
Six distinct NFκB signaling codons convey discrete information 
to distinguish stimuli and enable appropriate macrophage 
responses

Adewunmi Adelaja1,2, Brooks Taylor1,2, Katherine M. Sheu1, Yi Liu1, Stefanie Luecke1, 
Alexander Hoffmann1,3,*

1Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute 
(MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University 
of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093

2These authors contributed equally

3Lead contact

SUMMARY

Macrophages initiate inflammatory responses via the transcription factor NFκB. The temporal 

pattern of NFκB activity determines which genes are expressed and thus, the type of response that 

ensues. Here, we examined how information about the stimulus is encoded in the dynamics of 

NFκB activity. We generated an mVenus-RelA reporter mouse line to enable high-throughput live-

cell analysis of primary macrophages responding to host- and pathogen-derived stimuli. An 

information-theoretic workflow identified six dynamical features—termed signaling codons—that 

convey stimulus information to the nucleus. In particular, oscillatory trajectories were a hallmark 

of responses to cytokine but not pathogen-derived stimuli. Single-cell imaging and RNA 

sequencing of macrophages from a mouse model of Sjögren’s syndrome revealed inappropriate 

responses to stimuli, suggestive of confusion of two NFκB signaling codons. Thus, the dynamics 

of NFκB signaling classify immune threats through six signaling codons, and signal confusion 

based on defective codon deployment may underlie the etiology of some inflammatory diseases.
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In brief

Adelaja and Taylor et al. use a RelA-mVenus reporter mouse to examine, at single-cell level, the 

NFκB activation dynamics in primary macrophages responding to different stimuli. Their findings 

define six dynamical features—signaling codons—that classify immune threats and further 

suggest that signal “confusion” may contribute to autoimmune pathology.

INTRODUCTION

Autoimmune pathologies are characterized by the presence of auto-antibodies and immune 

attack of specific tissues, but the etiology is not uniform (Marshak-Rothstein, 2006). One 

cause may be found in errors in the negative selection of auto-reactive B cell or T cell clones 

in secondary lymphoid organs; another contributor may be inappropriate immune activation 

by immune sentinel cells (Marshak-Rothstein, 2006). Sjögren’s syndrome (SS) is a systemic 

autoimmune disorder that is characterized by progressive destruction of tissues exposed to 

the environment, such as eye, mouth and throat, and skin rashes (Marshak-Rothstein, 2006). 

Interestingly, genome-wide association studies do not point to salivary or lacrimal 

components (Burbelo et al., 2014), but rather to genes within the inflammatory pathways 

and immune cells (Taylor et al., 2017). Indeed, several genetic variants in regulators of the 

transcription factor NFκB are associated with SS patients (Lisi et al., 2012; Nordmark et al., 

2013; Ou et al., 2008; Sisto et al., 2013), and a mouse strain containing similar variants 
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recapitulates some of the SS pathognomonic characteristics (Peng et al., 2010). However, it 

remains unknown how these alleles affect NFκB dynamics.

Macrophages may function as immune sentinel cells that respond to pathogen invasion and 

tissue injury by initiating and coordinating both local and system-wide immunity (Wynn et 

al., 2013). These cells are ubiquitously distributed in tissues (Bauer et al., 2001) and can 

sensitively detect inflammatory cytokines and pathogen-associated molecular patterns 

(PAMPs), which indicate viral, bacterial, or fungal invasion (Medzhitov and Horng, 2009). 

Immune activation must be appropriate to each stimulus: the functional response to the 

cytokine TNF must be distinct from the response to a pathogen; further, the needs of a 

macrophage responding to bacterial or viral invasion are distinct.

The temporal coding hypothesis posits that information about the extracellular stimulus is 

represented in the time domain; i.e., the temporal pattern of a signaling activity (Behar and 

Hoffmann, 2010; Hoffmann and Baltimore, 2006; Purvis and Lahav, 2013). Biochemical 

studies in primary fibroblasts showed that the temporal pattern of NFκB RelA activity is 

stimulus specific at the cell population level (Covert et al., 2005; Werner et al., 2005), and 

that it controls the expression of immune response genes (Hoffmann et al., 2002; Tay et al., 

2010). Although pioneering single-cell microscopy studies confirmed complex temporal 

patterns (Ashall et al., 2009; Nelson et al., 2004; Tay et al., 2010), they relied upon 

fluorescent-protein-NFκB RelA fusion proteins ectopically expressed in immortalized cell 

lines. Potential artifacts arising from ectopic expression of a reporter-effector protein have 

been reported (Barken et al., 2005; Cheong et al., 2011; Mothes et al., 2015), and prolonged 

cell culture adaptation of immortalized cell lines diminishes their responsiveness to immune 

threats (Cheng et al., 2015). These limitations have not allowed previous studies to explore 

the biological significance of temporal coding in primary immune cells and whether it is a 

useful concept for understanding immune pathology. Reasons for why no studies of single-

cell NFκB trajectories in primary macrophages have been reported thus far include 

challenges associated with imaging proteins engineered to express fluorescent reporter 

constructs that are not overexpressed and reliable high-throughput image analysis of 

morphologically heterogeneous cells.

Here, we investigated the NFκB temporal code in single, primary macrophages using an 

mVenus-RelA mouse strain (Relav/v) and a high-throughput imaging and analysis. An 

information-theoretic approach identified six dynamical features of the NFκB trajectories 

that convey information about the extracellular stimulus to the nucleus, which we term 

signaling codons. Teaching these to a machine demonstrated their sufficiency and 

requirement for ligand and dose identification. Indeed, examination of an SS mouse model 

revealed confusion of specific signaling codons and suggested that such confusion may 

contribute to the etiology of systemic autoimmune diseases. Finally, mathematical modeling 

allowed us to identify the molecular circuit design principles that enable encoding of these 

signaling codons and confirmed that “oscillations” are a hallmark of responses to the host 

cytokine TNF, in contrast to PAMPs transduced by the signaling adaptor MyD88.
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RESULTS

Primary macrophages show immune threat ligand- and dose-specific NFκB dynamics

To extend pioneering research of NFκB dynamics in established cell lines (Table S1), we 

sought to study temporal patterns of nuclear NFκB in primary macrophages in response to 

prototypical immune threats (Figure 1A) at single-cell resolution. We generated the Relav/v 

mouse strain, which expresses a mVenus-RelA fusion protein (Figures S1A and S1B), 

similar to a previous GFP-RelA design (De Lorenzi et al., 2009) whose low fluorescence 

limited experimental studies (Sung et al., 2009). Macrophages, differentiated from primary 

bone-marrow cells derived from homozygous Relav/v mice, showed normal levels of nuclear 

NFκB binding activity (Figure S1C). Upon stimulation with a variety of different ligands 

and doses, and time-lapse imaging over 21 h (Figure 1B), the amount of nuclear NFκB 

fluorescence was quantitated in single cells using a fully automated image-processing 

pipeline that enabled tracking of live cells using minimal levels of a nuclear marker 

(Selimkhanov et al., 2014; Zambrano et al., 2016) and label-free identification and 

segmentation of cell cytoplasm. The live-cell imaging and image processing proved robustly 

reproducible in biological replicates (Figure S1D) and independent of image frame location 

(Figure S1E).

We noted differences in the NFκB dynamics induced by prototypical PAMP (LPS) and 

cytokine (TNF) stimuli, apparent at the single-cell level (Figure 1C). TNF induced 

oscillatory translocations between cytoplasm and nucleus that rapidly became 

desynchronized, matching biochemical data (Hoffmann et al., 2002). By contrast, LPS 

induced more than 4 h of sustained nuclear localization that also matched biochemical data 

from primary fibroblasts (Covert et al., 2005; Werner et al., 2005).

With an experimental workflow established, we recorded NFκB translocation dynamics in 

response to a large number of stimulation conditions, encompassing TNF and four different 

PAMPs, associated with diverse bacterial and viral pathogen classes (the TLR ligands CpG 

[TLR9], Pam3CSK4 [TLR1/2, referred to as P3C4], LPS [TLR4], and poly(I:C) [TLR3]) 

each tested at four to seven concentrations covering a 102 to 103-fold range. In each 

condition, 300–600 cells were examined with at least two preparations of BMDMs, thus 

constituting a total dataset of 12,203 single-cell trajectories captured with more than 3 

million cell images and associated NFκB activity data-points (Figure 1D; Table S2).

Given the NFκB trajectory, each cell was classified based on its first harmonic frequency 

profile generated by Fourier analysis (Figure 1E) as either unresponsive (regime 1), 

responsive but non-oscillatory (regime 2), or oscillatory (regime 3) with a period of 1.1–2.2 

h characteristic of NFκB oscillations (Hughey et al., 2015). Analysis of the data indicated 

that the lowest stimulus concentration activated about half the cells but that a log10 increase 

activated almost all (Figure 1F). Plotting the percentage of cells classified as oscillators in 

responders, we found that the host factor TNF elicited oscillatory dynamics regardless of 

dose (Figure 1G). While the number of peaks increased with increasing doses of TNF, the 

period remained constant (Figure S1F). In contrast, PAMPs produced largely non-oscillatory 

responses at high ligand concentrations (Figure 1G). Unlike experimental systems with 

ectopically expressed RelA, which produced a first peak of NFκB activity that is much 
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higher than later peaks (Ashall et al., 2009; Hughey et al., 2015; Tay et al., 2010), the 

response of primary macrophages to TNF showed a constant, gradual fall-off in amplitude 

(Figure S1G). Representative trajectories from various stimulus conditions indicate that 

NFκB dynamics are ligand and dose specific (Figure S1H).

