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Abstract

Often repeated measures data are summarized into pre-post-treatment measurements. Various 

methods exist in the literature for estimating and testing treatment effect, including ANOVA, 

analysis of covariance (ANCOVA), and linear mixed modeling (LMM). Under the first two 

methods, outcomes can either be modeled as the post treatment measurement (ANOVA-POST or 

ANCOVA-POST), or a change score between pre and post measurements (ANOVA-CHANGE, 

ANCOVA-CHANGE). In LMM, the outcome is modeled as a vector of responses with or without 

Kenward-Rogers adjustment. We consider five methods common in the literature, and discuss 

them in terms of supporting simulations and theoretical derivations of variance. Consistent with 

existing literature, our results demonstrate that each method leads to unbiased treatment effect 

estimates, and based on precision of estimates, 95% coverage probability, and power, ANCOVA 

modeling of either change scores or post-treatment score as the outcome, prove to be the most 

effective. We further demonstrate each method in terms of a real data example to exemplify 

comparisons in real clinical context.
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Introduction

In clinical research, it is common to record repeated measurements for subject responses 

across multiple occasions. There exist a variety of analysis methods, including repeated 

measures analysis of variance (RANOVA), multivariate ANOVA (MANOVA) and linear 

mixed modeling (LMM). Researchers often simplify repeated measures data by using 

summary data to quantify pre-and post-treatment outcomes, allowing for a more intuitive 

and easier interpretation of treatment comparisons [1]. When appropriately applied, 
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simplifying repeated measure outcomes to only two time measurements in the design phase 

improves efficiency and cost effectiveness, particularly in circumstances when responses are 

expensive to measure. In many instances this is done because the response of patients at a 

certain final time point is more clinically relevant than trends over time. Rather than 

comparing trends over time within each treatment group, the pre-post treatment summary 

method also simplifies data analysis to standard t-test procedures.

Decades of literature exists exploring and comparing methods for pre-post analysis, in both 

theory and application. The goal of this paper is not in developing new methods of analysis, 

but to review and succinctly tie together existing literature into a cohesive comparison of 

common methods often discussed and employed. We revisit and review the basic methods of 

pre-post data analysis discussed in the literature, and then exemplify the results through 

simulation and real data examples to corroborate existing knowledge. The rest of the paper is 

structured as follows: we first provide a review of key literature in pre-post analysis. We then 

outline the models to be compared and set up a simple simulation study to demonstrate the 

comparison of methods, and discuss simulated results in conjunction with the theoretical 

expectations of variance and related implicit measures. A real data example is used to 

exemplify the difference in methods in practice, and highlight the importance of a proper 

analysis method. We finish with a discussion of results and further present ideas for future 

avenues of research in the area of pre-post data analysis.

Review of Literature

Frison and Pocock [2] discuss three methods for analyzing data from pre-post designs: a) 

ANOVA with the post measurement as the response variable (ANOVA-POST), b) ANOVA 

with the change from pre-treatment to post-treatment as the response variable (ANOVA-

CHANGE), and c) ANCOVA with the post measurement as the response variable 

(ANCOVA-POST), adjusting for the pre-treatment measurement. Brogan and Kutner [3] 

compare the use of ANOVA-CHANGE with RANOVA. However, Huck and McLean [4] 

criticize the latter method due to its frequent misinterpretation in practice. Furthermore, they 

note the F-test in an RANOVA interaction is equivalent to the F-test in change score 

analysis. RANOVA provides the same conclusion as ANOVA-CHANGE, but use of 

ANOVA-CHANGE is simpler and more accurately interpreted compared to RANOVA. 

These conclusions are defended by Jennings [5], who asserts RANOVA is not recommended 

for pre-post analysis given the simpler alternatives presented.

Among the methods, ANCOVA-POST is generally regarded as the preferred approach, given 

that it typically leads to unbiased treatment effect estimate with the lowest variance relative 

to ANOVA-POST or ANOVA-CHANGE [1-6], However, ANCOVA has been criticized as 

being biased in the case of unequal pre-treatment mean measurements between groups [7,8]. 

