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ABSTRACT
The a-class carbonic anhydrase (CA, EC 4.2.1.1) from the protozoan pathogen Trypanosoma cruzi, TcCA,
was investigated earlier for its inhibition with anions, sulphonamides, thiols and hydroxamates, well-known
classes of CA inhibitors (CAIs). Here we present the first inhibition study of this enzyme with phenols,
which possess a diverse CA inhibition mechanism compared to the previously investigated compounds,
which are all zinc binders. Indeed, phenols are known to anchor to the zinc coordinated water molecule
within the enzyme active site. In a series of 22 diversely substituted phenols, the best inhibitors were sim-
ple phenol, pyrocatechol, salicylic acid, 3,5-difluorophenol, 3,4-dihydroxy-benzoic acid, 3,6- dihydroxy-ben-
zoic acid, caffeic acid and its des-hydroxy analog, with KIs of 1.8� 7.3mM. The least effective TcCA
inhibitor was 3-chloro-4-amino-phenol (KI of 47.9mM). Although it is not yet clear whether TcCA can be
considered as an anti-Chagas disease drug target, as no animal model for investigating the antiprotozoan
effects is available so far, finding effective in vitro inhibitors may be a first relevant step towards new anti-
protozoal agents.
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1. Introduction

Protozoans are microscopic, nonfilamentous protists belonging to a
multitude of phyla, with many genera and species described so far,
many of which possess ecological and industrial relevance.
However, they sometimes produce disease in vertebrates, which
may range from mild to moderate, such as those induced by
Toxoplasma gondii or Entamoeba histolytica, or may lead to more
serious conditions, in the case of infections due to Cryptosporidium
parvum, Giardia lamblia, Trichomonas vaginalis, Babesia spp., but
also very serious and widespread ones, such as malaria, leishmania-
sis, Chagas disease, and African sleeping disease1,2. Although rare,
there are also several fatal protozoal diseases, mostly provoked by
amoebae belonging to Naegleria fowleri, Acanthamoeba spp. and
Balamuthia mandrillaris genera/species1. Few effective therapeutic
approaches are available so far for treating most diseases provoked
by protozoans1. Albeit all 12 protozoans genera which produce
human disease are well studied by now, there are few drugs useful
for treating them. Furthermore, these drugs have been available for
many decades, generally show high toxicity and low therapeutic
indexes, and more concerning, extensive resistance to these treat-
ment options has developed in the last period1,2.

Among the prozoan diseases which drew much attention in
the last decade is Chagas’s disease (CD), provoked by
Trypanosoma cruzi, a pathogen thought to be endemic to South
America, but which is nowadays also infecting people in Europe
and North America3–7. This parasite possess an intricate life cycle,
with many growth stages, not all of which are sensitive to the
two clinically used drugs, nifurtimox and benznidazole, both of
them belonging to the nitro-azole, old class of antiprotozoal

drugs1,2,7. Thus, there is a stringent need of new drug targets for
fighting CD, and although many of them have been proposed so
far2, no relevant progress has been achieved for the moment7.

An a-class carbonic anhydrase (CA, EC 4.2.1.1) has been identi-
fied, cloned and characterised in the genome of T. cruzi few years
ago by our groups3. This enzyme, denominated TcCA, was shown
to possess high catalytic activity for the conversion of CO2 into
bicarbonate and protons3, was also shown to be inhibited, some-
times quite efficiently, by the main classes of CA inhibitors (CAIs),
such as the anions, sulphonamides, thiols and hydroxamates3–6. In
some cases interesting antiprotozoal effects were also observed ex
vivo in cell cultures with some of them, e.g. hydroxamates and
sulphonamides formulated as nanoemulsions6,7. It is not yet defin-
itely clear whether TcCA can indeed be considered as an anti-CD
drug target, since no animal model for investigating the antiproto-
zoan effects is available so far1,2. However, the interesting in vitro
and ex vivo data available with many classes of CAIs (not all of
which possess the optimal pharmacological properties, such as for
example a facile membrane penetration6) prompts us to continue
the investigation of new classes of inhibitors targeting this patho-
genic enzyme. Here we report the first inhibition study of TcCA
with a series of phenols, well-known inhibitors of CAs8–11.

