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Background and Purpose: High-mobility group box-1 (HMGB1) is a useful biomarker for disease severity stratification and 
prognosis prediction. We aim to explore whether the circulating HMGB1 concentrations are associated with the white matter lesions 
(WMLs) burden in stroke patients.
Methods: Between 2022 June and December 2022, patients with acute ischemic stroke were prospectively enrolled. HMGB1 levels 
were measured by an enzyme-linked immunosorbent assay after admission for all patients. The WMLs severity was assessed by the 
Fazekas scale. We dichotomized patients into those with moderate–severe WMLs (Fazekas score 3–6) versus those with none–mild 
WMLs (Fazekas score 0–2). Furthermore, based on the severity of periventricular WMLs (PWMLs) and deep WMLs (DWMLs), 
patients were categorized as none–mild (Fazekas score 0–1) or moderate–severe (Fazekas score 2–3).
Results: A total of 287 participants (mean age: 64.9 years; 157 male) were analyzed. The median serum HMGB1 levels were 7.3 ng/mL 
(interquartile, 4.3 ng/mL–12.3 ng/mL). After adjustment for potential confounders, elevated HMGB1 levels were associated with the presence 
of moderate–severe WMLs (first quartile vs fourth quartile, odds ratio [OR], 4.101; 95% confidence interval [CI], 1.948–8.633; P = 0.001) and 
moderate–severe PWMLs (first quartile vs fourth quartile, OR, 9.181; 95% CI, 4.078–20.671; P = 0.001). Similar results were found when the 
HMGB1 levels were analyzed as a continuous variable.
Conclusion: This study demonstrated that increased HMGB1 levels were associated with the severity of WMLs, mainly in the 
periventricular region.
Keywords: ischemic stroke, high-mobility-group box 1, white matter lesions, inflammation

Introduction
White matter lesions (WMLs), also known as leukoaraiosis, are frequently detected by magnetic resonance imaging in elderly 
individuals.1–3 As one of the neuroimaging features of chronic cerebral small vessel disease,4 WMLs have a substantial clinical 
impact through associations with an increased risk of ischemic and hemorrhagic stroke, cognitive impairment, and depression.5–7 

Moreover, it may adversely affect the final functional outcome after ischemic stroke.8,9 Although age and vascular risk factors are 
widely considered as major contributors to WMLs, they appear inadequate to fully explain the pathogenesis of WMLs. Therefore, 
early diagnosis and determining the mechanism of WMLs are important for the functional recovery of stroke patients.

As a 30-kDa nuclear and cytosolic ubiquitous protein, HMGB1 (high-mobility group box-1) plays an important role in 
inflammatory and immune responses to proinflammatory activity.10–12 Under ischemic conditions, HMGB1 is actively secreted 
by stimulated inflammatory cells.13 In the experimental model of middle cerebral artery occlusion, extracellularly secreted 
HMGB1 induced an inflammatory response via blood–brain barrier disruption.14 Recently, a prospective study reported that 
elevated serum HMGB1 levels at admission independently predict poor functional outcome at 1 year.15 Nevertheless, the 
relationship between serum HMGB1 and WMLs burden in ischemic stroke patients remains unknown. Interestingly, HMGB1 
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may mediate white matter injury following traumatic brain injury.16 We therefore hypothesized that increased HMGB1 levels may 
be linked to the severity of WMLs.

Thus, the aim of this study was to examine whether the circulating HMGB1 levels were associated with the severity of WMLs 
in patients with ischemic stroke. Additionally, we explore the associations of HMGB1 with WMLs burden in different regions.

Materials and Methods
Study Population
Between 2022 June and December 2022, patients with first-ever ischemic stroke were prospectively enrolled from 
Suzhou Ninth People’s Hospital. The diagnosis of ischemic stroke was based on a definition from World Health 
Organization and confirmed by brain computed tomography and/or magnetic resonance imaging.17 Patients were 
included in the study if they met these criteria: (1) age ≥ 18 years old; (2) time from onset to admission < 7 days. 
Patients with a history of leukodystrophy, demyelinating disease, central nervous system infection, immunosuppressive 
therapy, severe hepatic or renal disease, and active infections within the prior 14 days were excluded from this study. We 
also excluded patients who were unable to perform magnetic resonance imaging examination during hospitalization. This 
study was performed in accordance with the 1964 Helsinki Declaration and was approved by the ethics committees of 
Suzhou Ninth People’s Hospital. All participants gave written informed consent before entering the study.