This conundrum, known as “Lord’s Paradox,” was first documented in 1967 Lord [9], and 

has been discussed in the literature extensively. Among a detailed examination of various 

methods of repeated measures data analysis for pre-post outcomes, Liang and Zeger [10] 

note in the simple case with only two responses (i.e. pre- and post-treatment measurements), 

ANCOVA-POST produces an unbiased estimate only in the case of equal pretreatment 

measurements, whereas ANOVA-CHANGE leads to unbiased estimates that are only 
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slightly less efficient than ANCOVA-POST. Senn [11] discusses these criticisms at length, 

providing various conditions for which these claims do not hold, ultimately concluding 

ANCOVA should be used with caution in the case of unequal pretreatment measurements, 

but ANOVA-CHANGE is not impervious to bias either.

A recent simulation study by Egbewale, Lewis, and Sim [12] over varying degrees of pre-

treatment imbalance and pre-post treatment correlations, demonstrates that a comparison of 

the methods is not straightforward in the presence of unequal pre-treatment measures 

between groups. They recommend ANCOVA when pre-treatment measurements are equal in 

expectation across groups, as should be the case in properly designed randomized trials [12]. 

ANOVA-POST has a larger variance because it allows for possible random baseline 

imbalance for which it cannot adjust. ANCOVA allows adjustment for baseline differences 

and thus has a smaller variance than ANOVA. In further support for ANCOVA, Vickers and 

Altman [13] note that ANCOVA achieves the greatest power relative to ANOVA-CHANGE 

or ANOVA-POST, but the power of ANOVA-CHANGE approaches ANCOVA as correlation 

between pre-post measures approaches one.

Combining analysis of change scores with adjustments for pre-treatment measures, Laird 

[14] offers a slight modification to ANCOVA, in which the change score is incorporated as 

the outcome and pre-treatment measures as covariate. Compared with traditional ANCOVA, 

this ANCOVA-CHANGE leads to equal results in terms of variance of treatment effect, 

although Laird [14] asserts the latter method allows one to assess whether change occurred 

in individual treatment groups. Despite this possible advantage, this appears less frequently 

used or discussed in the literature.

In the rest of the paper, we will discuss and compare results between the five common 

methods ANOVA and ANCOVA modeling both the post-treatment response only and the 

change score, along with a linear mixed model (LMM) modeling the pre-post treatment 

response vector, Yij. We use simulations over a range of sample sizes and pre-post 

measurement correlations to corroborate the comparison of methods with the existing 

literature and theoretical expectations of variance.

Methods

To set up the modeling framework, let Yi be the continuous response variable from a 

randomized trial, for i=1,…,n patient responses from samples n1 and n2 from each treatment 

group. Let the group assignment be designated by the indicator, Xi, such that for the ith 

patient, Xi=1 for the active treatment and Xi=0 in the control/placebo group. Responses for 

each treatment are each sampled from a Gaussian distribution with mean μx and variance σ2, 

where μx=β0+β1 Xi. To distinguish between post-treatment and change score measures as 

outcomes, let Y i
[p] represent the post treatment response and Y i

[c] represent the change from 

pre-treatment to post-treatment measurements. In the case of ANCOVA, let Y0i be the pre-

treatment measurement for which the model is adjusted for. Lastly, let εi represent the 

random error terms for each of the models. Maximum likelihood is used to estimate the 

parameters corresponding to each model except for the variance in LMM which are 
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estimated using restricted maximum likelihood (REML). Derivations of variance for each of 

the estimators from the different methods are given in the Appendix.

Method 1: ANOVA-POST

Method 1 uses linear regression to compare treatment effects. Formally, the model is as 

follows:

Yi
[p] = β0

[p] + β1
[p]Xi + εi

[p] ⋅

It is assumed that εi are independently and identically normally distributed with mean 0 and 

variance σ2. β1
[p] is interpreted as the difference in the post-treatment mean between 

treatment groups. The variance of the estimated treatment effect is given by:

var(β1
[p]) = σ2

n1
+ σ2

n2
.

Method 2: ANOVA-CHANGE

Similar to ANOVA-POST, ANOVA-CHANGE employs a simple ANOVA framework, but 

instead models the outcome, Y i
[c] without adjustment for pre-treatment values. Formally, the 

model with εi assumed to be independently and identically normally distributed with mean 0 

and variance σ2 is given as follows:

Yi
[c] = β0

[c1] + β1
[c1]Xi + εi

[c1] ⋅

Here β1
[c1] is interpreted as the difference in the change score mean of the treatment groups. 

