes (p ≫ q). Hence, the average information content
per class sample in S can be upper bounded by HM =
log2M.
In addition, let us assume that genes behave as a col-

lection of p independent identically distributed binary
random variables, i.e., a kind of probabilistic boolean
model of gene expression is considered [23]. Hence,
each gene is in state 1 (expressed) with probability f and
in state 0 (not expressed) with probability 1 - f, each
state representing gene activity above or below some
threshold for an effect. Thus, in this model of gene
expression, each gene conveys on average H(f) = - f ·

log2 f - (1 - f) · log2(1 - f) bits of information. Further-
more, let us assume an output coding strategy over
S able to induce n independent binary datasets and
correspondent binary classifiers. Hence, under a
principle of information content equipartition,

H H n
log M

nb M= = 2 bits of information will be available

at each binary classifier. Finally, let us assume that each
binary classifier is allowed to select a fraction Q of the
complete set of genes. Hence, after the selection of Q ·
p genes, at most Q · p · H(f) bits of information will be
available at each binary classifier and this quantity can-
not exceed Hb

Q p H f
log M

n
⋅ ⋅ ≤( ) 2 (1)

Eq. 1 nicely estimates the maximum fraction of genes
(Qmax) that can be selected by any binary classifier in
terms of main parameters characterizing any binary
mediated multiclass classification problem plus an
unknown parameter f. To estimate f, we now turn to
the problem of estimating the probability f that a biased
coin will come up with heads in a sequence of q inde-
pendent coin tosses provided k heads have been
observed. The maximum likelihood estimate of f, i.e.,
the value of f with the largest probability for the
observed data, is given by k/q. To obtain k, we just need
to count the number of expressed genes across the col-
lection of q samples. However, aiming to obtain a more
general bound, we would like to avoid overwhelming
data dependent counts. If we further assume that
averages of gene expression over a sufficiently large
population of individuals are equal to averages over
many genes, i.e., an ergodic behavior of genes [24] is
considered, the fractional f should equal the fraction of
genes k*//p that are expressed at any individual. Assum-
ing that k*/p < 0.5 (otherwise not expressed genes can
be considered) and recalling that H (f) is a monotonic
increasing function in [0, 0.5], we get H(k/q) ≈ H(k*/p)
≥ H(1/p) and the following Q upper bound (Qmax) can
be derived

Q
M

p n H pmax ≈
⋅ ⋅
log

( )
2

1
(2)

Overall, Eq. 2 suggests that the computational com-
plexity of finding sparse multiclass classifiers of microar-
ray data samples could be overcome with the induction
of a large number n of independent binary classifiers, a
requirement which gets easier to satisfy as the number
of training samples increases. The evolution of Qmax

with respect to n on benchmark microarray datasets
used in this paper is shown in Figure 1. Before moving
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onto the next subsection, we notice that a more formal
derivation of Qmax is given in the Appendix.

Bounded optimum S2N gene selection
For a fixed n, we now face the problem of finding the
optimum number of genes in the list of top p* Qmax(n)
most discriminative genes for each binary classifier.
Such optimum will follow from a partial search scheme
and thus, we provide no guarantee of identifying the
optimal gene set [25]. But as n increases, finding such
optimum implies finding a sparse representation of a
high dimensional feature space from a small number of
training samples. Because sparsity is key structural prop-
erty of most genomic studies involving disease classifica-
tion, we conjecture that the proposed gene selection
method could indeed be a solution for the problem of
designing accurate and sparse multiclass classifiers of
microarray data samples.
Letting n approach to infinity cannot be realized in

practice. Hence, some bounded exploration of the n
dimension must be assumed in advance. In this paper,
the exploration of n dimension from nmin = ⌈log2M⌉ +
2 up to nmax = ⌈15·log2M⌉ is considered. Notice that n
= ⌈15·log2M⌉ + 1 is not considered; it would entail the
use of parity codes only able to detect (but not correct)
binary classifiers errors. For practical n ranges, the

exhaustive exploration of p* Qmax(n) most important
genes for each binary classifier may still be too compu-
tationally demanding. Thus, a multi-scale resolution
approach for the Q-dimension was devised. Firstly, the
Q dimension was coarsely quantized with a base 10
logarithmic scale, i.e., Q Î [0.001, 0.01, 0.1, 1] was
assumed. Secondly, each logarithmic segment, except
the last one, was linearly quantized into 10 equal parts;
the last logarithmic segment was quantized into 100
equal parts. Finally, genes at each binary classifier were
ranked according to their S2N value (see Methods for
details) with respect to the response variable and
mapped to the formerly quantized Q-dimension for
further selection. As a result, for a fixed computational
budget, more computational effort can be put into the
exploration of highly discriminative genes, i.e., top rank-
ing genes, than into those of poor discriminative power.

Results on Real Data
We first note that the application of the Shapiro-Wilk
test to the empirical distributions of performance mea-
sures (classification error, overall fraction of selected
genes and gene selection stability) of either ECOC or
OAA classifiers frequently rejected the null hypothesis
of normally distributed data at the 0.05 a level of signif-
icance, thus justifying the use of the more conservative

The maximum fraction of genes (Qmax) per binary classifier
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Figure 1 The maximum fraction of genes per binary classifier. The maximum fraction of genes Qmax that can be handled by core binary
classifiers in binary mediated multiclass classification of microarray data samples involving p genes and q samples, p > >q. Multiclass classifiers
for M ≥ 3 classes built from n binary classifiers, n ≥ ⌈log2M⌉ + 2, are considered. Qmax is evaluated on the 8 benchmark microarray datasets used
in this paper (Lymphoma, SRCBT, Brain, NCI60, Staunton, Su, GCMRM and GCM).
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Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) U
tests.
Table 1 shows the classification performance of OAA

and ECOC classifiers of size n up to ⌈h·log2M⌉ (h = 5,
10, 15) over 200 Montecarlo 4:1 train-test partitions.
Despite the h choice, ECOC and OAA classifiers attain
comparable classification performance in 5 out of 8
datasets (p > 0.3, two-sided KS tests). Stochastic order-
ings favorable to OAA classifiers are observed in the
SRCBT, NCI60 and GCM datasets (p < 0.05, one-sided
KS tests; one-side MW tests consistent). In particular,
OAA classifiers perform remarkably well on the hard
NCI60 and GCM datasets.
Table 2 shows the overall number of genes selected by