Baseline Data
Data collection was performed after admission using a standardized case report form. The following clinical variables 
were recorded: demographic characteristics (gender and age), vascular risk factors (hypertension, diabetes mellitus, 
hyperlipidemia, coronary heart disease, and current smoking), and clinical data (blood pressure, neurological deficit, and 
stroke subtypes). Neurological deficits were measured using the National Institutes of Health Stroke Scale (NIHSS) 
score.18 Stroke subtypes were defined according to TOAST (Trial of Org 10172 in Acute Stroke Treatment) criteria,19 

which included large-artery arteriosclerosis, cardioembolism, small vessel occlusion, stroke of other determined etiology, 
and stroke of undetermined etiology. Laboratory data including lipid profile, hyper-sensitive C-reactive protein (Hs-CRP) 
, and fasting blood-glucose were also recorded.

HMGB1 Measurement
Blood samples (5 mL) were collected within 24 hr after admission and processed under standard laboratory procedure. Serum 
HMGB1 concentrations were measured using the enzyme-linked immunosorbent assay kit (IBL International) according to the 
manufacturer’s instructions. Laboratory test was performed by a technician who was blinded to the clinical data.

Imaging Assessment
Magnetic resonance imaging images were obtained for all patients including T1-weighted, T2-weighted, diffusion-weighted, and 
axial fluid attenuated inversion recovery (FLAIR) sequence images within 7 days after admission. WMLs were defined on FLAIR 
images according to the STandards for ReportIng Vascular changes on nEuroimaging criteria20 and graded according to the 
Fazekas scale21,22 on the basis of visual assessment of both periventricular and deep white matter areas. The total Fazekas score 
was calculated by adding the score of periventricular white matter lesions (PWMLs) and deep white matter lesions (DWMLs), 
which range from 0 to 6. According to previous studies,21,23,24 all subjects were dichotomized into none–mild WMLs (Fazekas 
score 0–2) and moderate–severe WMLs (Fazekas score 3–6) according to the total Fazekas score. Furthermore, we categorized 
the severity of PWMLs and DWMLs as none–mild (Fazekas score 0–1) or moderate–severe (Fazekas score 2–3). Images were 
independently read and measured by two trained neurologists who were blinded to the clinical data. All disagreements were 
resolved by consensus.

Statistical Analysis
Continuous data were demonstrated as mean ± standard deviation or median (interquartile range) and were analyzed with the 
Student’s t-test, Mann–Whitney U-test, Kruskal–Wallis test, and one-way analysis of variance where appropriate. Categorical 
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data were expressed as percentages and were analyzed with the Fisher's exact test or χ2 test for categorical variables, where 
appropriate. Logistic regression models were utilized to determine the association between HMGB1 levels and WMLs severity. 
Model 1 was adjusted for demographic characteristics; Model 2 was adjusted for demographic characteristics and P value < 0.1 in 
the univariate analysis (including age, hypertension, diabetes mellitus, coronary heart disease, and Hs-CRP levels). The results are 
expressed as an adjusted odds ratio (OR) with the corresponding 95% confidence interval (CI).

Furthermore, we performed the receiver operating characteristic curve (ROC) to investigate the overall predicted 
accuracy of HMGB1, and the results were reported as the area under the curve (AUC). All statistical analyses were 
performed with SPSS for Windows, version 25.0 (SPSS Inc., Chicago, IL, USA). A 2-tailed P value < 0.05 was 
considered to be statistically significant in all tests.

Results
Cohort Characteristics
During the study period, 287 patients eventually met the eligibility criteria. The mean age of the study sample was 64.9 years, and 
54.7% of patients were male. Among these patients, 70.0% had hypertension, 29.6% had diabetes mellitus, 15.7% had 
hyperlipidemia, and 16.0% had coronary heart disease. The median circulating HMGB1 concentrations were 7.3 ng/mL 
(interquartile, 4.3 ng/mL–12.3 ng/mL). The baseline data are demonstrated in Table 1. Patients with increased HMGB1 levels 
were more likely to have higher Hs-CRP levels (P = 0.008). There were no significant differences in the distribution of 
demographic characteristics, baseline NIHSS score, and stroke etiology stratified by the levels of HMGB1 quartiles (all P > 0.05).