Under an unstructured covariance structure assumption, the variance of β1
[c1] is given by:

var(β1
[c1]) = σpre

2 + σpost
2 − 2ρσpreσpost ( 1

n1
+ 1

n2
) .

Under a compound symmetry assumption, where pre- and post-treatment variance is 

assumed to be equal, the variance is given by:

var(β1
[c1]) = 2(1 − ρ)( 1

n1
+ 1

n2
)σ2 .

Method 3: ANCOVA-CHANGE

Method 3 employs an ANCOVA model to analyze the change score as an outcome, adjusting 

for the pre-treatment values. Essentially, ANCOVA-CHANGE is equivalent to ANOVA-

CHANGE, with an added adjustment for the pre-treatment measurement for every patient. 

Formally, the model is as follows:
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Yi
[c] = β0

[c2] + β1
[c2]Xi + β2

[c2]Y0i + εi
[c2] ⋅

It is assumed that εi are independently and identically normally distributed with mean 0 and 

variance σ2. β1
[c2] is interpreted as the difference in the change score mean of the treatment 

groups, given the pre-treatment measurement and the variance of its estimator is given by

var YT .
cov − YP .

cov =
n1 + n2 − 2
n1 + n2 − 3σpost

2 (1 − ρ2) 1
n1

+ 1
n2

+
(YT0 . − YP0 .)

2

(n1 + n2 − 2)σpre
2

Which, as the sample size increases, simplifies to:

var( β
[ ]

) = (1 − ρ2) 1
n1

+ 1
n2

σpost
2 ⋅

Method 4: ANCOVA-POST

Method 4 employs an ANCOVA model to analyze the post-treatment measurements as the 

outcome, adjusting for the pre-treatment values. In the context of previous methods, 

ANCOVA-POST is essentially ANOVA-POST (method 1) with pre-treatment measurement 

included as a covariate. Formally, the model is as follows:

Yi = β0
[a] + β1

[a]Xi + β2
[a]Y0i + εi

[a] ⋅

It is assumed that εi are independently and identically normally distributed with mean 0 and 

variance σ2. β1
[a] is interpreted as the difference in the post treatment score mean of the 

treatment groups, given the pre-treatment measurement. Since this method is equivalent to 

method 3 Laird [14], results including the variance of the estimated treatment effect β1
[a] is 

the same.

Method 5: LMM

Method 5 consists of employing a linear mixed model (LMM) to analyze a vector of the pre-

and post-measurements as the outcome. Yij denotes the jth measure of the ith subject. 

Formally, the model is as follows:

Yi j = β0
[b] + β1

[b]Xi + β2
[b]ti j + β3

[b]ti jXi + εi j
[b],

Where tij is an indicator for pre-treatment measurement (coded 0) or post-treatment 

measurement (coded 1). In LMM, it is assumed that εij are bivariate normally distributed 

with means 0 and heterogeneous compound symmetric (HCS) covariance matrix and 

correlation, ρ. The term β1
[b] + β3

[b] is interpreted as the mean difference between treatment 
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groups post-treatment, and β1
[b] is the mean difference between treatment groups pre-

treatment. LMM allows for pre-treatment mean differences between the groups.

The variance of β1 + β3 under HCS covariance matrix for the error term is given by:

Var(β1 + β3) = Var(β1) = ( 1
n1

+ 1
n2

)σ post
2 = ( 1

n1
+ 1

n2
)σ2 .

If assuming compound symmetry (CS) is assumed, the variance is:

Var(β1 + β3) = (1 − 1
2 ρ)( 1

n1
+ 1

n2
)σ2

The LMM was evaluated under REML estimation in PROC MIXED (SAS 9.3, SAS Institute 

Inc, Cary, NC). Acknowledging that many degree of freedom adjustments may be employed 

in mixed models, we choose to evaluate this approach with the conservative, and widely 

used Kenward and Rogers (KR) adjustment, as well as an unadjusted model. The KR 

adjustment Kenward and Roger [15]; Schaalje, McBride and Fellingham [16]; Senn [17] 

appropriately inflates the variance-covariance matrix, along with an adjusted degree of 

freedom estimate (KR degree of freedom adjustment) when making inference on fixed 

effects which rely on asymptotic distributions that can lead to biased variance estimates 

when sample sizes are small. No adjustment, according to Senn [17], leads to negligible 

difference with the first scenario as sample size grows reasonably large (e.g. n>40).