OAA and ECOC classifiers of size n up to ⌈h·log2M⌉ (h

= 5, 10, 15) under bounded optimum S2N gene selec-
tion over 200 Montecarlo 4:1 train-test partitions. Mov-
ing from h = 5 to h = 15 gradually reduces the
dimensionality of ECOC classifiers. The strongest reduc-
tion effect occurs when moving from h = 5 to h = 10,
suggesting h = 10 as a practical upper limit for the
exploration of the n dimension with ECOC classifiers.
However, the extent of ECOC dimensionality reduct-
ions are insufficient to improve naive OAA classifiers.
Despite the h choice, significant differences in the num-
ber of genes selected by ECOC and OAA classifiers are
observed in all datasets (p < 0.05, two-sided KS tests).
Stochastic orderings favorable to ECOC classifiers are
observed in the Lymphoma and NCI60 datasets (p > 0.2,
one-sided KS tests; p < 0.01, one-sided MW tests).

Table 1 The classification performance of OAA and ECOC classifiers

p-valuesa

Dataset M n Error-ECOC(F) Error-OAA(G) F ≠ G F <G MW

200 Montecarlo 4:1 train-test partitions at h = 5

Lymphoma 3 NA NA 0 NA NA -

SRCBT 4 9 0 0 0.00437 0.00219 0.99682

Brain 5 9 0.1250 0.1250 0.98741 - -

NCI60 8 9 0.3077 0.2308 0.02222 0.01111 0.99682

Staunton 9 12 0.4615 0.4615 0.71123 - -

GCM RM 11 11 0 0 0.39273 - -

Su 11 13 0.0857 0.0857 0.92282 - -

GCM 14 12 0.3625 0.2863 9.99e-16 4.76e-16 1

200 Montecarlo 4:1 train-test partitions at h = 10

Lymphoma 3 11 0 0 0.98741 - -

SRCBT 4 9 0 0 0.00307 0.00153 0.99999

Brain 5 15 0.1250 0.1250 0.99970 - -

NCI60 8 14 0.3077 0.2308 0.00213 0.00106 0.99996

Staunton 9 19 0.4615 0.4615 0.79201 - -

GCM RM 11 12 0 0 0.79201 - -

Su 11 17 0.0857 0.0857 0.32750 - -

GCM 14 12 0.3624 0.2863 9.99e-16 4.76e-16 1

200 Montecarlo 4:1 train-test partitions at h = 15

Lymphoma 3 11 0 0 0.98741 - -

SRCBT 4 9 0 0 0.00307 0.00153 0.99999

Brain 5 18 0.125 0.125 0.99999 - -

NCI60 8 16 0.3077 0.2308 0.00045 0.00022 0.99999

Staunton 9 19 0.4615 0.4615 0.62717 - -

GCM RM 11 12 0 0 0.96394 - -

Su 11 17 0.0857 0.0857 0.46532 - -

GCM 14 12 0.3666 0.2863 < 2.2e-16 < 2.2e-16 1

The classification performance of ECOC classifiers of size at most ⌈h·log2M⌉ and OAA classifiers under bounded optimum S2N gene selection over 200 runs of
Montecarlo 4:1 train-test partitions. M and n respectively denote the median number of binary classifiers at ECOC and OAA classifiers. Error-ECOC and Error-OAA
respectively denote the median classification errors attained by ECOC and OAA classifiers. Error-ECOC and Error-OAA are denoted as F and G for purposes of KS
tests, respectively.
a p-values of two-sided KS tests, one-sided KS tests and one-sided MW tests. The alternative hypothesis of two-sided KS tests is “the error of ECOC classifiers is
different from that of OAA classifiers”, i.e., the relationship between CDFs is F ≠ G. The alternative hypothesis for one sided KS tests is “the error of ECOC
classifiers is greater than that OAA classifiers”, i.e., the relationship between CDFs is F <G. The alternative hypothesis of one sided MW tests is “the error of ECOC
classifiers is less than that of OAA classifiers”.
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Table 3 shows the stability of gene selection attained
by OAA and ECOC classifiers of size up to ⌈h·log2M⌉
(h = 5, 10, 15) under bounded optimum S2N gene
selection over 200 Montecarlo 4:1 train-test partitions.
Despite the h choice, significant differences in the sta-
bility of gene selection attained by ECOC and OAA
classifiers are observed (p < 2.2e - 16, two-sided KS
tests). Stochastic orderings favorable to ECOC classi-
fiers are observed in Lymphoma, SRCBT and Su data-
sets (p > 0.9, one-sided KS tests; p < 2.2e - 16, one
sided MW tests); ambiguous orderings are observed in
the Brain, GCM RM and GCM datasets. Remarkably,
the stability of gene selection attained by ECOC classi-
fiers is only slightly reduced when moving from h = 5
to h = 15.