Informative dynamical features are identifiable

Oscillations are just one dynamical feature by which complex time course trajectories can be 

characterized. We developed a method for identifying dynamical features that are associated 

with stimulus- and dose-specific NFκB trajectories. We constructed a multivariate 

information-theoretic algorithm, based on an estimate of channel capacity (Cheong et al., 

2011; Selimkhanov et al., 2014). In conjunction with the primary timeseries data, we 

considered 918 derived metrics (Table S3) such as integrals, derivatives, peak activities, 

durations, or frequencies (Figure 2A). Our algorithm searched this library for combinations 

of metrics that maximized channel capacity (Figure S2A), iteratively expanding the number 

of metrics within each combination from two up to ten.

First, we considered the available dose response dataset for each ligand separately. 

Combinations of five metrics were sufficient to capture the mutual information of dose 

responses, with TNF, CpG, and poly(I:C) achieving about 1 bit and LPS and Pam3CSK4 

about 1.5 bits (Figure 2B), in agreement with previous reports for TNF and LPS (Cheong et 

al., 2011; Selimkhanov et al., 2014). When considering all ligands tested (26 dose-ligand 

conditions), the calculated channel capacity was markedly higher (>2 bits) and required a 

seven-dimensional vector to yield ≥95% of the maximum measured information content 

(Table S4).

Of these most informative metrics identified across the full dataset (Figure 2C), two defined 

the activation speed (1), one defined the peak amplitude (2), another defined the post-

induction repression, a distinguishing feature of oscillatory versus non-oscillatory 

trajectories (3), one defined the accumulated activity (integral) at a late time (4), one was a 

measure of the degree to which NFκB activity is “front loaded” (5), and one defined the 

total duration of NFκB activity above a low threshold (6). Thus, the information-theoretic 

analysis identifies six NFκB dynamical features that are informative about the stimulus 

ligand and dose. Plotting three features allowed for only incomplete separation of ligands 

(Figure S2B).

Further analysis of the channel capacity calculations indicated that the highest dose 

generally provided the most ligand-specific information (Figure 2D). Indeed, when we 

restricted the calculation to only the highest dose of each of our five ligands, we still 

obtained a channel capacity of 1.86 bits. Unlike the dose response profiles of 

pharmacological agents that tend to show cross-reactivity at high doses, ligand-specific 

signaling dynamics occur at highest doses, indicating that there are true differences in the 

signal processing characteristics of receptor-associated signaling pathways.

Machine learning of NFκB codons distinguishes stimuli

The six NFκB dynamical features, identified as conveying information about the 

extracellular stimulus to the nucleus, represent potential codewords of the temporal NFκB 
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signaling code and are referred to as NFκB signaling codons. Visualizing signaling codon 

deployment for the five ligands at high doses (Figure 3A; Table S5), the speed of activation 

is generally high for Pam3CSK4 and LPS-triggered signaling, but low for CpG and 

poly(I:C) and inter-mediate for TNF; peak amplitude is high for Pam3CSK4, CpG, and LPS 

and lower for TNF and poly(I:C); the oscillatory content is highest for TNF compared to any 

of the PAMPs; the amount of total activity is highest for LPS followed by poly(I:C) and 

Pam3CSK4, but lower for TNF and CpG; the total duration, in contrast, is high for TNF and 

poly(I:C) and relatively low for Pam3CSK4, CpG, and LPS; and the fraction of the activity 

that is early is much higher for TNF, Pam3CSK4, and LPS than poly(I:C), with CpG being 

inter-mediate. Similarly, we find that different doses of the same ligand may deploy the 

signaling codons differentially (Figure 3A). For example, while the peak activity is generally 

positively correlated with dose (Lee et al., 2014a), the duration of activity increases with 

increasing doses of TNF or LPS but decreases with increasing doses of CpG.

To determine whether the six NFκB signaling codons suffice to distinguish these ligands, we 

used supervised machine learning and trained an ensemble-of-decision-trees model either 

with all 918 metrics or the set of 6 signaling codons (Figure S3B). We chose this 

classification algorithm because of its performance and interpretability (Alpaydin, 2014; 

Caruana and Niculescu-Mizil, 2006). Assessing prediction performance, we found that F1 

scores (harmonic mean of precision and sensitivity, a measure of specificity and sensitivity 

of the predictions) were remarkably similar for predictions generated using all metrics or 

just signaling codons, while the average of randomly sampled features fared substantially 

worse even when optimally trained (Figure 3B; Table S6A). Other performance measures 

confirmed this conclusion (Figure S3C), indicating that six signaling codons suffice to 

distinguish NFκB ligands. Using the same approach, we examined whether signaling codons 

suffice to distinguish the doses of each ligand (Figure 3C; Table S6B). The differences in F1 

scores of dose predictions generated by classifiers trained using all features versus six 

signaling codons were minimal.

We quantified the certainty or level of confidence of stimulus classification (classification 

margin; the probability assigned to the correct class minus the highest probability assigned 

to any of the incorrect classes) using all features, signaling codons, and subsets of signaling 

codons (Figure 3D). To examine the necessity of each signaling codon, we computed 

ΔΔMean Margin, which is the difference between the quantities obtained by (1) normalizing 

the mean classification margin obtained from six signaling codons by subtracting the mean 

classification margin obtained from all features to compute ΔMean Margin, and (2) 

normalizing the mean classification margins from all combinations of five signaling codons 

(all subsets where only one codon is missing). We used ΔΔMean Margin to interrogate the 

necessity of each signaling codon by computing the normalized difference in mean 

classification margin in the presence (set of six codons) and absence of each codon (all sets 

of five codons). This analysis revealed the stimulus-specific dependence of the classification 

certainty on each signaling codon: speed is important in classifying CpG and poly(I:C), peak 

amplitude is important for classifying Pam3CSK4, and oscillatory dynamics are important 

for classifying TNF (Figure 3D).
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To examine the necessity of each signaling codon in distinguishing doses, we quantified the 

ΔΔMean Margin across all doses for each ligand (Figures 3E, S3E, and S3F). The maximum 

ΔΔMean Margin across all doses of each ligand revealed that speed is important to 

distinguish doses of TNF, Pam3CSK4, and LPS, and “early versus late” activity is important 

to distinguish doses of poly(I:C). Furthermore, this analysis suggests that the importance of 

a signaling codon for classifying a ligand may differ from its importance in distinguishing 

the doses of that ligand (Figures 3D and 3E). Using binary classification of stimulated 

condition versus vehicle control indicated that ligand identification increases with the dose 

of the stimulus (Figure S3G), confirming the results of the information theoretic analysis 

(Figure 2D).

Increased signaling codon confusion in an autoimmune disease model

The availability of a validated machine learning classifier allowed us to quantify not only 

how precise stimulus identification is, but which other stimuli a given stimulus may be 

confused with. We characterized the points of confusion by quantifying classification 

accuracy (precision) in the matrix of five ligands, choosing their highest doses as they are 

most distinguishable (Figures 4A, S4A, and S4B). Correct classification of ligand identities 

occurred in the majority, but misclassifications (off-diagonal values) were not uniformly 

distributed. For example, while confusion of viral PAMP poly(I:C) and bacterial PAMP LPS 

was rare, it was more common between the bacterial PAMPs, LPS, and Pam3CSK4. Indeed, 

when we grouped ligands into their source classes such as host (cytokine), bacteria, or virus, 

we found that bacteria-derived ligands are reliably distinguished and show little confusion 

with either virus- or host-derived ligands (Figures 4B and S4D). To assess the dependence of 

classification performance on the number of trajectories, we sub-sampled the number of 

trajectories and evaluated the precision and sensitivity of classification (Figures S3H–S3L). 

This analysis revealed that performance reached saturation with just 50% of the data used in 

the original model training. Further, we compared the classification performance of 

signaling codons to time series data, and time series data transformed by an autoencoder: we 

found that signaling codons performed as well as time series data (Figure S3K) and fared 

substantially better than autoencoder-transformed time series data (Figure S3L).

We assessed whether a mouse model of SS (Peng et al., 2010), which mimics genetic 

variants of the regulatory region of the NFκB regulator IκBα found in human patients (Lisi 

et al., 2012; Nordmark et al., 2013; Ou et al., 2008; Sisto et al., 2013), may be associated 

with signaling codon confusion, such that cells exposed to one stimulus might in fact 

miscommunicate the presence of a different stimulus to nuclear target genes. We bred our 

mVenus-RelA reporter into this mouse model and then derived bone-marrow-derived 

macrophages for stimulation with the cytokine TNF, the bacterial PAMP LPS, and the viral 

PAMP poly(I:C) (Figure 4C). Unlike macrophages from healthy mice, these SS 

macrophages showed non-oscillatory NFκB trajectories in response to all stimuli (Figure 

S4E). Visualizing the distributions of the six signaling codons revealed that the stimulus-

specific deployment of particular NFκB signaling codons was impaired in macrophages 

from the Sjögren’s mouse model (Figure 4C). The stimulus specificity of the “oscillatory” 

codon was markedly diminished in SS macrophages, and the stimulus specificity of the 

“duration” and the “early versus late” codon was also affected.
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Then, we examined the accuracy of stimulus classification using the ensemble-of-decision-

trees algorithm (Table S6C). The mean margin scores of ligand classification were greatly 

diminished in SS macrophages, concomitant with an elevation in the false positive and false 

discovery rates for TNF and LPS (Figure 4D). Furthermore, the sensitivity of TNF and 

poly(I:C) classification in SS macrophages was greatly diminished (24.1%/44.2%, 

respectively, versus 80.3%/92.8% in healthy controls, Figure 4E), as there is increased 

confusion between poly(I:C) versus LPS, and TNF versus LPS. Similarly, the precision of 

TNF and LPS classification was greatly diminished (31.1%/58.9%, respectively, versus 

83%/91.5% in healthy controls, Figure S4F). These analyses indicate that SS macrophages 

have diminished ability to generate stimulus-specific NFκB signaling dynamics and suggest 

that signaling codon confusion and mistranslation may play a role in the etiology of sporadic 

inflammatory diseases.