Simulation Study

Data are simulated using SAS 9.3. Simulations are designed to represent a variety of 

situations which are plausible in pre-post studies. Using 1000 repetitions, we compare 

models under three sample sizes (n=50, 100, and 200), under three pre-post correlations 

(ρ=0.1, 0.5, and 0.8), and six β1 coefficients for treatment effect (β1=−1.5, −0.1, −1.0, 0.1, 

1.0, and 1.5). Covariates are generated assuming X~uniform (0,1), and Y0~N(0,1); the post 

treatment response Y1 is generated using: Y1=10+1.5*{X ≥ 0.5} +1.5* Yg +ε, such that {X 
≥ 0.5} represents treatment 1 (i.e. Xi=1) and {X<0.5} represents control/placebo (i.e. Xi=0). 

To generate correlation between pre- (Y0) and post- (Y1) treatment measures, we use the 

relationship between correlation and slope: ρ = β
σy0
σy1

 where σy0 and σy1 are the standard 

deviations for pre- and post-treatment responses, respectively. β is fixed at 1.5 and σy1, is 

calculated for each combination of σy0 and ρ. Random errors are generated such that ε ~N(0 
σ2). The corresponding residual variance is calculated using the relationship between σy1 

and the variance of ε for different β1 coefficients: σε
2 = σy1

2 − β1
2 × 0.25 − 2.25 × σy0

2 . There are 

a total of 108 simulated scenarios among the combinations of n, ρ, and β1. Estimates for the 

parameter (β1), its variance, bias, power, and nominal 95% coverage probability are 

computed for each simulation scenario, and the results are compared across the five 
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methods. Code used to implement this may be found in supplementary material available 

online.

Simulation Results

In this section, findings from the simulations are discussed and compared to expected 

theoretical results. Treatment effect parameter estimates and associated standard deviations 

are reported in Table 1, while bias and power are presented in Tables 2 and 3 shows the 95% 

coverage probability. The results, consistent with theoretical expectations, show that all 

methods produce equally unbiased estimates of the treatment effect across equivalent 

combinations of ρ, β1, and n, with accuracy of the estimates improving with sample size. In 

general, as the number of observations increases, the bias converges to zero for each of the 

methods across all of the simulated scenarios. When ρ increases, the bias decreases, 

regardless of sample size or true β1.

Since all methods result in unbiased estimates for the treatment effect, we use variance and 

other implicit measures of the estimates to compare the five methods (Table 1 and Figure 1). 

In general, when the correlation between pre-treatment and post-treatment values is high, the 

variance of the estimates are relatively small, regardless of method and the value of β1. 

However, for higher correlation values, differences in variability between methods become 

more apparent when the sample size and value of β1 are fixed. For example, in the scenario 

when β1=0.1 and n=200, the difference between the largest and smallest standard deviations 

among the 5 methods with low correlation (ρ=0.1), is 0.006. However, under the same 

scenario with high correlation (ρ=0.8), the difference between the largest and smallest 

standard deviations is 0.109. While the individual standard deviation estimates are greater in 

low correlation scenarios, the difference between estimates of differing methods are much 

more pronounced in scenarios with high correlation, i.e. the greatest variability in β1 occurrs 

when ρ is close to 0 (i.e. ρ=0.1). Furthermore, as sample size increases, variability decreases 

as expected theoretically. To summarize in terms of correlation and sample size, variability 

of β1 estimates are greatest when n=50 and ρ=0.1, and they are lowest when n=200 and 

ρ=0.8.

Comparing the two ANOVA methods specifically, ANOVA-CHANGE produces 

approximately equal or less variability compared to ANOVA-POST, the difference of which 

increases as ρ approaches one. Intuitively, it follows that ignoring pre-treatment observations 

in ANOVA-POST causes a loss of information which leads to an increase in variance 

estimates when pre-treatment and post-treatment values are correlated. However, when 

correlation is low, results are dependent the on pre-post covariance structure. These 

discrepancies are addressed and explained in detail in following paragraphs. Table 1 displays 

the difference between variance estimates which grows with increasing correlation, holding 

sample size and true β1 parameters constant.