Association Between WMLs Severity and HMGB1 Levels
There were 129 (44.9%) patients with moderate–severe WMLs (Fazekas score 3–6) and 158 (55.1%) patients with none–mild 
WMLs (Fazekas score 0–2). Table 2 illustrates the results of comparison of baseline characteristics stratified by the WMLs 
severity. As compared to patients without moderate–severe WMLs, those with it were older (P = 0.017), more likely to have 
hypertension (P = 0.047), diabetes mellitus (P = 0.022), and coronary heart disease (P = 0.003), and higher levels of Hs-CRP (P = 
0.007) and HGMB1 (P = 0.001). Table 3 summarizes the results of the binary logistic regression of the association between 
HMGB1 levels and WMLs burden. On univariate logistic regression analysis, increased HMGB1 concentrations (odds ratio, 

Table 1 Baseline Data of the Study Sample According to the HMGB1 Quartiles

Variables Serum HMGB1 Levels P value

1st Quartile  
(n = 69)

2nd Quartile  
(n = 74)

3rd Quartile  
(n = 71)

4th Quartile  
(n = 73)

Demographic characteristics

Age, year 65.9 ± 11.3 64.4 ± 11.6 62.8 ± 12.0 66.6 ± 11.6 0.197
Male, n (%) 38 (55.1) 39 (52.7) 39 (54.9) 41 (56.2) 0.980

Body mass index, Kg/m2 22.8 ± 4.0 23.5 ± 2.7 23.3 ± 4.2 23.2 ± 3.1 0.413

Risk factors, n (%)
Hypertension 44 (63.8) 50 (67.6) 51 (71.8) 56 (76.7) 0.367

Diabetes 21 (30.4) 22 (29.7) 18 (25.4) 24 (32.9) 0.798
Hyperlipidemia 15 (21.7) 9 (12.2) 11 (15.5) 10 (13.7) 0.419

Atrial fibrillation 8 (11.6) 18 (24.3) 12 (16.9) 17 (23.3) 0.182

Coronary heart disease 10 (14.5) 15 (20.3) 6 (8.5) 15 (20.5) 0.155
Current smokers 33 (47.8) 29 (39.2) 23 (32.4) 32 (43.8) 0.279

Clinical data

Pre-treatment of antiplatelet drug, n (%) 20 (29.0) 23 (31.1) 29 (40.8) 25 (34.2) 0.468
Pre-treatment of statin, n (%) 22 (31.9) 19 (25.7) 28 (39.4) 27 (37.0) 0.303

Systolic blood pressure, mmHg 138.2 ± 19.3 132.5 ± 16.7 135.4 ± 17.5 140.0 ± 18.2 0.103

Diastolic blood pressure, mmHg 80.8 ± 10.4 83.7 ± 10.9 80.0 ± 8.5 80.0 ± 9.3 0.112
Baseline NIHSS, score 5.0 (3.0, 7.0) 5.0 (2.0, 7.0) 5.0 (2.0, 8.0) 5.0 (3.0, 8.0) 0.608

(Continued)
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Table 1 (Continued). 

Variables Serum HMGB1 Levels P value

1st Quartile  
(n = 69)

2nd Quartile  
(n = 74)

3rd Quartile  
(n = 71)

4th Quartile  
(n = 73)

WMLs severity, n (%)
Moderate-severe WMLs 25 (36.2) 24 (32.4) 29 (40.8) 51 (69.9) 0.001

Moderate-severe PWMLs 15 (21.7) 14 (18.9) 25 (35.2) 50 (68.5) 0.001

Moderate-severe DWMLs 18 (26.1) 29 (39.2) 26 (36.6) 26 (35.6) 0.382
Stroke subtypes, n (%) 0.105

Large artery atherosclerosis 29 (42.0) 37 (50.0) 32 (45.1) 31 (42.5)

Cardioembolism 7 (10.1) 14 (18.9) 15 (21.1) 17 (23.3)
Small vessel occlusion 24 (34.8) 14 (18.9) 20 (28.2) 23 (31.5)

Others 9 (13.0) 9 (12.2) 4 (5.6) 2 (2.7)