For the sake of completeness, we also report the per-
formance of OAA and ECOC classifiers of size at most
⌈h·log2M⌉ (h = 5, 10, 15) on two benchmark microarray
datasets with a public train-test partition (see Table 4).
Results agree with observed trends of the classification
error in Montecarlo evaluations. Although both ECOC
and OAA classifiers seem to be highly effective in the
GCMRM dataset, suggesting that ECOC classifiers may
be worthy of exploring in such case, only OAA classi-
fiers perform well on the GCM dataset. Since the
GCMRM dataset is just a subsample of the GCM data-
set to which a more robust preprocessing protocol has
been applied, so that fewer samples, fewer classes and
fewer genes than in the original dataset are involved,
these results raise the question to what extent specific

Table 2 The overall number of genes selected by OAA and ECOC classifiers

p-valuesa

Dataset M N B-ECOC B-OAA G-ECOC(F) G-OAA(G) F ≠ G F <G MW

200 Montecarlo 4:1 train-test partitions at h = 5

Lymphoma 3 NA NA 4 NA 22 NA NA NA

SRCBT 4 9 14.22 6 37 23 < 2.2e-16 < 2.2e-16 1

Brain 5 9 28.1 19 177 109.5 5.08e-05 2.54e-05 0.99975

NCI60 8 9 45.11 34 310 326 9.31e-07 0.27804 0.07651

Staunton 9 12 46 34.11 387 296 9.91e-08 4.95e-08 0.99993

GCM RM 11 11 142 36 800 365.5 < 2.2e-16 2.76e-08 1

Su 11 13 126 62 1056 916 5.36e-12 1.15e-24 0.99978

GCM 14 12 322 128 2096 1406 < 2.2e-16 < 2.2e-16 1

200 Montecarlo 4:1 train-test partitions at h = 10

Lymphoma 3 11 4.27 4 12 22 5.52e-08 1 9.85e-09

SRCBT 4 9 12.22 6 33 23 < 2.2e-16 < 2.2e-16 1

Brain 5 15 16.16 19 109.5 109.5 0.03970 0.01984 0.54495

NCI60 8 14 42.12 39 286.5 326 9.31e-07 0.95599 0.00105

Staunton 9 19 40.03 34.11 381.5 296 6.95e-10 3.48e-10 0.99997

GCM RM 11 12 72 36 570 365.5 < 2.2e-16 1.66e-19 1

Su 11 17 112 62 940 916 1.82e-10 9.11e-11 0.98387

GCM 14 12 322 128 2078 1406 < 2.2e-16 < 2.2e-16 1

200 Montecarlo 4:1 train-test partitions at h = 15

Lymphoma 3 11 4.26 4 12 22 3.05e-08 1 3.85e-09

SRCBT 4 9 12.22 6 33 23 < 2.2e-16 < 2.2e-16 1

Brain 5 18 16.06 19 105 109.5 0.03970 0.01984 0.15586

NCI60 8 16 36.15 39 251 326 9.31e-07 1 3.23e-05

Staunton 9 19 34.09 34.11 373.5 296 4.81e-09 2.41e-09 0.99989

GCM RM 11 12 72 36 561 365.5 < 2.2e-16 1.66e-19 1

Su 11 17 112 62 924.5 916 1.34e-09 6.69e-10 0.97006

GCM 14 12 322 128 2066 1406 < 2.2e-16 < 2.2e-16 1

The number of genes selected by OAA and ECOC classifiers of size at most ⌈h·log2M⌉ under bounded optimum S2N gene selection over 200 Montecarlo 4:1
train-test partitions. M and n respectively denote the median number of binary classifiers at OAA and ECOC classifiers. B-ECOC and B-OAA respectively denote
the median number of genes per binary SVM at ECOC and OAA classifiers. G-ECOC and G-OAA respectively denote the median overall number of genes selected
at ECOC and OAA classifiers. G-ECOC and G-OAA are denoted as F and G for purposes of KS tests, respectively.
a p-values of two-sided KS tests, one-sided KS tests and one-sided MW tests. The alternative hypothesis of two-sided KS tests is “the number of genes selected
by ECOC classifiers (F) is different from that of OAA classifiers (G)”, i.e., the relationship between corresponding CDFs is F ≠ G. The alternative hypothesis for one
sided KS tests is “the number of genes selected by ECOC classifiers (F) is greater than that OAA classifiers (G)”, i.e., the relationship between corresponding CDFs
is F <G. The alternative hypothesis of one-sided MW tests is “the median number of genes selected by ECOC classifiers is less than that of OAA classifiers”.
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preprocessing protocols could be a affecting the strength
of gene selection attainable with ECOC classifiers.

Conclusions
The divide and conquer approach to the design of multi-
class classifiers for microarray data samples which we
have presented offers the hope that accurate and sparse
multiclass classifiers can be constructed without incur-
ring in undesirable forms of gene selection bias hidden in
the selection of optimal gene subsets of restricted or
unrestricted size [26]. Generalized binary reductions of
M-multiclass classification problems into n binary classi-
fication tasks and bounded explorations of resulting gene
spaces are advised to accomplish this objective. At each