NFκB signaling codon confusion diminishes the stimulus specificity of gene expression

We wondered whether the diminished specificity of NFκB activation dynamics affected the 

stimulus specificity of downstream gene expression. To this end, we stimulated macrophages 

as before but subjected them to single-cell RNA sequencing (scRNA-seq, using the 10X 

genomics platform) after 8 h, reasoning that gene expression follows transcription factor 

activation. After normalizing counts to library size and log transforming, we performed 

principal-component analysis (PCA) on Z-scored data and displayed the data on two-

dimensional UMAP plots using the top 20 principal components (Figure 5A). In healthy 

macrophages, expression clusters were readily distinguishable between unstimulated cells 

and cells stimulated with TNF, LPS, or poly(I:C). However, in SS cells, the distinction 

between TNF and poly(I:C) was slightly diminished.

We asked which genes may be affected in their expression specificity. We performed 

ANOVA (Figure S5A) and calculated channel capacity (Figure S5B) for each individual 

gene using the three stimulus conditions to determine genes that lose specificity in SS 

macrophages versus control. These two calculations provided a reasonably concordant 

ranking of genes contributing to differences in expression specificity in healthy versus SS 

macrophages (Figure S5C). Leveraging the pathway-target gene mapping of Cheng et al., 

2017, we found that NFκB target genes with long mRNA half-lives were especially strongly 

affected in their stimulus specificity (Figure 5B). One example gene ranked highly in loss of 

stimulus specificity is Ccl5, which shows a high degree of heterogeneity in expression in 

response to TNF, being expressed highly in a minority of cells in healthy macrophages, but 

in the vast majority of SS macrophages (Figure 5C). Thus, Ccl5 expression in SS 

macrophages is less distinguishable in whether it is induced by TNF or poly(I:C).

To characterize the overall stimulus-response specificity of macrophages, we used the top 

100 differentially expressed genes ranked by difference in ANOVA F statistic (Figure S5A) 

to train a random forest classifier with 10-fold cross-validation using 70% of single cells 

from the healthy macrophage population. Testing the trained model on the remaining held-

out data demonstrated that healthy macrophages distinguish between the three stimuli with 

>90% sensitivity, but testing the model on SS macrophages revealed that >20% of SS 

macrophages produced indistinguishable gene expression programs in response to TNF and 
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poly(I:C) (Figure 5D). Concordant with the machine learning results, top differentially 

expressed genes in healthy cells showed greater confusion between TNF and poly(I:C) 

(Figure S5D), with the classification false positive rate for TNF being about five times 

higher in SS cells than healthy cells (Figure S5E). In contrast, LPS-induced gene expression 

remained distinguishable, presumably because the LPS-specific MAPKp38 pathway 

provides for several LPS-specific induced genes regardless of altered NFκB dynamics 

(Figure 5B). The reduction in channel capacity was robust to subsampling the number of 

cells for which we had data (Figure S5F). Interestingly, the confusion was driven by the loss 

of stimulus-specific information associated with dozens of genes, as SS macrophages 

performed almost as well as healthy controls when considering just 100 genes (Figure 5E). 

Examining the genes that are more specific in healthy than in SS macrophages revealed gene 

ontology terms such as innate immune response (Figure S5G) and IRF binding motifs 

(Figure S5H) that are enriched in their regulatory regions. This suggests that the confusion 

of NFκB signaling oscillatory and duration codons diminishes the stimulus specificity of 

interferon stimulatory genes (ISGs) via the inappropriate expression of type I interferon. 

Type I interferon has long been associated with Sjögren’s pathologies (Marketos et al., 2019; 

Muskardin and Niewold, 2018).

Molecular circuits that produce signaling codons

Having identified essential dynamical features of NFκB activity for encoding ligand identity 

and dose, we sought to understand the molecular mechanisms that provide for the diversity 

of stimulus-specific dynamics. The known topology of the NFκB network is that signals 

emanating from receptor-associated signaling modules converge to activate canonical IKK, 

which functions as the input to the IκB-NFκB signaling module whose most prominent 

regulator is IκBα (Figures 6A and S6A). A prominent signaling codon that distinguishes the 

cytokine TNF from PAMPs is the oscillatory content. Using macrophages from an IκBα-

deficient mouse (interbred with the mVenus-RelA reporter, see STAR Methods), we found at 

the single-cell level that oscillatory dynamics are dependent on IκBα negative feedback 

(Figure 6B), in agreement with prior population level experiments (Fagerlund et al., 2015; 

Hoffmann et al., 2002).

Then, we asked whether the IκBα feedback loop may also mediate non-oscillatory 

responses characteristic of PAMPs or whether other IκB isoforms may be required. After 

adapting the mathematical model of the negative-feedback containing IKK-IκBα-NFκB 

signaling module to the primary macrophage (see STAR Methods), we examined its 

dynamical properties using Hopf-bifurcation analysis, specifically the propensity for 

oscillatory responses as a function of the magnitude of IKK activity (Figure 6C). The first 

bifurcation point defines the threshold between (1) “off” (indistinguishable from baseline 

activity) and (2) an oscillatory steady-state. As IKK activity increases, oscillation troughs 

rise in amplitude (3) though the period changes little. The second bifurcation point occurs as 

the system shifts to highly damped oscillations (4). Our analysis thus led to the prediction 

that non-oscillatory NFκB responses of LPS are not mediated by other IκB isoforms (IκBβ 
and IκBε), as previously hypothesized (Kearns et al., 2006; Thompson et al., 1995), but that 

the NFκB-IκBα feedback circuit alone could sustain such non-oscillatory behavior. To test 

this hypothesis, we bred our RelA-mVenus reporter into IkBb−/−IkBe−/− mice and measured 
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single-cell responses to TNF and LPS (Figure 6D). In this genotype, TNF induced an even 

higher fraction of oscillatory cells (95% versus 75% in wild-type, Figure 1G), while LPS 

responses were, as before, largely non-oscillatory. We conclude that both oscillatory and 

non-oscillatory NFκB dynamics may be generated by the IκBα-NFκB signaling module; 

the deployment of the oscillatory signaling codon is determined merely by controlling the 

amount of IKK activity over time.

To build a full, multi-stimulus model capable of generating proper IKK activity time courses 

in response to any of the ligands and doses used in this study, we carefully examined the 

regulatory mechanisms associated with each ligand receptor (Figure S6A) and drafted 

ordinary differential equations to describe them. Parameter values were based on prior 

literature (Table S7) and adjusted to produce model simulations of NFκB that qualitatively 

matched trajectories of median-responding cells in each tested condition (Figures 6E–6I). 

For TNF and LPS, available literature datasets on receptor and IKK dynamics were fit 

(Figures S6B and S6C). Within the core IKK-IκB-NFκB module, multi-parameter sampling 

confirmed that the oscillatory-non-oscillatory distinction based on the magnitude of IKK 

activity was a robust feature (Figure S6D). This conclusion was further supported by the 

observation that when macrophages are costimulated with oscillation-producing TNF and 

the non-oscillatory dynamics producing CpG, the resulting NFκB trajectories are non-

oscillatory (Figure S7A). Quantitative analysis of these data revealed that the distributions of 

the “oscillatory,” “duration,” “speed,” and “early versus late” codons are nearly 

indistinguishable in response to CpG + TNF and CpG alone, though they are distinguishable 

in response to TNF alone (Figure S7B). In addition, model-simulated IKK trajectories 

(Figures 6E–6I) were tested at key time points using immunoblotting of the active, 

phosphorylated IKK species (Figures S7C–S7G) and revealed a general concordance in this 

semiquantitative comparison. While this increases our confidence in the insights derived 

from the model, we cannot rule out alternative models or mechanisms.

Signaling within each signaling module is governed largely by the kinetic properties of a few 

constituents such as ligand half-life, receptor downregulation and replenishment, and the 

dose response properties of the receptor-associated signaling adaptor. For example, in the 

case of TNF, rapid receptor downregulation and short ligand half-life (Cheong et al., 2006; 

Werner et al., 2008) diminish IKK activity into a regime that allows for deployment of the 

“oscillatory” codon and the dose-dependent deployment of the “duration” codon, 

respectively (Figure 6E). For Pam3CSK4 and CpG (Figures 6F and 6G), the signaling 

characteristics of cooperative adaptor interactions lead to digital dose response behavior 

(Cheng et al., 2015) and low values for the “oscillatory” (due to high IKK activity) and 

“duration” codons at high doses. In the case of LPS-TLR4 (Figure 6H), the combination of 

ultrasensitive and linear dose response behavior of MyD88 and TRIF adaptors (Cheng et al., 

2015; Kellogg et al., 2015), aided by CD14-mediated TLR4 internalization (Zanoni et al., 

2011), provide for dose-dependent deployment of the “oscillatory” and “total activity” 

signaling codons. In contrast, endosomal availability of TLR3 and poly(I:C) (O’Mahony et 

al., 2008) limit the “response speed” codon but allow for long duration (Figure 6I). Overall, 

the comparison of five signaling modules revealed shared molecular circuit design principles 

whose pathway-specific parameter values yield diverse ligand- and dose-specific 

deployment of NFκB signaling codons.
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Oscillatory NFκB dynamics are a hallmark of paracrine TNF signaling

Overall, model simulations qualitatively matched measured trajectories at the respective 

doses. However, we identified a notable discrepancy in the responses of the MyD88-

dependent pathway downstream of TLR9 at low doses (33 nM CpG, Figure 6G). 

Simulations in this condition did not show substantial NFκB activation, but the measured 

trajectories showed oscillatory responses.