Laboratory data
Total cholesterol, mmol/L 4.0 ± 1.1 4.2 ± 1.2 4.1 ± 1.1 4.0 ± 0.9 0.603

Triglyceride, mmol/L 1.3 (1.0, 1.9) 1.3 (1.0, 1.8) 1.3 (1.0, 1.7) 1.3 (1.0, 1.8) 0.915

High-density lipoprotein, mmol/L 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 1.1 ± 0.2 0.109
Low-density lipoprotein, mmol/L 2.2 (1.7, 2.9) 2.3 (1.7, 2.9) 2.6 (1.7, 3.0) 2.4 (1.9, 3.0) 0.578

Fasting blood-glucose, mmol/L 7.1 ± 2.8 6.2 ± 1.9 6.7 ± 2.7 6.9 ± 2.9 0.232

Hyper-sensitive C-reactive protein, mg/L 5.0 (1.5, 8.0) 3.0 (1.0, 7.0) 4.0 (1.0, 6.0) 6.0 (3.5, 7.5) 0.008

Abbreviations: NIHSS, National Institutes of Health Stroke Scale; DWMLs, deep white matter lesions; PWMLs, periventricular white matter lesions; 
WMLs, white matter lesions.

Table 2 Comparison of Baseline Characteristics Stratified by the Status of WMLs

Variables None-Mild  
WMLs (n = 158)

Moderate-Severe  
WMLs (n = 129)

P value

Demographic characteristics

Age, year 63.5 ± 10.4 66.7 ± 12.8 0.017

Male, n (%) 84 (53.2) 73 (56.6) 0.562
Body mass index, Kg/m2 23.4 ± 3.5 23.2 ± 3.6 0.513

Risk factors, n (%)
Hypertension 103 (65.2) 98 (76.0) 0.047

Diabetes mellitus 38 (24.1) 47 (36.4) 0.022

Hyperlipidemia 28 (17.7) 17 (13.2) 0.292
Atrial fibrillation 35 (22.2) 20 (15.5) 0.155

Coronary heart disease 16 (10.1) 30 (23.3) 0.003

Current smokers 60 (38.0) 57 (44.2) 0.287
Clinical data

Pre-treatment of antiplatelet drug, n (%) 52 (32.9) 45 (34.9) 0.725

Pre-treatment of statin, n (%) 55 (34.8) 41 (31.8) 0.589
Systolic blood pressure, mmHg 135.6 ± 17.6 137.1 ± 18.5 0.489

Diastolic blood pressure, mmHg 81.8 ± 10.3 82.0 ± 9.4 0.491

Baseline NIHSS, score 5.0 (2.0, 7.0) 5.0 (3.0, 8.0) 0.120
Stroke subtypes, n (%) 0.012

Large artery atherosclerosis 60 (38.0) 69 (53.5)

Cardioembolism 27 (17.1) 26 (20.2)
Small vessel occlusion 55 (34.8) 26 (20.2)

Others 16 (10.1) 8 (6.2)

(Continued)
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[OR], 1.115; 95% confidence interval [CI], 1.095–1.218; P = 0.001) were associated with moderate–severe WMLs. After 
adjusting for covariates, higher HMGB1 levels remained an independent predictor of moderate–severe WMLs with an adjusted 
OR of 1.161 (95% CI, 1.096–1.229; P = 0.001). Similar results were found when HMGB1 was analyzed as a categorical variable.

We further explored the associations of PWMLs and DWMLs with serum HMGB1 levels separately. There were 104 
(36.2%) patients with moderate–severe PWMLs and 99 (34.5%) patients with moderate–severe DWMLs. When 
comparing with the lowest quartile of circulating HMGB1 levels, the adjusted OR of the highest quartile for moder-
ate–severe PWMLs was 9.181 (95% CI, 4.078–20.671; P = 0.001) after adjusting for demographic characteristics and 
variables with P < 0.1 in univariate analysis. However, there was no significant association between HMGB1 levels with 
moderate–severe DWMLs (first quartile vs fourth quartile, OR, 1.428; 95% CI, 0.675–3.022; P = 0.351; Table 3).

Table 2 (Continued). 