Table 3 The stability of gene selection attained by OAA and ECOC classifiers

p-valuesa

Dataset M n S-ECOC(F) S-OAA(G) F ≠ G F >G MW

200 Montecarlo 4:1 train-test partitions at h = 5

Lymphoma 3 NA NA 0.5539 NA NA NA

SRCBT 4 9 0.6835 0.5652 < 2.2e-16 0.99979 < 2.2e-16

Brain 5 9 0.4643 0.4315 < 2.2e-16 0.02363 < 2.2e-16

NCI60 8 9 0.4313 0.4365 < 2.2e-16 < 2.2e-16 1

Staunton 9 12 0.4129 0.4119 < 2.2e-16 < 2.2e-16 0.73628

GCM RM 11 11 0.6043 0.6143 < 2.2e-16 < 2.2e-16b < 2.2e-16

Su 11 13 0.6286 0.5461 < 2.2e-16 0.99594 < 2.2e-16

GCM 14 12 0.6783 0.5886 < 2.2e-16 1 < 2.2e-16

200 Montecarlo 4:1 train-test partitions at h = 10

Lymphoma 3 11 0.6093 0.5539 < 2.2e-16 1 < 2.2e-16

SRCBT 4 9 0.6745 0.5652 < 2.2e-16 1 < 2.2e-16

Brain 5 15 0.4582 0.4315 < 2.2e-16 0.00213b < 2.2e-16

NCI60 8 14 0.4234 0.4365 < 2.2e-16 < 2.2e-16 1

Staunton 9 19 0.4185 0.4119 < 2.2e-16 < 2.2e-16 5.93e-07

GCM RM 11 12 0.6112 0.6143 < 2.2e-16 6.83e-08b < 2.2e-16

Su 11 17 0.6423 0.5461 < 2.2e-16 0.99154 < 2.2e-16

GCM 14 12 0.6650 0.5886 < 2.2e-16 0.42216 < 2.2e-16

200 Montecarlo 4:1 train-test partitions at h = 15

Lymphoma 3 11 0.6093 0.5539 < 2.2e-16 1 < 2.2e-16

SRCBT 4 9 0.6740 0.5652 < 2.2e-16 1 < 2.2e-16

Brain 5 18 0.4591 0.4315 < 2.2e-16 0.00165b < 2.2e-16

NCI60 8 16 0.4170 0.4365 < 2.2e-16 < 2.2e-16 1

Staunton 9 19 0.4168 0.4119 < 2.2e-16 < 2.2e-16 0.02409

GCM RM 11 12 0.6124 0.6143 < 2.2e-16 8.46e-05b < 2.2e-16

Su 11 17 0.6405 0.5461 < 2.2e-16 0.99154 < 2.2e-16

GCM 14 12 0.6578 0.5886 < 2.2e-16 0.03809b < 2.2e-16

The stability of gene selection attained by ECOC classifiers of size at most ⌈h·log2M⌉ and OAA classifiers under bounded optimum S2N gene selection over 200
Montecarlo 4:1 train-test partitions. M and n respectively denote the median number of binary classifiers at OAA and ECOC classifiers. S-ECOC and S-OAA
respectively denote the stability of gene selection attained by ECOC and OAA classifiers measured by the Salton’s coefficient. S-ECOC and S-OAA are denoted as
F and G for purposes of KS tests, respectively.
a p-values of two-sided KS tests, one-sided KS tests and one-sided MW tests. The alternative hypothesis of two-sided KS tests is “the stability of gene selection in
ECOC classifiers (F) is different from that in OAA classifiers (G)”, i.e., the relationship between corresponding CDFs is F ≠ G. The alternative hypothesis for one
sided KS tests is “the stability of gene selection in ECOC classifiers (F) is lower than that OAA classifiers (G)”, i.e., the relationship between corresponding CDFs is
F >G. The alternative hypothesis of one-sided MW tests is “the median stability of gene selection in ECOC classifiers is higher than that of OAA classifiers”.
b Difficult to definitely compare. Highly significant p-values for both one-sided KS tests.

Table 4 The performance of OAA and ECOC classifiers on
train-test partitions

Dataset M n G-ECOC G-OAA Error-ECOC Error-OAA

h = 5, 10, 15

GCM RM 11 10 926 1260 0.1852 0.1852

GCM 14 20 1314 423 0.4782 0.3043

The performance of OAA and ECOC classifiers of size at most ⌈h·log2M⌉ on
benchmark microarray datasets under bounded optimum S2N gene selection
and a public train-test partition. M and n respectively denote the number of
binary classifiers used by OAA and ECOC classifiers. G-OAA and G-ECOC
respectively denote the overall number of genes selected by OAA and ECOC
classifiers. Error-OAA and Error-ECOC respectively denote the classification
error attained by OAA and ECOC classifiers.
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binary classifier, the maximum number of genes that can
be selected scales with the inverse of n, thus providing a
way to accomplish optimum gene selection at affordable
computational costs, provided n is sufficiently large.
In this paper, the power of OAA and ECOC binary

reductions in the design of accurate and sparse multiclass
classifiers for microarray data samples has been evaluated.
Without loss of generality, we have restricted ourselves to
the class of ECOC classifiers based on LDPC codes, linear
SVM binary classifiers and univariate S2N gene selection.
Experimental results show that dimensionality exchange
between input and output domains of binary mediated
multiclass classifiers of microarray data samples is indeed
possible: the larger the size of candidate ECOC classifiers,
the greater the chance of selecting smaller sets of genes.
Although promising, the dimensionality reduction perfor-
mance exhibited by ECOC (LDPC) classifiers is not
enough to definitely improve naive OAA classifiers, which
remain the best practical option.
From an overall view, experimental results suggest

that improving the dimensionality reduction ratio of
OAA classifiers with ECOC classifiers may not be as
easy as it seems. We note, however, that a consensus
approach to gene selection and classification on a set of
diverse ECOC classifiers under bounded optimum gene
selection could finally boost their dimensionality reduc-
tion factor beyond that of OAA classifiers. Briefiy, pro-
vided individual ECOC solutions are good enough
compared to OAA classifiers, a consensus approach to
gene selection on a set of diverse ECOC classifiers
should preserve most relevant genes and reject a great
proportion of irrelevant ones. Since ECOC classifiers
based on LDPC codes seem to be closely related neigh-
bors of OAA counterparts, this hypothesis will be focus
of future research. Finally, further dimensionality reduc-
tion improvements may still be attainable with more ela-
borated forms of gene selection like SVM-RFE [27].
Overall, our results provide evidence that bounded

optimum gene selection in high dimensional binary out-
put domains induced by either OAA or ECOC classifiers
may be a solution for the problem of accurate multiclass
classification of microarray data samples based on a
reduced number of genes.

Methods
To keep the paper self-contained in this section, we
would like to briefiy review the design of ECOC classi-
fiers based on LDPC codes. Then we proceed to
describe benchmark microarray data and main points of
our experimental protocol. The introduction of error
correcting codes in the design of ECOC classifiers aims
the automatic recovery of binary classifiers errors
leading to erroneous multiclass predictions. For this

purpose, an ECOC code must be first defined. An
ECOC code is a binary matrix of size M by n, the i-th
row defining the binary encoding for the i-th class label,
i = 1,..., M, and the j-th column defining the binary split
to be learn by the j-th core binary classifier, j = 1,..., n.