The two scenarios of ANCOVA (ANCOVA-POST and ANCOVA-CHANGE) give identical 

measures of variability, regardless of differing combinations of ρ, β1 and n. These results 

can be seen numerically in Table 1 and visually assessed in Figure 1, and are further 

supported by theoretical derivation of variance. Lastly, the LMM analysis results are 
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equivalent to the ANOVA-POST in terms of estimates and their standard deviations, 

regardless of the assumed within-subject covariance structure, Ri. The LMM approach is 

evaluated with and without a KR adjustment, ultimately showing no difference. These 

results are consistent with the literature, given the smallest simulated sample size was n=50.

Across all methods, ANCOVA models consistently performed best compared to the other 

methods, regardless of ρ, β1 and n, as has been demonstrated in existing literature [18]. The 

ANCOVA methods (ANCOVA-CHANGE and ANCOVA-POST) are compared with 

ANOVA-POST, ANOVA-CHANGE and LMM in terms of variance of the estimate of β1 

(Figure 1). Except at the lowest combination of ρ and n values where discrepancies between 

differing method variances is negligible, ANCOVA had the lowest variability. Similarly, the 

95% coverage intervals are smallest under ANCOVA, and widest in ANOVA-POST (Table 

4). Compared to ANOVA-CHANGE, ANCOVA models have less variation. These results 

are also similar when ANCOVA is compared with LMM, except when the correlation is 

close to zero.

It is of interest to compare the simulations to theoretical expectations for the variance of the 

treatment effect estimates. As the correlation between pretreatment and post-treatment 

observations approaches zero, the variance for ANOVA-POST, ANCOVA-POST, ANCOVA-

CHANGE, and LMM should be approximately equivalent, but the variance for ANOVA-

CHANGE is two times that of the others. When ρ=0.1 and assuming equal variance, the 

variance of ANOVA-CHANGE should theoretically approach 2(1-ρ=0.1), or 1.8 times that 

of ANOVA-POST, and ANCOVA methods should approach (1-ρ2), or 99 of ANOVA-POST. 

Similarly, for ρ = 0.1, the ratio of ANOVA-POST to ANOVA-CHANGE should be 1 and 

ANOVA-POST to ANCOVA should be 0.75. Finally, at ρ=0.8, ANOVA-CHANGE and both 

ANCOVA models should be at 0.4 and 0.36 times ANOVA-POST respectively. However, 

permitting pre and post measurements to have different variances leads to differing results, 

particularly apparent when correlation is low, such that the variance of ANOVA-CHANGE 

approaches the variance of ANOVA-POST as ρ approaches zero and the variance of post-

measures becomes increasingly greater than premeasures. Presented simulations are for data 

simulated assuming this unstructured covariance matrix. For example, the variance of 

ANOVA-CHANGE and ANOVA-POST are approximately equal when ρ=0.1; had we 

assumed equalvariance, ANOVA-CHANGE would be almost twice that of ANOVA-POST. 

These are made apparent given the following ratio of variances:

As a result, the variance of ANOVA-CHANGE approaches the variance of ANOVA-POST 

as ρ approaches zero and β1>0.5 Under the given method of simulating pre and post 

treatment variances where σpre = 1, β1 = 1.5, and σpost=β1σpre/ρ, the ratio of the variances is 

given by:

(σpre
2 + σpost

2 − 2ρσpreσpost)
1
n1

+ 1
n2

1
n1

+ 1
n2

σpost
2

≈ 0.99, for ρ = 0.1 ⋅

O'Connell et al. Page 8

J Biom Biostat. Author manuscript; available in PMC 2018 December 12.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Since the HCS structure is more conservative in its assumptions (permitting the pre- and 

post-treatment effects to have different variances), it is used to report the main simulation 

results of the study. As correlation increases beyond 0.5, results become less sensitive to the 

pre-post measure covariance structure.

Power for testing β1 = 0 was assessed for the methods under the simulated conditions (Table 

2). Under the primary simulation method assuming Y0~N(0,1), power across methods did 

not vary by a large degree. Observing power across simulated scenarios at the lowest sample 

size (n=50), there is marginally higher power in ANCOVA and ANOVA-CHANGE methods 

over ANOVA-POST and LMM. Overall, ANCOVA methods achieve the greatest power, 

intuitively so given ANCOVA leads to the lowest variability. As correlation between pre-and 

post-measurements increase, the difference in power between ANCOVA and ANOVA-

CHANGE compared to ANOVA-POST and LMM, grows appreciably, while ANOVA-

CHANGE nears that of ANCOVA as correlation approaches one. Finally, increases in 

sample size leads to increased power for detecting a significant treatment effect similarly 

across methods, meaning that an increase in sample size does not appear to affect any single 

methods statistical power more than other methods. Additional results from simulations with 

an increased variance (assuming Y0~N(0,9)), are reported.