Variables None-Mild  
WMLs (n = 158)

Moderate-Severe  
WMLs (n = 129)

P value

Laboratory data
Total cholesterol, mmol/L 4.1 ± 1.1 4.0 ± 1.1 0.766

Triglyceride, mmol/L 1.3 (1.0, 1.8) 1.3 (1.0, 1.7) 0.447

High-density lipoprotein, mmol/L 1.0 ± 0.2 1.0 ± 0.2 0.513
Low-density lipoprotein, mmol/L 2.3 (1.7, 3.0) 2.4 (1.8, 3.0) 0.689

Fasting blood-glucose, mmol/L 6.5 ± 2.6 7.0 ± 2.5 0.112

Hyper-sensitive C-reactive protein, mg/L 3.9 (1.0, 6.7) 5.6 (3.0, 8.0) 0.007
HMGB1, ng/mL 5.9 (4.2, 10.4) 10.2 (4.7, 14.7) 0.001

Abbreviations: HMGB1, high-mobility group box-1; NIHSS, National Institutes of Health Stroke Scale; WMLs, white 
matter lesions.

Table 3 Binary Logistic Regression Analysis for the Association Between HMGB1 Levels and WMLs Severity

Variables Moderate-Severe WMLs Moderate-Severe PWMLs Moderate-Severe DWMLs

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Unadjusted model
HMGB1 levels 1.155 (1.095–1.218) 0.001 1.234 (1.163–1.309) 0.001 1.001 (0.925–1.052) 0.975

HMGB1 quartiles
First Reference Reference Reference

Second 0.845 (0.423–1.686) 0.633 0.840 (0.371–1.899) 0.675 1.826 (0.896–3.720) 0.097

Third 1.215 (0.615–2.403) 0.570 1.957 (0.923–4.147) 0.080 1.637 (0.795–3.371) 0.181
Fourth 4.080 (2.025–8.221) 0.001 7.826 (3.676–16.663) 0.001 1.567 (0.763–3.220) 0.221

Model 1

HMGB1 levels 1.154 (1.093–1.218) 0.001 1.233 (1.162–1.308) 0.001 0.998 (0.949–1.049) 0.924
HMGB1 quartiles

First Reference Reference Reference

Second 0.878 (0.436–1.765) 0.715 0.875 (0.384–1.993) 0.750 1.904 (0.929–3.905) 0.079
Third 1.318 (0.660–2.635) 0.434 2.159 (1.005–4.637) 0.049 1.758 (0.846–3.653) 0.130

Fourth 4.093 (2.018–8.302) 0.001 7.982 (3.717–17.141) 0.001 1.550 (0.751–3.196) 0.236

Model 2
HMGB1 levels 1.161 (1.096–1.229) 0.001 1.251 (1.173–1.334) 0.001 0.992 (0.942–1.044) 0.754

HMGB1 quartiles

First Reference Reference Reference
Second 0.918 (0.435–1.937) 0.823 0.899 (0.376–2.150) 0.812 2.407 (0.966–4.341) 0.062

Third 1.755 (0.833–3.698) 0.139 3.168 (1.383–7.255) 0.006 2.059 (0.952–4.454) 0.067

Fourth 4.101 (1.948–8.633) 0.001 9.181 (4.078–20.671) 0.001 1.428 (0.675–3.022) 0.351

Notes: Model 1 adjusted for age and sex; Model 2 adjusted for age, sex, and P value < 0.1 in the univariate analysis. 
Abbreviations: CI, confidence interval; HMGB1, high-mobility group box-1; OR, odd ratio.
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The Accuracy of HMGB1 in Predicting WMLs Severity
Figure 1 shows the results of the ROC curve. The AUC of HMGB1 in predicting the moderate–severe WMLs, moderate– 
severe PWMLs, and moderate–severe DWMLs were 0.661 (95% CI, 0.596–0.726, P = 0.001), 0.735 (95% CI, 0.670– 
0.799, P = 0.001) and 0.524 (95% CI, 0.445–0.603, P = 0.511), respectively. The optimal cutoff point of circulating 
HMGB1 levels in predicting moderate–severe WMLs was 9.0 ng/mL, with a sensitivity of 52.7% and a specificity of 
73.4%. Also, the optimal cutoff point of circulating HMGB1 levels in predicting moderate–severe PWMLs was 9.5 ng/ 
mL, with a sensitivity of 63.5% and a specificity of 76.5%.