To address this discrepancy, we noticed that within the population of diverse responses to 

CpG, oscillatory trajectories were generally slightly delayed compared to transient and non-

oscillatory trajectories (Figure 7A). We therefore wondered whether cytokine feedback, 

especially by TNF (Caldwell et al., 2014), not represented in the simple mathematical 

models might be responsible for this discrepancy between model simulations and 

experimental observations. Indeed, we found that a small but statistically significant amount 

of TNF was detectable in the cell culture medium at the early 5-min time point of CpG 

stimulation (Figure 7B). Furthermore, flow cytometry for the TNF receptor revealed a rapid 

internalization of TNFR1 not only in response to TNF but also CpG, which was also TNF-

dependent (Figure 7C). To test whether paracrine TNF signaling was in fact responsible for 

oscillatory NFκB responses, we measured single-cell dynamic responses to CpG in the 

presence or absence of saturating levels of recombinant soluble TNFR2 (Figure 7D). We 

noted a substantial decrease in oscillatory trajectories, and the fraction of non-responding 

cells increased in the TNF blocking condition (Figures 7D and 7E). Similar observations 

were made with LPS (Figures S7H and S7I). Our data suggest that TNF produces oscillatory 

NFκB activity within cell populations exposed to low levels of CpG. We imagine that cells, 

which are unresponsive to CpG due to, for example, low TLR9 levels, may still respond to 

TNF produced by cells in the population that are responsive to CpG, possibly because of 

higher levels of TLR9 (Figure 7F). Thus, in the context of MyD88-mediated PAMPs, 

oscillatory NFκB may be an indicator of paracrine signaling by host factor TNF.

DISCUSSION

In this work, we report the identification of six dynamical features that characterize 

complex, stimulus-specific time-course trajectories of NFκB activities in single primary 

macrophage cells. Using information-theoretic and machine learning approaches, we show 

that these function as codewords (termed “signaling codons”) to convey information about 

the extracellular environment to nuclear target genes. In an inflammatory disease mouse 

model, diminished ligand-specific deployment of two signaling codons—“oscillation” and 

“duration”—results in greater confusion of ligand sensing and diminished stimulus 

specificity in gene expression that may contribute to the pathology. Our investigation of the 

molecular mechanisms underlying the stimulus-specific generation of NFκB signaling 

codons revealed simple circuit motifs responsible for each; and it revealed that NFκB 

oscillations observed in macrophages are in fact often a hallmark of paracrine TNF.

These findings were made possible by our development of experimental and computational 

tools that provided an unprecedented quantity and quality of experimental data of NFκB in 

primary cells responding to diverse immune threats. As cell lines show reduced 

responsiveness (Cheng et al., 2015), and ectopic expression of reporters can lead to 
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artifactual oscillatory dynamics (Barken et al., 2005), we generated the NFκB RelAV/V 

mouse strain allowing us to image primary macrophages, the cell type that functions as the 

sentinels of the immune system. We were able to study the specificity of NFκB responses to 

many stimulus conditions encompassing multiple doses of pathogen-derived and host-

derived ligands to which these primary macrophages respond vigorously. A robust 

automated image analysis pipeline, and described information-theoretic analysis and 

machine learning classification workflows, enabled a rigorous, quantitative analysis of over 

4.9 million single-cell data points derived from 44 distinct time-course conditions, not 

including biological replicates.

To identify signaling codons, i.e., informative dynamical features, we employed an 

information theoretic framework. Previous applications of an information theoretic 

framework related the timeseries of nuclear NFκB abundance at either one or several time 

points to different doses of stimulus (Cheong et al., 2011; Selimkhanov et al., 2014). While 

it was shown that time course measurements can provide more information about ligand and 

dose than a single time point (Selimkhanov et al., 2014), it remained unclear which 

dynamical features are important in conveying this information. Prior studies sought to 

characterize temporal NFκB trajectories in terms of ad hoc-defined dynamical features such 

as duration (Hoffmann et al., 2002; Werner et al., 2005) or “inter-peak time/frequency” 

(Hughey et al., 2015). However, these features were not tested for information content, 

though some appear to correlate with gene expression responses (Lane et al., 2017; Martin et 

al., 2020). Our datasets and analytical workflow allowed for an unbiased evaluation of 

hundreds of potential features and yielded six that essentially define stimulus-specific NFκB 

dynamics for the five ligands at multiple doses tested here. As these dynamic signaling 

features optimally provide the nucleus with information about the extracellular environment, 

they are codewords of a signaling code. We showed that signaling codons identified by the 

information-theoretic approach are sufficient for a machine to learn to correctly classify 

NFκB trajectories in terms of stimulus and dose. Interestingly, inter-peak time or “period” 

were not represented (i.e., frequency is not stimulus specific), but instead, the presence or 

absence of oscillatory content emerged as an important signaling codon—it is key to 

distinguishing PAMP-responsive and cytokine TNF-responsive NFκB dynamics. It will be 

of interest if additional datasets from macrophages or other cell types will yield additional 

codewords of the NFκB signaling code.

We have begun to characterize the key mechanisms that encode the six signaling codons of 

the NFκB signaling code. Building upon prior mathematical models that have investigated 

NFκB dynamics in response to a single ligand in immortalized cell lines (Basak et al., 

2012), the model presented here recapitulates both oscillatory and non-oscillatory 

trajectories in primary macrophages in response to five ligands at several different doses and 

provides insights into the molecular mechanisms. As the IκB-NFκB signaling module is 

common to all stimulus-response pathways, and the IκBα negative feedback loop indeed 

supports both oscillatory and non-oscillatory activities (our finding), stimulus-specific 

deployment of the six signaling codons depends on the biochemical characteristics of 

components in the receptor-associated signaling modules. Key characteristics are (1) the 

ligand half-life, as short half-lives (e.g., TNF) render the duration of the response dependent 

on stimulus concentration (Barken et al., 2005; Cheong et al., 2006); (2) the receptor 

Adelaja et al. Page 12

Immunity. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



translocation and replenishment rates that may either allow for post-stimulation shutdown or 

second phase signaling (Becker et al., 2010); (3) the dose response of the adaptor (TRAFs, 

MyD88, TRIF), as, for example, oligomerized MyD88 tends to digitize responses, but TRIF 

does not (Cheng et al., 2015); and (4) the deactivation kinetics of adaptors and ubiquitin 

chain networks that are likely key determinants of the termination of signaling but require 

further biochemical characterization. While the present model qualitatively recapitulates 

representative NFκB trajectories for each stimulus, developing a model that quantitatively 

recapitulates the heterogenous population response will require innovations in parameter 

fitting such a large model and in developing an objective function that captures biological 

meaningful information of each stimulus response.

It is well established that the temporal trajectories of NFκB activity are correlated with gene 

expression (Gutschow et al., 2019; Hoffmann et al., 2002). Prior work has described 

molecular mechanisms that particular target genes employ to “decode” specific NFκB 

signaling codons. “Peak amplitude/fold change” for example, was described to be sensed 

effectively by an incoherent feedforward loop involving the NFκB-responsive generation of 

p50 homodimers (Lee et al., 2014a). Stimulus-specific duration was found to be 

differentiated by two mechanisms; whereas stimulus-specific expression of core regulators 

of the inflammatory response was mediated by an mRNA half-life of a few hours, pro-

inflammatory initiators tend to employ a chromatin-based mechanism that involves the 

movement of a nucleosome (Sen et al., 2020). However, the oscillatory/non-oscillatory 

codon does not seem to control the stimulus-specific expression of NFκB primary response 

target genes (Barken et al., 2005). Our scRNA-seq data indicate that the stimulus-specific 

deployment of the oscillatory codon is critical to ensuring the stimulus-specific activation of 

the IRF/IFN pathway. This is an important insight that may explain the connection between 

inflammatory dysregulation of NFκB and the interferon dysregulation associated with 

autoimmune disease (Marketos et al., 2019; Muskardin and Niewold, 2018). However, the 

mechanism by which the “oscillatory” codon is decoded by immune response genes requires 

further study. Because immune response genes are regulated by multiple transcription 

factors, the misregulation of one may not result in misregulated immune response gene 

expression.

A hallmark of all single-cell datasets is the heterogeneity within an isogenic, identically 

stimulated population. Hence, it is not surprising that the stimulus specificity of the 

dynamical features identified here is by no means perfect, and that a machine learning 

classifier applied to all features or the six most informative signaling codons revealed some 

confusion, particularly among the NFκB responses to three bacterial PAMPs. Confusion 

here means, for example, that some (but not all) cells stimulated with CpG produce NFκB 

responses that are indistinguishable from some (but not all) cells stimulated with 

Pam3CSK4. We suggest that the capacity (or lack thereof; i.e., confusion) for mounting 

specific responses is a fundamental, functional characteristic of macrophages as immune 

sentinel cells. Furthermore, given a macrophage’s functional plasticity, we expect that this 

capacity for stimulus discrimination be similarly tuned—determined by the context of 

microen-vironmental cytokines and exposure histories. In this study, macrophages derived 

from a mouse model of the systemic inflammatory disease, Sjögren’s syndrome, showed 

increased levels of ligand confusion. This particular model involves genetic variants in the 
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IκBα promoter, but the impact on NFκB signaling dynamics at the single-cell level was 

unknown. While cells are capable of responding to diverse immune threats, the reduction in 

specificity adds to our understanding of this systemic autoimmune disease and may 

contribute to its etiology. Future studies will address whether other autoimmune or 

inflammatory diseases may in fact be triggered by a diminished response specificity or 

increased confusion to diverse immune stimuli.

Limitations of study

The present study identifies six informative dynamical features (signaling codons) within 

diverse temporal NFκB activation dynamics in macrophages. It is likely that in other 

stimulus conditions or cell types, or when studying other signal transducers, other dynamical 

features may be identified that are critical for accurate classification of immune threats. 

Thus, signaling codes are not as universal and uniformly precise as the genetic code, but 

context dependent, evolving, and subject to imprecision, as oral language. While we show 

that the stimulus-specific deployment of two signaling codons is defective in macrophages 

derived from a Sjögren’s mouse model, we have not shown whether or how that defect 

causally relates to the reported loss in stimulus-specific gene expression. Furthermore, 

whether or how those molecular-level observations causally relate to the pathology of 

Sjögren’s syndrome in humans requires further study—the current work merely motivates 

the articulation of a hypothesis: that the etiology of some inflammatory diseases may be 

signal confusion based on defective signaling codon deployment.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Alexander Hoffmann 

(ahoffmann@ucla.edu)

Materials availability—Mouse lines generated in this study are available upon request.