Data Example

To illustrate the application of the five methods, we consider data from a dental hygiene 

study characterized by small sample size [19]. There were a total of 32 subjects, randomized 

to two treatment groups based on type of toothbrush, and effectiveness was measured by 

reduction in bacterial plaque index over time. Of the original four independent sessions, we 

analyzed data from the first and last sessions, comparing pre and post treatment outcomes. 

The results for the first and last session are summarized in Table 4. In the first session, the 

pre-treatment mean (standard error) for treatment group 1 and treatment group 2 are 1.31 

(0.35) and 1.33 (0.38), respectively, and similarly for the last session, 1.54 (0.26) and 1.36 

(0.27), respectively. The pretreatment measures between groups show no significant 

difference for either of the sessions. The correlations in the pre and post treatment measures 

are 0.91 and 0.82 for the first and last sessions, respectively. In line with simulations and 

theoretical expectations, it follows that under the first session, ANCOVA-CHANGE and 

ANCOVA-POST performed equally well among methods, presenting the lowest standard 

error for treatment effect. However, in the last session, ANOVA-CHANGE actually 

presented a slightly lower standard error compared to ANCOVA methods (0.0564 compared 

to 0.0592). Given the high correlation between pre and post measurements in this data set, it 

follows theoretical expectations that ANOVA-CHANGE is extremely close to that of 

ANCOVA models. In the case where ρ=0.91, ANOVA-CHANGE should theoretically 

produce variance that is 1.05 times ANCOVA. In both sessions, ANOVA and LMM exhibit 

larger variance than ANCOVA methods. The variance estimates from ANOVA and LMM are 

2.7 times greater in the first session and 1.7 times greater in the second session than 

ANCOVA.
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Discussion

This paper compares four traditional approaches (ANOVA-POST, ANOVA-CHANGE, 

ANCOVA-POST, and ANCOVA-CHANGE) and a more modern approach (LMM) used in 

the analysis of pre-post data. These five methods are compared via simulated data from a 

typical clinical trials setting, where pre-treatment groups are assumed equally allocated 

through proper randomization, and the primary interest is to examine estimates of treatment 

effect. Comparisons of these methods have been investigated in theoretical framework 

(Brogan and Kutner [3]; Dimitrov and Rumrill [4]; Frison and Pocock [2]; Huck and 

McLean [4]; Laird [14]), and in a similar manner as Egbewale et al. [12] we review these 

methods and discuss them in terms of several simulated circumstances, as well as a real data 

application.

Overall, all of the five methods in the simulated scenarios yield equally unbiased treatment 

effect estimate. However, their performance (in terms of variance, type-I error and 95% CI 

coverage) varies with pretreatment group differences as indicated in previous literature 

[7,11,12]. For example, LMM is found to be more conservative compared to the ANCOVA 

methods. Consistent with previous literature, ANCOVA models have the smallest variance, 

highest power, and nominal 95% confidence interval coverage compared to ANOVA-POST, 

ANOVA-CHANGE, and LMM. Similar to conclusions reached by Vickers and Altman [13], 

in our simulation study as correlation between pre-and post-treatment measures increase, 

ANOVA-CHANGE approaches ANCOVA in both variance and power. However, in all but 

the most extreme cases (i.e. when ρ ≈ 0 or 1), ANCOVA methods are the most optimal, 

achieving the greatest power and lowest variability. Thus, in the case of balanced pre-

treatment data, our results are consistent with most existing literature, in that ANCOVA is a 

preferred method. This may not hold in situations with some degree of imbalance between 

treatment groups at baseline and different levels of pre-post correlation [12].