Since codewords of length n
log M

R
= ⎡⎢ ⎤⎥( )2 , 0 <R < 1,

are required for redundantly encoding k = ⌈log2M⌉ bits
of useful class label information, ECOC classifiers entail
output designs of logarithmic complexity with respect to
M, which can be an advantage when M is rather large
[28]. As noted by [29], ECOC classifiers based on ran-
dom ECOC codes are asymptotically Bayes Optimal, i.e.,
they approximate the minimum possible misclassifica-
tion error, provided core binary classifiers are Bayes
classifiers themselves. As noted by [30], the SVM para-
digm efficiently approximates the Bayes classification
rule. Hence, core binary classifiers were implemented
with linear SVMs, a class of binary classifiers that finds
the hyperplane that best separate training samples hav-
ing different class memberships [31], the trade-off
between model complexity and empirical error being
determined by the constant complexity hyperparameter
C > 0. However, regarding the construction of the
ECOC coding matrix, we decided to use LDPC codes
instead of random codes.
A key problem with conventional ECOC classifiers

based on random codes is that randomness inhibits the
systematic control of independence between binary clas-
sifiers as n approaches to infinity. A possible way to
overcome this problem is to construct large ECOC clas-
sifiers from a number of small ECOC classifiers con-
nected via shared binary classifiers. Small constituent
ECOC classifiers able to locally control the key indepen-
dence factor despite the size n of the overall ECOC clas-
sifier can be easily designed, for example with simple
parity codes. Provided the connectivity profile of consti-
tuent ECOC classifiers and binary classifiers remains
sparse, the overall ECOC design can be nicely inter-
preted in terms of the design of LDPC codes.
Briefly, LDPC codes are linear block codes obtained

from sparse random bipartite graphs subject to sparsity
constraints allowing a divide and conquer interpretation
of generated ECOC classifiers [12]. Let G be a bipartite
graph with n left nodes (called message nodes) and m
right nodes (called check nodes). If the n message nodes
are associated to the n coordinates of codewords c
defined as those vectors (c1,..., cn) satisfying the con-
straint that the sum of the neighboring positions for all
check nodes among the message nodes is zero, then G
models a linear code of size n which can protect at least
k = n - m bits of information and which structure can
be dissected into m simple parity codes. In addition, if
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the connectivity profile of G is sparse, i.e., each code-
word bit is constrained by j < <m parity codes and each
parity code constraints u < <n codeword bits, then the
corresponding linear code turns to be an LDPC code.
The sparsity of the graph structure is a key property in
the design of efficient LDPC decoding algorithms for a
variety of channel models. A channel model subsumes
our prior knowledge about the statistics of binary errors.
In this paper, the iterative message passing decoding
algorithm described in [13] for the Additive White
Gaussian Noise channel is used. A factor graph [32]
model of a typical LDPC code is shown in Figure 2. The
construction of ECOC classifiers based on LDPC codes
is straightforward once the bipartite graph model of the
underlying LDPC code is given. In factor graph terms,
we just need to associate right message nodes to ideal

binary classifiers predictions ci and left check nodes to
constituent ECOC classifiers constructed from simple
parity codes. To complete the factor graph model of an
ECOC-LDPC classifier, message nodes ri modeling prac-
tical binary classifiers predictions and check nodes fi
modeling prior statistical knowledge about pairs (ci, ri)
("channel functions”) must be introduced. A request for
an ECOC prediction on a set of input features x starts
with the computation of a corrupted codeword r(x) by
the set of n binary classifiers. Assuming a suitable chan-
nel model specified by check nodes fi, the corrupted
codeword r(x) is given to an iterative message passing
decoding algorithm for the computation of a hopefully
good estimate ˆ( )c x of the unknown codeword c(x)
encoding the unknown class label y associated to x.
Remarkably, the computation of ˆ( )c x can be fully

Figure 2 The architecture of an ECOC-LDPC classifier under bounded gene selection. Right squares represent constituent ECOC classifiers
induced from simple parity codes, left squares represent practical binary classifiers, rectangles represent “channel” functions, ellipses represent
binary predictions, and small circles represent gene expression measurements. Edges are put between constituent ECOC classifiers and ideal
binary predictions ci taking care that the connectivity profile remains sparse (j < <m, u < <n). Ideal binary predictions ci and practical ones ri are
constrained by “channel” functions fi modeling prior statistical knowledge about binary classifiers errors, i = 1,..., n. Each practical binary classifier

Li selects a subset of v genes from a pool of p genes taking care that no more than
log 2

1

M

n H
p

⎡⎢ ⎤⎥

⋅ ⎛
⎝⎜

⎞
⎠⎟
genes get selected.
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described as a message passing algorithm over the
ECOC-LDPC factor graph. In addition to convenient
graphical ˆ( )c x computation, ECOC-LDPC factor graphs
also allow for seamless integration of general bounded
gene selection strategies. We just need to add message
nodes xk, k = 1,..., p, modeling gene expression behavior,
check nodes Li, i = 1,..., n, modeling practical binary
classifiers and a sparse connectivity profile ensuring that
at each Li the number v of incident edges (selected

genes) is no more than p Q
log M

n H
p

max⋅ ≈
⋅ ⎛

⎝⎜
⎞
⎠⎟

2

1 , in agreement

with Eq.2.