Data and code availability—All data are available at https://data.mendeley.com/datasets/

6wksmvh5p4/draft?a=832656ba-2bde-40a4-8bbc-4cecb1d9543d. Software for image 

processing available at https://github.com/brookstaylorjr/MACKtrack. Software for 

computational simulations of NFκB dynamics is available at https://github.com/

Adewunmi91/nfkb_model.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse models—The mVenus-RelA (RelAV/V) endogenously-tagged mouse line was 

generated by Ingenious Targeting Laboratory. A donor sequence encoding the monomeric 

variant of the Venus fluorescent protein (Koushik et al., 2006) joined by a short flexible 

linker sequence directly upstream of the start codon of the murine Rela locus was used to 

generate, via homologous recombination, a tagged embryonic stem cell line, that was 

implanted to yield heterozygous mice. These mice were then bred with a mouse line 

constitutively expressing the Flp recombinase to remove the Neo resistance marker included 
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in the homologous donor sequence. We then back-crossed the resultant mice with wild-type 

C57BL/6J mice to remove the Flp background and generate homozygously tagged mice 

(RelAV/V). mVenus-RelA mice were crossed into a IκBα−/−TNF−/+cRel+/− line (TNF and 

cRel heterozygosity are required to rescue embryonic lethality of the IκBα−/− genotype) 

(Shih et al., 2009), as well as into an IκBβ−/− IκBε−/− line (Hoffmann et al., 2002). For the 

Sjӧgren’s syndrome mouse model, we crossed mVenus-RelA mice into a strain that harbors 

mutated κB sites in the IκBα promoter (Peng et al., 2010).

Macrophage cell culture—Bone marrow-derived macrophages (BMDMs) were prepared 

by culturing bone marrow monocytes from femurs of 8–12 week old mice in CMG 14-12-

conditioned medium using standard methods (Cheng et al., 2015; Takeshita et al., 2000). 

BMDMs were re-plated in experimental dishes on day 4, then were stimulated on day 7. 

BMDMs were stimulated with indicated concentrations of lipopolysaccharide (LPS, Sigma 

Aldrich), murine TNF (R&D), a TLR1/2 agonist, the synthetic triacylated lipoprotein 

Pam3CSK4 (PAM), a TLR3 agonist, low molecular weight polyinosine-polycytidylic acid 

(poly(I:C) (PIC)), a TLR9 agonist, the synthetic CpG ODN 1668 (CpG).

METHOD DETAILS

Biochemical assays—For immunoblots of whole cell lysates, bone-marrow derived 

macrophages were replated on day 4 at 20,000/cm2 in 6-cm dishes or 6-well plates. After 

stimulation on day 7, sample buffer was added directly after washing cells with PBS. 

Immunoblots followed standard procedure with anti-RelA (sc-372, Santa Cruz 

Biotechnology), anti-pIKK (CST2697), and anti-IKK2 (CST2678). Western blot band 

intensities were quantified using ImageJ. Nuclear extract preparation and electrophoretic 

mobility shift assays followed published procedures (Caldwell et al., 2014).

Live-cell imaging—Bone-marrow macrophages were replated on day 4 at 20,000 or 

15,000/cm2 in an 8-well ibidi SlideTek chamber, for imaging at an appropriate density 

(approx. 60,000/cm2) on day 6 or day 7. 2 h prior to stimulation, cells were incubated for 5 

min at room temperature in a solution of 2.5 ng/mL Hoechst 33342 in PBS, then BMDM 

culture media was replaced. This staining condition was optimized to ensure no loss of cell 

viability and no aberrant morphological changes over a 24 h period of imaging in the 

conditions described below. Cells were imaged at 5-min intervals on a Zeiss Axio Observer 

platform with live-cell incubation, using epifluorescent excitation from a Sutter Lambda XL 

light source. Images were recorded on a Hamamatsu Orca Flash 2.0 CCD camera. After the 

start of imaging, additional culture media containing stimulus (TNF, LPS, poly(I:C), CpG, 

or Pam3CSK4) was injected into the chamber in situ. We have documented the reliability of 

the imaging workflow by establishing that distinct biological replicates give reproducible 

data (Figure S1D) and that distinct imaging frames of the same well provide reproducible 

data (Figure S1E). All data are available at https://data.mendeley.com/datasets/6wksmvh5p4/

draft?a=832656ba-2bde-40a4-8bbc-4cecb1d9543d.

Measurement of TNF secretion and surface TNF receptor expression—To 

measure TNF secretion, bone-marrow macrophages were replated on day 4 at 25,000/cm2 in 

a 96-well format. On day 6, media was refreshed with 80 μL media containing indicated 
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treatment (TNF, LPS, or CpG). Supernatants were collected from wells, in triplicate, at 

indicated time points, using procedures from the murine TNF alpha ELISA Ready-SET-Go! 

kit (eBioscience #88-7324-88). To optimize assay sensitivity, measurement was performed 

in a half-area 96-well plate (Corning #3690), and sample incubation was performed 

overnight at 4°C. Fluorescence measurements were performed using a standard 

spectrophotometer.

To measure surface receptor expression, bone-marrow-derived macrophages were replated 

on day 4 at 20,000/cm2 in 6-cm dishes. On day 6, media was refreshed with 3 mL media 

containing indicated treatment (TNF, LPS, or CpG). At indicated time point, media was 

rinsed out with cold PBS. Cells were incubated with fluorophore-conjugated antibodies for 

TNFR1, CD11b, and F4/80 (Bio-Legend #113005, eBioscience #11-0112-82, eBioscience 

#12-4801-82) and analyzed, in triplicate by flow cytometry. Antibody concentration and 

staining conditions were performed according to manufacturer recommendations. Stained 

cells were measured using an Accuri C6 Flow Cytometer (BD Biosystems). Fluorescence 

compensation and live/dead cell filtering was performed in FlowJo v10.

Measurement of single cell RNA-seq expression—BMDMs were generated from 

12-week-old WT and Sjögren’s Syndrome mice, re-plated in experimental dishes on day 5 

of differentiation, and stimulated on day 7 for 8 h with 100 ng/mL lipopolysaccharide (LPS, 

Sigma Aldrich), 10 ng/mL murine TNF (R&D), and 50 μg/mL low molecular weight 

polyinosine-polycytidylic acid (poly(I:C)), or media only (Untreated control). Cells were 

then lifted into suspension by incubating at 37 C for 5 min using Accutase, labeled with 

TotalSeqB hashtag antibodies (TotalSeq-B0305 – B0308 anti-mouse Hashtag Antibody) and 

pooled, and captured using the 10x single cell sequencing protocol. Cell viability was 

ensured to be > 90% at the time of capture. Libraries were prepared with the Chromium 

Single Cell 3′ GEM Kit, Version 3.1 Chemistry. Hashtag libraries made using the 

Chromium Single Cell 3′ Feature Barcode Library Kit. Samples were sequenced paired-end 

2×50 on an Illumina NovaSeq 6000 instrument.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis—Microscopy time-lapse images were exported for single-cell tracking 

and measurement in MATLAB R2016a. The tracking routines followed those used in earlier 

work (Selimkhanov et al., 2014). Briefly, cells were identified using DIC images, then 

segmented, guided by markers from the Hoechst image. Segmented cells were linked into 

trajectories across successive images, then nuclear and cytoplasmic boundaries were saved 

and used to define measurement regions in other fluorescent channels, including mVenus-

NFκB. Nuclear NFκB levels were quantified on a per-cell basis, normalized to image 

background levels, then were baseline-subtracted. Mitotic cells, as well as cells that drifted 

out of the field of view, were excluded from analysis. The toolboxes used for this analysis 

are available at https://github.com/brookstaylorjr/MACKtrack.

Channel capacity calculation and signaling codon identification—As there are 

~9.3 × 1016 seven-dimensional combinations of 918 features (Table S3) and each channel 

capacity calculation takes ~90 s per combination, evaluating channel capacity of all 
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combinations of features would take ~2.3 × 1015 h (~2.7 × 1011 years) to compute and is 

therefore is computationally infeasible. To narrow the search space, we utilized a feature 

selection approach. Since the channel capacities of individual features combine nonlinearly, 

there is no guarantee a high-ranking feature in low dimensional space will also be a subset of 

a high-ranking feature vector in high-dimensional space. Consequently, we utilized a 

forward feature selection approach that balances channel capacity rankings in lower 

dimensional space and diversity of candidates. Channel capacity calculations are performed 

on single dimensional features, ranked, and a subset of features above a threshold are 

selected to maximize diversity. As such 1D candidates are combined to form a set of 2D 

feature vectors. Channel capacity calculations are calculated on the 2D feature vectors, 

ranked and selected as in the 1D case. This iterative ranking and selection processes are 

repeated until additional dimensions offer no gain in channel capacity (Table S4).