We also examine the robustness of these methods when the pre-post measures are simulated 

under CS versus HCS covariance structures. The data simulated under HCS produces the 

greatest effect on the ANOVA-CHANGE results, where treatment effect variances are 

particularly influenced at lower correlations. When pre and post treatment measures have 

equal variance and low correlation, ANOVA-POST outperforms ANOVA-CHANGE, but as 

the imbalance between pre-post variance grows, the two methods perform similarly. In 

practical applications, when one does not have control over pre- and post- treatment 

variances, results demonstrate that one could reasonably expect ANOVA-CHANGE to 

consistently perform better than ANOVA-POST when ρ ≤ 0.5 regardless of equality of 

variances. When ρ ≥ 0.5, the best performing method will depend on the degree of equality 

of the variances in pre-and post-measurements. Nevertheless, both methods are still 

consistently outperformed by ANCOVA.

In our simulation study, the LMM approach performs only as well as ANOVA-POST. 

However, these simulations assume no missing data. In clinical trials evaluating patients over 

time, on the other hand, missing data are common (i.e. some patients are lost to follow-up 

and post-treatment measurements are never recorded). In such cases, the mechanism of 

missing data as defined by Little and Rubin [20], along with method of analysis are 
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important in reaching unbiased results. When data are missing completely at random 

(MCAR), the method of analysis makes little difference, i.e. the generalized least squares 

(GLS) based methods and LMM should provide equivalent results [21]. However, in the case 

when data are missing at random (MAR), GLS can lead to biased inference on effects, 

whereas the LMM approach which relies on likelihood provides unbiased results when the 

within-subject covariance matrix, Ri, is specified correctly [21]. When data are missing not 

at random (MNAR), all five methods may lead to biased results. Thus, conclusions made in 

this study with regards to the LMM approach compared to the other approaches hold only 

when data are MCAR or not missing. In the case of MAR data, LMM may be more optimal.

Conclusion

Despite decades of long scrutiny of this topic and our extensive simulation study under a 

wide range of scenarios, there still remain several avenues of future work. For example, in 

the clinical trials setting, there are often many more important covariates which are included 

to deal with baseline covariate imbalance. Additionally, this study assumed that the 

treatment assignment was random, which is usually the case in clinical trials, resulting in 

equal pre-treatment values among treatment groups. As it was discussed in the introduction, 

results may differ when pre-treatment measures are unequal, particularly affecting the bias 

of ANCOVA-POST. Future work is needed to assess how ANCOVA-CHANGE as presented 

by Laird [14], performs under varying degrees of pre-treatment imbalance as in the 

simulation study performed by Egbewale [11]. Finally, these methods could be explored 

under the generalized linear mixed model framework with non-Gaussian pre-post data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KR Kenward-Rogers

LMM Linear mixed model

MAR Missing at random

MCAR Missing completely at random

MNAR Missing not at random

REML Restricted maximum likelihood

SD Standard deviation
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Figure 1: 
Distribution of treatment effects estimates varied by correlation, sample size and true 

positive β1 values under Y0~N(0,1).
Boxplots for parameter estimates for the 1000 simulations for the combinations of β1, n, and 

ρ are displayed in Figure 1 Consistent with the data tables, all parameter estimates are 

unbiased, and the boxplots highlight differences in variability for the models. In general, 

variance was much larger for small values of ρ and small n. ANCOVA models have smaller 

variances compared to ANOVA and LMM, though differences are quite small.
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Table 4:

Estimates of toothbrush effect on bacterial plaque index in 1st and 4th sessions.

Method β 95% Confidence
Interval SE(β)

P-value

1st Session

ANOVA-POST 0.16 −0.09 0.41 0.123 0.192

ANOVA-CHANGE 0.14 0.05 0.24 0.047 0.005

ANCOVA-CHANGE 0.14 0.05 0.24 0.046 0.004

ANCOVA-POST 0.14 0.05 0.24 0.046 0.004

LMM 0.16 −0.09 0.41 0.123 0.191

4th Session

ANOVA-POST −0.08 −0.28 0.12 0.099 0.409

ANOVA-CHANGE 0.09 −0.02 0.21 0.056 0.107

ANCOVA-CHANGE 0.07 −0.05 0.19 0.059 0.243

ANCOVA-POST 0.07 −0.05 0.19 0.059 0.243

LMM −0.08 −0.28 0.12 0.099 0.409

Table 4 presents parameter estimates, their standard errors, 95% confidence intervals and p-values for the dental data example. Results are 
consistent with simulation data conclusions since all methods produced unbiased estimates for the treatment effect, and ANCOVA models had 
smaller standard errors compared to ANOVA and LMM models.
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