Microarray Datasets
Eight cancer microarray data sets were used in the eva-
luation of binary mediated multiclass classification with
bounded optimum S2N gene selection. The Lymphoma
dataset [33] consists of 62 samples of a specialized
cDNA chip spanning M = 3 subtypes of Diffuse large
B-cell lymphoma, each sample defined by the expression
of p = 4026 genes. Samples in the Lymphoma dataset
are highly imbalanced: 42 samples of diffuse large B-cell
lymphoma, 9 of follicular lymphoma and 11 of chronic
lymphocytic leukemia. Original data is available at
http://llmpp.nih.gov/lymphoma/data/figure1. In this
study, a preprocessed dataset version compiled by [34]
based on [35] was used.
The Small Round Blue Cell Tumors (SRBCT) dataset

[36] consists of 63 samples of a specialized cDNA chip
spanning M = 4 subtypes of small round blue cell
tumors of childhood, each sample defined by the expres-
sion of p = 2308 genes. Samples are distributed as fol-
lows: 12 samples of neuroblastoma, 20 samples of
rhabdomyosarcoma, 8 samples of non-Hodgkin lym-
phoma and 23 samples of the Ewing family of tumors.
In this study, a preprocessed dataset version available at
http://research.nhgri.nih.gov/microarray/Supplement/
index.html was used.
The Brain dataset [37] consists of 42 samples of the

Affymetrix HuGeneFL chip spanning M = 5 tumors
classes of the central nervous system, each sample
defined by the expression of p = 5597 genes. Samples
are distributed as follows: 10 medulloblastomas, 10
malignant gliomas, 10 atypical teratoid/rhabdoid tumors
(AT/RTs), 8 primitive neuro-ectodermal, tumors
(PNETs) and 4 human cerebella. In this study, the origi-
nal dataset version (Dataset A) was used. Expression
values based on average difference units were computed
using the Affymetrix GENECHIP MAS 4.0 analysis soft-
ware. This dataset is available at http://www.broadinsti-
tute.org/mpr/CNS/.
The NCI60 dataset [35] consists of 61 samples of a

specialized cDNA chip spanning M = 8 tumor classes,

each sample defined by the expression of p = 5244 genes.
Samples are distributed as follows: 7 breast, 5 central ner-
vous system, 7 colon, 6 leukemia, 8 melanoma, 9 non-
small cell lung carcinoma, 6 ovarian and 9 renal tumors.
Original data is available at http://genome-www.stanford.
edu/nci60. In this study, a preprocessed dataset version
compiled by [34] based on [35] was used.
The Staunton dataset [38] consists of 60 samples of

the Affymetrix Hu6800 chip spanning M = 9 classes of
tumors, each sample defined by the expression of p =
5726 genes. Expression values based on average differ-
ence units were computed using the Affymetrix GENE-
CHIP MAS 4.0 analysis software. In this study, a
preprocessed dataset version compiled by [1] involving
the rescaling of gene expression measurements to the
interval 0 [1] was used. This dataset is available at
http://www.gems-system.org/.
The Su [39] consists of 174 samples of the Affymetrix

U95a chip spanning M = 11 classes of tumors, each
sample defined by the expression values of p = 12533
genes. Expression values based on average difference
units were computed using the Affymetrix GENECHIP
MAS 4.0 analysis software. In this study, a preprocessed
dataset version compiled by [1] involving the rescaling
of gene expression values to the interval 0 [1] was used.
This dataset is available at http://www.gems-system.org/.
The GCM dataset [18] consists of 190 samples of the

Affymetrix Hu6800 and Hu35K chips spanning M = 14
tumor classes of primary tumors, each sample defined
by the expression of values p = 16063 genes. Expression
values based on average difference units were computed
using Affymetrix GENECHIP MAS 4.0 analysis software.
This dataset, which comes with a public train-test parti-
tion involving q = 144 samples for training and 46 for
test, is available at http://www.broadinstitute.org/cgi-
bin/cancer/datasets.cgi.
The GCM RM dataset [40] consists of 123 samples of

the Affymetrix Hu6800 chip spanning M = 11 classes of
tumors, each sample defined by the expression values of
p = 7129 genes. This dataset was derived from the GCM
dataset with the purpose of improving multiclass classifi-
cation with variability estimates of repeated gene expres-
sion measurements. Hence, expression values were
computed with the more robust log scale multi-array
analysis (RMA) measure. This dataset, which comes with
a public train-test partition involving q = 96 samples for
training and 27 for test, is available at http://expression.
washington.edu/publications/kayee/shrunken_centroid/.

Experimental Protocol
Optimum bounded gene selection over OAA and ECOC
multiclass based on linear SVMs classifiers was evalu-
ated on 8 publicly available microarray datasets (M Î
{3, 4, 5, 8, 9, 11, 14}). Aiming a systematic evaluation of
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the n-dimension, we restricted ourselves to the class of
ECOC classifiers based on LDPC codes. For both OAA
and ECOC classifiers, binary classifiers decisions were
fusioned by means of soft-decoding techniques. Hence,
OAA classifiers based on hinge loss decoding of SVM’s
outputs and ECOC classifiers based on LDPC codes
able to perform soft iterative decoding of SVM’s outputs
were used. Owing to the constraint p > >q, which highly
limits the diversity between induced binary classifiers,
just one iterative decoding loop was allowed. The Java
Weka library version 3.4.10 [41] was used to provide the
implementations of OAA multiclass and binary linear
SVM classifiers. An extension of the Weka library was
developed to implement ECOC classifiers based on
LDPC codes and bounded optimum gene selection for
both OAA and ECOC classifiers.
Assessing the classification performance
The classification performance of OAA and ECOC mul-
ticlass classifiers was evaluated by means of a rando-
mized strategy. Based on [42] and [35], 200 Montecarlo
4:1 ( 4