Algorithmic detailed: We used Shannon’s information theoretic framework to correlate the 

stimulus condition to dynamical features extracted from temporal trajectories of NFκB 

activity.

noise

X communication cℎannel Y

X =  stimulus condition

Y = NFκB dynamical features

C(Q)=I(Y  ; X)

I(Y ; X) = Hdiff (Y ) − Hdiff (Y ∣ X)

Hdiff (X) = ∑i = 1
m qiHdiff  X = xi = − ∑i = 1

m qi∑j = 1
ni 1

ni
log2 f X = xi

Hdiff (Y ) = − ∑i = 1
m qi

ni ∑j = 1
ni log2 f Y = yij

f(Y = y) = ∑w = 1
m qwf Y = y ∣ X = xw
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Hdiff (A) = − ∑j = 1
Na δjlog2 f aj ,  wℎere δj =  probability of observing aj

f(A) = k
NaV dz(A) d

k

V d = π
2
σ

Γ d
2 + 1

Hdiff (Y ∣ X) =  conditional entropy

m =  number of stimulus conditions

n =  number of cells in a condition

qi =  probability of observing a stimulus

xij = a single cell′s response

k =  number of neigℎbors used in kNN estimate of marginal distribution of Y

d =  vector dimension

δj =  probability of observation

Controlling for different sample sizes: Jackknife resampling was used to control for 

different sample sizes by calculating channel capacity for differently-sized subsets and 

extrapolating to an infinite sample size.

nc=24
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Setting threshold

1. t 1
2

[1:6]
− 1

2
[1:6]

2. t1←0.3

3. If d > 6 then t←[t,0.1*1d−6]

Fori = 1…d

1. Compute channel capacity by optimizing over marginal distribution of X

a. For j = 1…k

i. cj←I(xj; Y)

ii. qj←argmaxPXI(xj; Y)

2. Select a subset of feature vectors whose channel capacity values exceeds ti

a. X*←{xj|cj > ti}}

b. Q*: = argmaxPXI(X*; Y)

3. Select a subset of feature vectors that maximizes diversity of marginal 

distributions

a. Select feature vector that yields the maximum channel capacity

x xj* ∣ cj = max(c) ,  equivalently x argmaxx*I(X; Y )

b. Construct a set of feature vectors containing the x and feature vectors 

whose marginal distributions, qj, are most orthogonal to 

q argmaxPXI(x; Y )

c. x1
o x, q1

o q

i. Form = 2…nc

1. Qc: = q ∣ q ∈ Q* q ∉ Q0

2. qmo argminQc Q° − Qc
2

3. xmo xj* ∣ qj* ≡ qmo

Machine learning classification

Construction of classification models: We trained an ensemble of 100 decision trees using 

the fitcensemble function from the Statistics and Machine Learning Toolbox from 

MathWorks. Decision tree models are simple, highly interpretable, and can be displayed 

graphically (James et al., 2013). Consequently, the decision process of the classifier can be 

easily interrogated. However, decision tree models have two key disadvantages: (1) 
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mediocre prediction performance (Caruana and Niculescu-Mizil, 2006) and (2) high 

variance due to overfitting (James et al., 2013). Both disadvantages can be mitigated by 

aggregating an ensemble of decision trees. Empirical comparison of classification models 

shows that ensembles of decision trees outperform other classification algorithms across a 

variety of problem sets (Caruana and Niculescu-Mizil, 2006).

We used a bootstrap aggregation (bag) method for constructing the ensembles. Each tree in 

the ensemble is trained on a boot-strapped replica of the data—each replica is a random 

selection of the data with replacement. The predictions from the ensemble model are 

determined by a majority vote from each individual tree prediction. We trained the ensemble 

to learn the stimulus labels (TNF, Pam3CSK4, CpG, LPS, and poly(I:C)) from either the 

entire set of predictors (all 918 metrics, Table S6A) or a subset of predictors termed 

“signaling codons” (Table S6B).

Decision tree parameters: To construct each decision tree, the software considers all 

possible ways to split the data into two nodes based on the values of every predictor. Then, it 

chooses the best splitting decision based on constraints imposed by training parameters, such 

as the minimum number of observations that must be present in a child node (MinLeafSize) 

and a predictor selection criterion. The software recursively splits each child node until a 

stopping criterion is reached. The stopping criteria include (1) obtaining a pure node that 

contains only observations from a single class, (2) reaching the minimum number of 

observations for a parent node (MinParentSize), (3) reaching a split that would produce a 

child node with fewer observations than MinLeafSize, and (4) reaching the maximum 

number of splits (MaxNumSplits). We used default values for MinLeafSize, MinParentSize, 

and MaxNumSplits: 1, 10, sample size − 1, respectively (MathWorks, 2017). Loadings for 

classification models are listed in Table S6.

Since the standard prediction selection process at each node may be biased, we used a 

predictor selection technique, interaction-curvature test, which minimizes predictor selection 

bias, enhances interpretation of the model, and facilitates inference of predictor importance. 

The interaction-curvature technique selects a predictor to split at each node based on the p-
values of curvature and interaction tests. Whereas the curvature test examines the null 

hypothesis that the predictor and response variables are unassociated, the interaction test 

examines the null hypothesis that a pair of predictor variables and the response variable are 

unassociated. A node with no tests that yield p-values ≤ 0.05 is not split. At each node, the 

predictor or pair of predictors that yield the minimum significant p-value (0.05) is chosen for 

splitting. To split the node, the software chooses the splitting rule that maximizes the 

impurity gain—difference in the impurity of the node (calculated using Gini’s diversity 

index) and the impurity of its children nodes (MathWorks, 2017).

Evaluation: We evaluated the performance of the classifiers using 5-fold cross-validation, or 

out-of-bag (OoB) validation, or an independent testing dataset. The OoB validation is 

virtually identical to K-fold cross-validation (Hastie et al., 2001) and imposes minimal 

computation costs. K-fold cross-validation increases the computational time by K fold. OoB 

is defined for bagged ensembles of decision trees (Hastie et al., 2001); whereas K-fold cross-

validation can be used agnostic of the classification algorithm and is ubiquitous. We used 
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OoB validation primarily to evaluate dose prediction models, which can be computationally 

impractical when the number features get large and K-fold cross-validation is used. We used 

the following performance metrics: true positive rate (recall), positive predictive value 

(precision), area under the Receiver Operating Characteristic (ROC) curve, F1 score, 

Matthews correlation coefficient, markedness, informedness and mean classification margin 

(Akosa, 2017; Powers, 2007; Vihinen, 2012).

Dose binary classification: A series of bagged decision trees were trained to classify no 

treatment controls and each stimulus (each dose of each ligand). The following 

hyperparameters were optimized using fitcensemble function in MATLAB: 

NumLearningCycles, MinLeafSize, MinParentSize, and MaxNumSplits were 33, 5, 2, and 

100 respectively. The models were evaluated using 5-fold cross-validation. The performance 

metrics for the doses of each ligand were fitted to a polynomial curve using the fit function 

and poly3 parameter.

Feature randomization: Features were selected at random to match the number of 

component features in codewords feature set (11) using the randsample function in 

MATLAB. The regenerator used was mlfg6331_64. The features were sampled 5 times. The 

performance values were averaged using arithmetic mean.

Feature autoencoding: We used a stacked autoencoder design with two autoencoders 

applied sequentially using trainAutoencoder and encode functions in MATLAB. The 

parameters for the first autoencoder are as follows: MaxEpoch, 400; 

L2WeightRegularization, 0.004; SparsityRegularization, 4; SparsityProportion, 0.15; 

ScaleData, false.

The parameters for the second autoencoder are as follows: MaxEpoch, 100; 

L2WeightRegularization, 0.002; SparsityRegularization, 4; SparsityProportion, 0.1; 

ScaleData, false.

Analysis of single cell RNA-seq data—Reads were aligned to mm10 using the 10x 

Cell Ranger software, version 4.0. Data was processed using Cell Ranger count to obtain a 

counts matrix. Data was filtered by removing cells with fewer than 1500 features. TotalSeqB 

hashtag labels were assigned to cells when > 75% of the cell’s hashtag reads came from one 

barcode. The Seurat R package (Stuart et al., 2019) was used to normalize the counts. PCA 

was run on scaled data, and Uniform Manifold Approximation and Projection (UMAP) was 

run through the Seurat R package using the top 20 principal components on WT and SS cells 

together.

To determine which genes had high stimulus-specificity, ANOVA was performed for each 

gene for only the three stimulus conditions in WT and SS. Estimation of maximum mutual 

information was performed using the R package SLEMI (Jetka et al., 2019). Machine 

learning was performed by training a random forest classifier, as implemented in the 

package CARET (Kuhn, 2008), on 70% of the WT data for the three stimulus conditions, 

using 10-fold cross-validation repeated three times, and with the mtry parameter set to sqrt(# 

of features). The metric used to evaluate the trained model was Accuracy, since the classes 
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were relatively balanced. Differentially expressed genes displayed in heatmaps were found 

using Wilcoxon Mann Whitney U tests on each stimulus condition versus others, and the top 

20 genes from each condition were merged for display. GSEA was run using the package 

fastGSEA (Korotkevich et al., 2019) on a list of genes ranked by the WT-SS difference in 

ANOVA F statistic, and motif analysis on the top 1000 ranked genes was done using 

HOMER (Heinz et al., 2010) against a whole genome background (Heinz et al., 2010; 

Korotkevich et al., 2019).

Mathematical modeling

Model structure: Several related models of NFκB activation in response to TNF have been 

established and iteratively parameterized (Ashall et al., 2009; Hoffmann et al., 2002; Tay et 

al., 2010), and used as a basis for modeling the NFκB response to LPS and other stimuli in 

immortalized cell lines with exogenously introduced (and overexpressed) fluorescent RelA 

(Cheng et al., 2015; Kellogg and Tay, 2015). The model presented here to account for NFκB 

dynamics in primary macrophages is closely based on these previous studies, inheriting 

identical model topologies where possible and minimizing any changes to parameter values.

Key experimental data constraints: As a first step toward parameterizing our model, we 

quantified characteristics of oscillatory endogenous BMDM signaling. We observed only 

slight differences in peak periodicity and amplitude between conditions (roughly a 10-min 

difference in median period for the lowest dose of TNF which induced robust oscillations, 

0.33 ng/mL, and the highest dose tested). We did, however, observe pronounced differences 

in duration as the dose of TNF is increased (Figure S1F). Median period was determined to 

generally fall within 90–95 min, in the same range of oscillations measured in other cell 

types (Ashall et al., 2009; Tay et al., 2010).