Discussion
In our cohort of patients with ischemic stroke, circulating HMGB1 concentrations were strongly and positively 
associated with the moderate–severe burden of WMLs and PWMLs. Our findings indicated that HMGB1 might be 
considered a biomarker of WMLs in ischemic stroke patients.

For a long time, WMLs was considered to be a benign condition with no clinical significance. Cumulative evidence 
demonstrated that WMLs was associated with an increased risk of symptomatic stroke, cognitive impairment, and 
death.25,26 In our study, we found that 44.9% of patients who suffered an ischemic stroke present with moderate-severe 
WMLs. These results broadly agree with the findings of previous studies.23,27 A significant association was found 
between Large-artery atherosclerosis and WMLs burden, which is not supported by some other studies.21,28 This 
discrepancy is partly due to the differences in the study population and methods of assessing WMLs.

Figure 1 Receiver operator characteristic curve demonstrated the value of HMGB1 levels for predicting the severity of WMLs. 
Abbreviations: DWMLs, deep white matter lesions; HMGB1, high-mobility group box-1; PWMLs, periventricular white matter lesions; WMLs, white matter lesions.

https://doi.org/10.2147/JIR.S432109                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2023:16 4446

Zhao et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


In a previous study, we found that patients with increased levels at admission were more likely to develop depression 
after ischemic stroke.29 Furthermore, to our best knowledge, this is the first study demonstrating that HMGB1 might be 
a biomarker of WMLs burden in ischemic stroke patients. The mechanisms by which serum HMGB1 affects WMLs 
burden in ischemic stroke patients are unclear, but multiple potential pathophysiological processes have been proposed. 
Firstly, increasing evidence confirms an extraordinarily important role of inflammation in the presence and progression of 
WMLs.30 After ischemic stroke, HMGB induces neuroinflammation via toll-like receptors, receptors for advanced 
glycation end products, or other receptors, which in turn aggravate the burden of WMLs. Secondly, HMGB1 could 
interact with matrix metalloproteinase enzymes and thus lead to the breakdown of blood–brain barrier.31 Zhang et al14 

found that anti-HMGB1 mAb could be an effective therapy for brain ischemia by inhibiting the development of brain 
edema through the protection of the blood–brain barrier and the efficient clearance of circulating HMGB1. Meanwhile, 
blood–brain barrier dysfunction is regarded as a key point of WMLs.32 Other possible pathways include damaging 
endothelial cells, increasing oxidative stress, and activating glial cells.33–35

Our intriguing results further indicate that high HMGB1 levels are associated with PWMLs, but not with DWMLs. 
We speculate that it is due in part to anatomical, histological, as well as pathophysiological differences between PWMLs 
and DWMLs. The neural fibers in periventricular regions are longer than those in deep white matter regions, which might 
lead to the periventricular white matter being more vulnerable to hypoperfusion.36 According to data from histopatho-
logical studies, regions of periventricular white matter contained more immunoreactive microglia and astrocytes than 
deep white matter.37 Furthermore, prior pathology studies have confirmed that PWMLs are more likely linked to chronic 
hypoperfusion and inflammation, while DWMLs are more associated with ischemic damage.36,38 Further studies should 
be performed to explore the detailed mechanisms.

Several limitations should be considered in the interpretation of our study. Firstly, all ischemic stroke patients were 
enrolled from a single stroke center in China with a relatively small sample, which limits the generalization to other 
populations. Secondly, we did not quantify WMLs volume, which may be more sensitive for detecting subtle intergroup 
differences. However, the Fazekas scale is well established and frequently utilized in clinical studies,39,40 has been 
reported to correlate well with the WMLs volume, and we illustrate high inter-rater reliability of the assessment of 
WMLs. Thirdly, we only measured circulating HMGB1 at a single point after admission, which was not able to identify 
the dynamic change of HMGB1 after stroke. Finally, due to the observational nature of this study, it is difficult to infer 
causality. Therefore, future longitudinal cohort studies with large samples are warranted to confirm the association of 
HMGB1 levels with WMLs burden.

In conclusion, our present study showed that elevated serum HMGB1 levels appear to be associated with PWMLs 
severity, but not with DWMLs severity in ischemic stroke patients. Further longitudinal studies with large sample sizes 
are warranted to evaluate these associations comprehensively, which may open the way to the proposal of new 
therapeutic options for WMLs.
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