5
for training and 1

5
for testing) partitions of

available data were considered. For those datasets with a
public train-test partition, the specific train-test evalua-
tion was additionally performed. The following perfor-
mance metrics were considered: the test error rate, the
number of binary classifiers, the number of genes per
binary classifier, the overall number of selected genes
and the stability of gene selection. Briefiy, stability of
gene selection measures how multiple classification
models resemble between them; models may be close to
each other in terms of error, but can be distant in terms
of their forms (the identity of selected genes) [43]. Thus,
stability of gene selection is an important requirement
for ensuring reliable conclusions in microarray data ana-
lysis [44,45]. Stability of gene selection with respect to
changes in the training data was measured by means of
the Salton’s cosine coefficient [46]. Let Ai and Aj respec-
tively denote the sets of genes selected by classifier A in
partitions i and j, i ≠ μj. Hence, the similarity between
sets Ai and Aj according to the Salton’s coefficient is

given by
#

# #

genes in both A and A

genes in A genes in A
i j

i j⋅ . Using 200 ran-

dom train-test partitions lead to 200 · 199/2 pairwise
similarity measurements from which the mean stability
of gene selection can be reported.
Searching the best parameters
Regarding the honest computation [47] of best n and Q(n)
parameters for ECOC classifiers, a two-stage optimization
approach based on nested 10-Fold CV loops was per-
formed. At each train-test partition, the constant complex-
ity hyperparameter C of binary linear SVM classifiers was
set to 1 and the best (n, Q(n)) pair was estimated by a
nested 10-Fold CV error minimization loop in the current

training dataset over the grid [nmin, nmax] × (0, Qmax], nmin

= ⌈log2M⌉ + 2, nmax = ⌈h ·log2M⌉, h = 5, 10, 15. Regarding
the exploration of the Q dimension, the S2N metric was
used for inducing ordered lists of genes at each binary
classifier. Briefiy, the class discrimination ability of the
j- th gene at each binary classifier under the S2N metric,
denoted as S2N(j), is defined as follows

S N j
j j

j j
2 ( )

( ) ( )
( ) ( )

= −
+

+ −

+ −

 


(3)

where μ(j)+, μ(j)- and s(j)+, s(j)- denote the means and
standard deviations of the j - th gene in positive and
negative examples in the current (binary) training set.
Most g important genes under the S2N metric are
defined as the first g/2 and the last g/2 genes in the
ranked list of genes. For a fixed number n of binary
classifiers, optimum bounded gene selection requires the
estimation of the optimum number of genes g(n), or its

fractional equivalent Q n
g n

p
( )

( )= , in the list of p* Qmax

(n) most important genes. Such threshold can be esti-
mated by a nested 10-Fold CV loop in the current train-
ing set using the multiscale resolution approach
described in the Results section. The process must be
repeated for each candidate n in the range [nmin, nmax].
Afterwards, the best performing (n, Q(n)) pair can be
reported. In case of multiple solutions, that involving
the largest n, i.e., the smallest Q(n), is selected.
An additional nested loop of 10-Fold CV was per-

formed to optimize the constant complexity hyperpara-
meter C of linear SVMs. Although it would have been
better to jointly optimize (n, Q(n), C), this would have
been computationally prohibitively expensive. Alterna-
tively, the two-step optimization strategy described in
[9] was used. Hence, we first set (n, Q(n)) at the best
pair of values found at C = 1, and then decreased and

Table 5 The best C for ECOC and classifiers based on
linear SVMs

Dataset ECOC at
h = 5a

ECOC at
h = 10a

ECOC at
h = 15a

OAAa

Lymphoma NA 1:1-1 1:1-1 1:1-1

SRCBT 1:1-1 1:1-1 1:1-1 1:1-1

Brain 1:1-1 1:1-1 1:1-1 1:1-1

NCI60 1:1-1 1:1-1 1:1-1 1:0.5-1

Staunton 1:1-1 1:1-1 1:1-1 1:0.5-1

GCMRM 1:1-1 1:1-1 1:1-1 1:1-1

Su 1:1-1 1:1-1 1:1-1 1:0.5-1

GCM 1:1-1 1:1-1 1:1-1 1:0.5-1

The best C for ECOC classifiers of size at most ⌈h·log2M⌉ and OAA classifiers,
both based on linear SVM classifiers, under bounded optimum S2N gene
selection over 200 Montecarlo 4:1 train-test partitions.
a The best C expressed as median: lower quartile-upper quartile.
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increased C until no improvement was observed for
three consecutive steps in nested 10-Fold CV loops.
The best performing C along with the best performing
(n, Q(n)) pair at C = 1 were then used as input para-
meters for the construction of the best ECOC classifier
on the current training set and its posterior evaluation
on the testing set. Notice that the final performance
estimate obtained by this procedure is selection-bias
free because each original testing set is used only once
to estimate the performance of a single classification
model that was built by using training data exclusively.
Except for the preselection of n = M, a similar
approach was used to estimate the best Q(M) and the
best C for OAA classifiers. Table 5 shows the central
tendency and the variation of the best C for ECOC and
OAA classifiers over 200 Montecarlo 4:1 train-test par-
titions. Results suggest that C = 1 is indeed a reason-
able initial guess.
Assessing the statistical significance of results
To assess the statistical significance of observed differ-
ences between performance measures of ECOC and
OAA classifiers, we invoke the concept of first order
stochastic dominance [48] developed in the context of
international economics [49]. Let F and G denote the
cumulative distribution functions of two comparison
groups regarding the study of some performance mea-
sure, e.g., the gene selection stability of ECOC and OAA
classifiers. First-order stochastic dominance of F with
respect to G is defined as F (z) - G (z) ≤ 0 uniformly in
z Î ℜ, with strict equality for some z. Since this consid-
ers all moments of the distributions, it is a stricter test
of stability differences than just comparing mean levels
of stability. In order to implement first-order stochastic
dominance analysis, nonparametric two-sided and one-
sided Kolmogorov-Smirnov (KS) tests [50] will be used.
The KS test looks for differences in two distributions,
both in terms of shape and location. Although the KS
test has good power for testing general differences in
distributions and not just in their central tendencies, it
is less sensitive than the t-test if data is normal. Consid-
ering this issue, normality of distributions was analyzed
first by means of the Shapiro-Wilk test [50,51]. The
two-sided KS statistic tests the hypothesis that both dis-
tributions are identical; the null and alternative hypoth-
eses can be expressed as:

H F z G z z H F z G z z0 10 0: ( ) ( ) : ( ) ( )− = ∀ ∈ ℜ − ≠ ∈ ℜvs for some (4)

By contrast, the one-sided test of stochastic domi-
nance of F over G (the distribution associated with
F lies to the right of that associated with G) can be
formulated as:

H G z F z z H G z F z z0 10 0: ( ) ( ) : ( ) ( )− ≥ ∀ ∈ ℜ − < ∈ ℜvs for some (5)

Similarly, the one-sided test of stochastic dominance
of G over F (the distribution associated with F lies to
the left of that associated with G) can be formulated as:

H F z G z z H F z G z z0 10 0: ( ) ( ) : ( ) ( )− ≥ ∀ ∈ ℜ − < ∈ ℜvs for some (6)

Hence, in order to conclude that F (G) stochastically
dominates G (F ) we need to reject the null hypothesis
for the two sided test, but not reject the null for the
corresponding one sided test. The test statistics for the
two and one sided tests are, respectively:

D F z G z
i N

u i v i= −
≤ ≤
max | ( ) ( ) |
1

(7)

D G z F z
i N

v i u i
+

≤ ≤
= −max { ( ) ( )}

1
(8)

D F z G z
i N

u i v i
−

≤ ≤
= −max { ( ) ( )}

1
(9)

where u and v respectively denote the sample sizes from
the empirical distributions of F and G and N = u + v.
Hence, to test whether ECOC classifiers can attain

better classification performance than OAA classifiers,
the two-sided D (Eq. 7) and the one-sided D- (Eq. 8) sta-
tistics were used (the alternative parameter of the ks.test
function in the stats R package respectively set to “two.
sided” and “less”). A similar approach was used to assess
the statistical significance of the differences between the
overall fraction of selected genes by ECOC and OAA
classifiers. Finally, to assess the statistical significance of
stability differences between ECOC and OAA classifiers,
the D (Eq. 7) and the D+ (Eq. 9) statistics were used
(the alternative parameter of the ks.test function in the
stats R package respectively set to “two.sided” and
“greater”). One-sided KS tests were supplemented with
one-sided Mann-Whitney U tests (MW) for analyzing
the difference between medians of two groups. A criter-
ion alpha level of 0.05 was used for all statistical tests.

Appendix
A more formal derivation of an upper bound for the
number of genes per binary classifier
We consider the problem of designing accurate and
sparse binary mediated multiclass classifiers for microar-
ray data samples. In this context, accuracy is mainly
determined by the power of the error correction code
defining the multiclass to binary mapping and sparsity is
mainly determined by the efficacy of gene selection
algorithms used at the binary classification level. A nat-
ural question that arises in this system is what amount
of information genes can transfer to the multiclass clas-
sifier output as the number p of genes grows. Knowing

Tapia et al. BMC Bioinformatics 2011, 12:59
http://www.biomedcentral.com/1471-2105/12/59

Page 11 of 13



such limitation may play a crucial role in the design of
effective gene selection algorithms which could signifi-
cantly reduce their search spaces. Shannon’s Informa-
tion Theory concepts [52] can provide some useful
insights into this fundamental question. In particular,
the concept of mutual information (MI) can be used to
evaluate the information content of a subset of genes
with regard to individual binary output classes and the
information content of a set of binary output classes
with regard to the target multiclass output class. The
use of MI for general multiclass classification problems
can be motivated by Fano’s inequality [53] which gives
a lower bound for the probability of error pe when esti-
mating a discrete random variable y Î {c1,..., cM} from
another random variable x Î ℜp as a function of their
MI I(y, x)

p
H y I y

log Me ≥ − −( ) ( ; )x 1

2
(10)

Where p P y ye = ≠( ) , H(y) is the Shannon entropy of

y, ˆ ( )y g= x is a discrete random variable used to estimate

y and y y→ →x ˆ is the Markov Chain modeling the

overall classification process. Let us now consider Mar-

kov Chains y r
T

i

L

i

i i

→ → →x v and y ® x ® r modeling

the prediction of a target output class y Î {c1,..., cM} from
genes x Î {0, 1}p by the mediation of binary output
classes r = (ri), each ri modeling the binary output class
of a classifier Li on subset of genes vi Î {0, 1}g, g <p,
extracted by a gene selection algorithm Ti on genes x,
i = 1,..., n. By the Fano’s inequality, minimizing pe
requires the maximization of I (y, x) = H (y) - H (y | x).
Since y is fixed, we have I(y, x) ≤ H(y) ≤ log2M. On the
other hand, by the data processing inequality [54], we
have I (y, r) ≤ I (y, x). In other words, the maximization
of I (y, x) requires the choice of an error correcting out-
put code such that I (y, r) is maximized. In addition, let r
be a set n i.i.d. random variables ri. Thus, we have I(y, r)

= Σi I(y, ri) and I y r
log M

ni( , ) ≤ 2 . Again by the data pro-

cessing inequality, we have I(vi, ri) ≤ I(y, ri). If we further
assume that Ti is a gene selection algorithm able to select
just relevant genes to ri, i.e., H(vi | ri) = 0, we have I(vi, ri)
= H(vi) - H(vi | ri) = H(vi). Finally, let genes in vi be a set
of g i.i.d. binary random variables. Thus, we have H(vi) =
H(Ti(x)) = Q · p · H(f) where Q is the fraction of relevant
genes to ri and H(f) is the binary entropy function mea-
suring the information content of a generic gene which is
expressed with probability f and not expressed with prob-
ability 1 - f. Hence, the following upper bound on the
fraction of genes Q that can be handled by any binary

classifier in a binary mediated multiclass classifier for
microarray data samples is obtained

Q
log M

p n H f
≤

⋅ ⋅
2

( )
(11)
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