The oscillatory frequency appeared to be remarkably stable across an extremely broad range 

of induction levels. Indeed, the variation observed across single cells in a particular 

condition (or even within the same cell) is much smaller than any differences in oscillations 

observed between conditions. Even when other stimuli are considered, the “signature” first 

harmonic of the oscillatory subpopulation remains consistent. This consistency across a 

wide range of input conditions agrees, notably, with predictions made using simplified 

discrete delay model of the NFκB network (Longo et al., 2013). These delays could 

plausibly arise from IkB mRNA (measured to be some 10–12 min) (Mor et al., 2010) and 

protein processing.

Biochemical assays indicate that the major difference between TNF and LPS-induced IKK 

activation is not in the maximum amplitude, but the duration of IKK induction (Shih et al., 

2009; Werner et al., 2005). TNF strongly but transiently activates IKK. Peak IKK activity is 

limited in duration by rapid internalization and degradation of the ligand-bound receptor 

(Mosselmans et al., 1988; Watanabe et al., 1988; Werner et al., 2008). LPS-bound TLR4 is 

also rapidly internalized, but continues to strongly activate IKK from the endosome (Zanoni 

et al., 2011). This difference is reflected in single-cell NFκB activation: while the speed of 

NFκB activation (roughly proportional to the peak of IKK activity) is similar between TNF 
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and LPS, sustained high levels of IKK activity in response to LPS leads to higher peak 

activity (Figures S5B and S5C).

Model fitting: The model was first fit for TNFR signaling and TLR4 signaling, as prior 

work established mathematical models that recapitulate population level data (Cheng et al., 

2015; Werner et al., 2008). For the IKK-IκB-NFκB core module, model topology and 

parameters were confined to be near previously established values (Table S7). We performed 

a multidimensional sweep of transport rates and found a narrow range of parameters that 

could account for the observed frequency invariance, with high IKK activity diminishing 

oscillatory behavior (Figure S5D). Subsequent fitting to representative NFκB trajectories 

(using rmsd as distance metric) allowed us to optimize other parameters, including the 

induced synthesis rate constant of IκBα and the activation rate constant of IKK. For the 

receptor-associate modules, we required the model to recapitulate rapid IKK de- and re-

activation (Behar et al., 2013), which allowed IKK responses to be both adaptive (in the case 

of TNF) and long duration (as in TLR4 responses). We employed a screen where repeated, 

random initialization of parameters (within an iteratively narrower range) was followed by 

their optimization via gradient descent (fmin function), fitting model simulations to 

representative NFκB trajectories. This two-stage sweep/fitting process was repeated until 

parameter values converged and fits to NFκB trajectory data could no longer be improved.

To parameterize the TLR1/2, TLR3, and TLR9 associated signaling modules, we used prior 

estimates of each receptor’s abundance in monocytes/macrophages (O’Mahony et al., 2008) 

to estimate synthesis and degradation rates. In many cases, receptor-ligand affinities were 

also known (Leonard et al., 2008; Nakata et al., 2006; Rutz et al., 2004) and were therefore 

used to estimate association and dissociation of the receptor. The kinetics of each receptor’s 

association with a downstream adaptor (TRIF or MyD88) were taken from estimates from 

our TLR4 model. NFκB responses to TLR9 were observed to be more transient than to 

either TLR4 or TLR1/2, in agreement with previous data (Caldwell et al., 2014) and the 

observed self-inactivation of TLR9 (Lee et al., 2014b).

The software to run the model is available at https://github.com/Adewunmi91/nfkb_model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Primary macrophages produce ligand- and dose-specific NFκB activation 

dynamics

• Six dynamical features, i.e., codons, inform the nucleus about the stimulus

• Oscillations inform about host-cytokine TNF, not MyD88-mediated immune 

threats

• Machine learning reveals substantial codon confusion in Sjögren’s 

macrophages

Adelaja et al. Page 28

Immunity. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Complex NFκB dynamics induced by diverse immune threats
(A) Schematic of the innate immune signaling network activating NFκB. Environmental 

information is transmitted via ligand-specific signaling pathways that converge on a few key 

transcription factors, including NFκB, but produce stimulus-specific physiological 

responses.

(B) Workflow diagram: a reporter mouse line expressing mVenus-RelA (RelAV/V) was 

generated. Bone-marrow-derived macrophages (BMDMs) were differentiated, imaged, 

tracked, and quantified in multiple stimulus conditions.

(C) Single-cell heatmaps of fluorescent nuclear NFκB levels over time, in BMDMs 

expressing endogenously tagged mVenus-RelA, in response to 10 ng/mL TNF or LPS. Each 

row is one cell’s NFκB trajectory.

(D) Table indicating the number of single-cell NFκB trajectories quantified in each indicated 

experimental condition. This analysis involved 12,203 cell trajectories produced by 

quantifying more than 3 million cell images. More details in Table S2. All single-cell 

imaging data were confirmed, here and elsewhere, with at least two independent experiments 

per condition.

(E) First-harmonic distributions for other stimuli. Shaded region corresponds to the period of 

1–2.2 h that is characteristic of NFκB oscillations.

(F) Fraction of cells in which a response is detected, by stimulus and dose.

(G) Fraction of responder cells that show characteristic NFκB oscillations.
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Figure 2. Informative features within complex NFκB dynamics
(A) Examples of metrics to be employed in an information theoretic analysis. Two single-

cell NFκB responses (to LPS in red, and to TNF in blue) are shown. All NFκB trajectories 

were characterized using 918 metrics (Table S3).

(B) Channel capacity as a function of the number of most informative metrics (Table S4), 

either using the entire dataset of all ligand types and doses (black line) or using the dose 

response data for each indicated ligand. Channel capacity is a correlation score based in 

information theory; it indicates the degree to which a metric of NFκB dynamics or a 

combination of such metrics are correlated with the stimulus condition, defined by ligand 

identity and dose.

(C) Dynamical features that are informative about ligand and dose, as revealed by the seven 

metrics selected by the information theoretic analysis. E: early activity; L: late activity.

(D) Average probability distribution from the channel capacity calculations using all optimal 

vectors. Probabilities sum to 1 and indicate the input distribution that leads to a 

computationally maximized mutual information.
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Figure 3. Six NFκB signaling codons are sufficient to classify immune threats
(A) Violin plots of dynamical features that optimally encode stimulus-specific NFκB 

dynamics: activation speed, peak amplitude, oscillatory dynamics, total activity, duration, 

and ratio of early to late activity. These are termed “signaling codons,” and they are 

deployed in a stimulus-specific manner, as shown.

(B) Top: schematic of supervised machine learning approach to predict ligand identity using 

NFκB dynamics. Bottom: F1 scores (harmonic mean of precision and recall) of ligand 

predictions using either all features or signaling codons alone or random. Models are 

evaluated on out-of-bag observations.

(C) F1 score of dose predictions for each indicated ligand using either all features or only six 

signaling codons.

(D) The effect of each signaling codon on the certainty of ligand prediction: the loss in 

classification confidence when the indicated signaling codon is missing from the set of six 

(versus all features). Mean classification margin: probability of the correct class minus the 

highest probability of the incorrect classes; ΔMean Margin: difference in mean classification 

margin of codon classifier versus all predictors classifier; ΔΔMean Margin: difference in 
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ΔMean Margins when using a classifier with all six signaling codons and with classifiers 

lacking the indicated signaling codon.

(E) The effect of each signaling codon on the certainty of dose prediction for each ligand: 

the loss in classification confidence when the indicated signaling codon is missing from the 

set of six (versus all features).
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Figure 4. A Sjögren’s syndrome mouse model shows more confusion in classifying immune 
cytokine TNF and immune threat LPS based on NFκB dynamics
(A) Confusion matrices showing classification precision of ligand identity information. The 

machine learning model correctly identifies the ligand identity given an NFκB trajectory a 

majority of the time with the primary confusion being between bacterial ligands Pam3CSK4 

and LPS most apparent. Evaluated by 5-fold cross-validation.

(B) Confusion matrices showing classification precision of ligand source information. 

Bacterial ligands are generally correctly identified as such. Evaluated by 5-fold cross-

validation.

(C) Testing ligand confusion in macrophages isolated from a Sjögren’s disease model mouse 

(Peng et al., 2010). Violin plots depicting the signaling codons deployed by macrophages, 

derived from healthy or Sjögren’s mice, stimulated with TNF, LPS, or poly(I:C).

(D) Classification of ligand identity in healthy and Sjögren mouse model macrophages by a 

machine learning classifier trained on healthy macrophage data: false positive rate (FPR), 

false discovery rate (FDR), and mean margin. Evaluated by 5-fold cross-validation and an 

independent test set (Figure S4).

(E) Confusion matrices for sensitivity/recall for the healthy and Sjögren’s macrophage data. 

Evaluated by 5-fold cross-validation and an independent test set (Figure S4).
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Figure 5. Stimulus specificity of gene expression responses is diminished in macrophages from a 
Sjögren’s mouse model
(A) Single-cell RNA sequencing data of healthy and SS BMDMs collected after 8 h of 

stimulation with indicated ligands is visualized using the UMAP dimensionality reduction 

technique.

(B) Genes plotted by loss of stimulus specificity (difference of ANOVA F statistic between 

healthy and SS) in expression, grouped by the indicated gene regulatory clusters identified in 

Cheng et al., 2017. Positive difference represents greater stimulus specificity in healthy than 

in SS.

(C) Violin plots depicting the expression of Ccl5 in individual cells stimulated in indicated 

conditions.

(D) Confusion matrices from a random forest classifier comparing the distinguishability 

(sensitivity/recall, a measure of accuracy) of each ligand between healthy and SS. The 

classifier was trained on top 100 genes and was evaluated using a 30% holdout set.
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(E) Comparison of channel capacity (the maximum amount of information about ligand 

identities that can be abstracted from expression of genes; Mackay, 2003) as a function of 

the number of genes between Healthy and SS cells. Genes were added by forward selection 

based on ANOVA F statistic difference ranking. Dotted line represents theoretical maximum 

for three stimulus conditions.

Adelaja et al. Page 35

Immunity. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Kinetic models of receptor-associated signaling modules share circuit design principles 
that generate NFκB signaling codons in a stimulus-specific manner
(A) A simple schematic suggesting that NFκB control is mediated by two regulatory 

networks: the core IκBα-NFκB signaling module is downstream of receptor-associated 

signaling modules. Receptor-associated signaling modules determine IKK activity over time. 

Within the core module, IKK activity destabilizes IκBα, freeing NFκB to translocate to the 

nucleus, where it induces expression of IκBα.

(B) The IκBα-feedback is required for generating the oscillatory component of NFκB 

dynamics characteristic of the response to TNF. Single-cell trajectories and heatmaps of 

NFκB responses to 3.3 ng/mL TNF in BMDMs derived from RelAV/V, IκBα-deficient 

mouse.

(C) A mathematical model predicts bifurcating behavior in NFκB dynamics based on the 

level of IKK activation. Left: model steady-state values and primary oscillation frequency 

are shown as a function of sustained IKK level (Hopf bifurcation analysis). Right: single 
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simulated trajectories of IKK and NFκB activation, at each of four regimes identified in the 

steady-state diagram.

(D) The IκBα feedback loop is sufficient to sustain the non-oscillatory characteristic of the 

NFκB response to LPS. Single-cell heatmaps of NFκB responses to 3.3 ng/mL TNF and 10 

ng/mL LPS in BMDMs derived from a RelAV/VIκBβ−/−IκBε−/− mouse. Below each 

heatmap, a histogram indicates each cell’s first harmonic showing relative proportions of 

oscillatory cells (n > 400 individual cells for each experiment, representative of two 

independent replicates).

(E–I) Simplified schematics showing salient features of TNF, TLR1/2, TLR9, TLR4, and 

TLR3 signaling pathways, and the simulated IKK and NFκB activity (left/middle) and four 

measured median cell NFκB trajectories (right) at each of three log-spaced (TNF and TLR4) 

or four half-log-spaced (TLR9, TLR1/2, and TLR3) doses of each receptor’s cognate ligand. 

The complete reaction sets of the model are described in STAR Methods and Table S7.
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Figure 7. Oscillatory NFκB in response to PAMPs is a hallmark of feedforward TNF
(A) Activity onset times in single-cell NFκB responses to 100 nM CpG, grouped by 

dynamic subtypes of the response (persistent, oscillatory, or transient).

(B) Early-phase TNF secretion dynamics from macrophages stimulated with 100 nM CpG, 

as measured by ELISA.

(C) Top: median surface TNFR1 expression over time in BMDMs exposed to 1 ng/mL TNF 

or 100 nM CpG, monitored by flow cytometry. Bottom: median surface TNFR1 expression 

over time in wild-type or Tnf−/− BMDMs in response to 100 nM CpG (scaled to receptor 

levels before treatment). Error bars show standard deviations across three independently 

performed experiments, and double asterisks indicate a p value <0.001 using a Student’s t 

test comparing wild-type and Tnf−/− levels at a particular timepoint.

(D) Single-cell heatmaps of NFκB activation in RelAV/V BMDMs in response to 100 nM 

CpG, with or without feedforward TNF signaling blocked using saturating amounts (5 

mg/mL) of soluble TNFR2 co-injected with treatment.

(E) Proportions of NFκB dynamic subtypes (off, transient, oscillatory, or persistent) as 

quantified from the data in (D).

(F) Schematic depicting two cells. One cell (left) responds to CpG by activating NFκB and 

producing TNF that may act upon it in an autocrine manner. Another cell (right) does not 
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respond to CpG (possibly because of low TLR9 expression), but responds to paracrine TNF 

and hence produces oscillatory NFκB activity.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE-conjugated Anti-Mouse F4/80 Antigen eBioscience Cat# 12-4801-82; RRID:AB_465923

FITC-conjugated Anti-Mouse CD11b eBioscience Cat# 11-0112-82; RRID:AB_464935

APC anti-mouse CD120a (TNF R Type I/p55) BioLegend Cat# 113005; RRID:AB_2208780

Anti-RelA Ab Santa Cruz Biotechnology Cat# sc-372; RRID:AB_632037

Anti-pIKK CST Cat# 2697; RRID:AB_2079382

Anti-IKK2 CST Cat# 2678; RRID:AB_2122301

Chemicals, peptides, and recombinant proteins

LPS Sigma, B5:055 L2880

murine TNF Roche 11271156001

Pam3CSK4 Invivogen tlrl-pms

low MW polyinosine-polycytidylic acid (Poly(I:C)) Invivogen tlrl-picw

synthetic CpG ODN 1668 Invivogen tlrl-1668

Recombinant Mouse sTNFRII/TNFRSF1B R & D Systems 426-R2–050

high MW polyinosine-polycytidylic acid (Poly(I:C)) Invivogen tlrl-picw

Critical commercial assays

Direct-zol RNA isolation kit Zymo Research R2060

TruSeq Stranded mRNA Library Prep Kit Illumina RS-122–2101

Mouse TNF alpha ELISA Ready-SET-Go! kit eBioscience #88-7324-88

TotalSeq™-B 0305 anti-mouse Hashtag Antibody BioLegend Cat# 155839; RRID:AB_2814071

TotalSeq™-B 0306 anti-mouse Hashtag Antibody BioLegend Cat# 155841; RRID:AB_2814072

TotalSeq™-B 0307 anti-mouse Hashtag Antibody BioLegend Cat# 155843; RRID:AB_2814073

TotalSeq™-B 0308 anti-mouse Hashtag Antibody BioLegend Cat# 155845; RRID:AB_2814074

Chromium Single Cell 3ʹ; GEM Version 3.1 10x Genomics PN-1000121

Chromium Single Cell 3ʹ Feature Barcode Library Kit 10x Genomics PN-1000079

Deposited data

Single cell NFκB signaling dynamics This paper Mendeley Data: https://doi.org/
10.17632/6wksmvh5p4.1

10x BMDM scRNaseq This paper GSE162992

Experimental models: Organisms/strains

RelAmVenus/mVenus (C57BL/6) this paper mVenus-RelA

mVenus-RelA+/− IkBb−/− IkBe−/− (C57BL/6) this paper IkBb−/−, IkBe−/−

mVenus-RelA+/− IkBa−/− TNF+/− cRel+/− (C57BL/6) this paper IkBa−/−

mVenus-RelA+/+ IkBa M/M (C57BL/6) this paper Sjögren’s, SS

Software and algorithms

MATLAB R2016a - Image processing, data analysis, and 
modeling

MathWorks http://mathworks.com

MACKtrack - Cell tracking and single-cell measurement 
(MATLAB package)

This paper https://github.com/brookstaylorjr/MACKtrack

nfkb_dynamics – dynamical feature computation This paper https://github.com/Adewunmi91/nfkb_dynamics
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REAGENT or RESOURCE SOURCE IDENTIFIER

nfkb_model – multi-stimulus NFκB model This paper https://github.com/Adewunmi91/nfkb_model

Information_theory – channel capacity and mutual 
information computations

This paper https://github.com/Adewunmi91/
information_theory

FlowJ - Flow cytometry data processing FlowJo, LLC https://www.flowjo.com/

R - Statistical analysis R Foundation https://www.r-project.org/

Cell Ranger 4.0 10x Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/overview/welcome

CARET (Kuhn, 2008) http://caret.r-forge.r-project.org/

HOMER (Heinz et al., 2010) http://homer.ucsd.edu/homer/

Seurat (Stuart et al., 2019) https://www.rdocumentation.org/packages/Seurat/
versions/3.1.4

SLEMI (Jetka et al., 2019) https://cran.r-project.org/web/packages/SLEMI/
index.html

fastGSEA (Korotkevich et al., 2019) http://bioconductor.org/packages/release/bioc/html/
fgsea.html

Immunity. Author manuscript; available in PMC 2021 June 07.

https://github.com/Adewunmi91/nfkb_model
https://github.com/Adewunmi91/information_theory
https://github.com/Adewunmi91/information_theory
https://www.flowjo.com/
https://www.r-project.org/
https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome
https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome
http://caret.r-forge.r-project.org/
http://homer.ucsd.edu/homer/
https://www.rdocumentation.org/packages/Seurat/versions/3.1.4
https://www.rdocumentation.org/packages/Seurat/versions/3.1.4
https://cran.r-project.org/web/packages/SLEMI/index.html
https://cran.r-project.org/web/packages/SLEMI/index.html
http://bioconductor.org/packages/release/bioc/html/fgsea.html
http://bioconductor.org/packages/release/bioc/html/fgsea.html

	SUMMARY
	Graphical abstract
	In brief
	INTRODUCTION
	RESULTS
	Primary macrophages show immune threat ligand- and dose-specific NFκB dynamics
	Informative dynamical features are identifiable
	Machine learning of NFκB codons distinguishes stimuli
	Increased signaling codon confusion in an autoimmune disease model
	NFκB signaling codon confusion diminishes the stimulus specificity of gene expression
	Molecular circuits that produce signaling codons
	Oscillatory NFκB dynamics are a hallmark of paracrine TNF signaling

	DISCUSSION
	Limitations of study

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Mouse models
	Macrophage cell culture

	METHOD DETAILS
	Biochemical assays
	Live-cell imaging
	Measurement of TNF secretion and surface TNF receptor expression
	Measurement of single cell RNA-seq expression

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Image analysis
	Channel capacity calculation and signaling codon identification
	Controlling for different sample sizes
	Setting threshold

	Machine learning classification
	Construction of classification models
	Decision tree parameters
	Evaluation
	Dose binary classification
	Feature randomization
	Feature autoencoding

	Analysis of single cell RNA-seq data
	Mathematical modeling
	Model structure
	Key experimental data constraints
	Model fitting



	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