2. Materials and methods

2.1. Enzymology and CA activity and inhibition measurements

Production and purification of recombinant TcCA have been
previously described by our groups3. An Applied Photophysics
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stopped-flow instrument was used to assay the CA- catalysed CO2

hydration activity12. Phenol red (0.2mM) was used as a pH indica-
tor, working at the absorbance maximum of 557 nm, with 10mM
HEPES (pH 7.4) as a buffer, and in the presence of 10mM NaClO4

to maintain constant ionic strength, in order to follow the initial
rates of the CA-catalysed CO2 hydration reaction for a period of
10–100 s. The CO2 concentrations ranged from 1.7 to 17mM for
the determination of the kinetic parameters and inhibition con-
stants. TcCA concentration in the assay system was 10.6 nM. For
each inhibitor, at least six traces of the initial 5–10% of the reac-
tion were used to determine the initial velocity. The uncatalyzed
rates were determined in the same manner and subtracted from
the total observed rates. Stock solutions of inhibitors (10–20mM)
were prepared in distilled-deionized water, and dilutions up to
10 nM were done thereafter with the assay buffer. Inhibitor and
enzyme solutions were preincubated together for 15min prior to
the assay, in order to allow for the formation of the E-I complex.
The inhibition constants were obtained by non-linear least-squares
methods using Prism 3 and the Cheng-Prusoff equation, as
reported previously3,4, and represent the mean from at least three
different determinations.

Table 1. Inhibition data of human CA isoforms I and II and protozoan enzyme
TcCA by a stopped-flow CO2 hydrase assay method [12] using the sulphonamide
acetazolamide (AAZ) as standard drug

Name Structure

Ki (mM)
a

hCA I hCA II TcCA

1 10.2 5.5 3.4

2 >100 5.5 2.1

3 >100 9.4 32.7

4 10.7 0.1 18.5

5 >100 >100 13.2

6 4.9 4.7 41.7

7 >100 >100 25.3

8 10.0 6.2 19.8

9 >100 0.1 15.1

10 9.9 7.1 4.5

11 9.8 10.6 28.4

12 68.9 95.3 17.8

13 6.3 4.9 13.6

14 57.8 57.5 47.9

15 >100 >100 21.1

(continued)

Table 1. Continued.

Name Structure

Ki (mM)
a

hCA I hCA II TcCA

16 38.8 33.9 7.3

17 >100 >100 26.9

18 1.1 0.5 2.4

19 5.7 5.2 15.9

20 4.2 4.1 7.1

21 1.1 1.3 4.8

22 2.4 1.6 1.8

AAZ – 0.25 0.012 0.06
aMean from three different assays, by a Stopped-Flow technique (errors were in
the range of ± 5–10% of the reported values).
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2.2. Chemistry

Compounds 1–22, buffers, acetazolamide AAZ and other reagents
were of > 99% purity and were commercially available from
Sigma-Aldrich (Milan, Italy).

3. Results and discussion

CAs possess several classes of inhibitors which interact with the
enzyme in a rather intricate and sometimes unexpected way13–16.
Indeed, the classical inhibitors, such as the inorganic/organic
anions, as well as the sulphonamides and their isosteres (sulfa-
mides and sulfamates) coordinate to the catalytic metal ion, which
is crucial for catalysis, and substitute the coordinated nucleophilic
water molecule/hydroxide ion13,14. However, many classes of CAIs
identified more recently, such as the phenols, polyamines, sulfo-
coumarins, alcohols, etc., interact with the enzyme in diverse
modes, inhibiting it by anchoring to the metal-ion coordinated
water molecule15,16, obstructing the entrance to the active site
cavity17,18, or even binding outside the active site19. In particular,
phenols, polyphenols, alcohols and more recently b-mercapto-
ethanol13,16 were shown by X-ray crystallography to anchor with
their OH moiety by means of hydrogen bond(s) to the zinc coordi-
nated water molecule (eventually making other strong interactions
with amino acid residues in the neighbourhood of the catalytic
core) in a-, b- and c-CAs, making this inhibition mechanism a quite
general one13,14. Initially, Lindskog’s group8 reported phenol to
act as a weak CAI, whereas Christianson’s group then resolved the
X-ray crystal structure of this compound bound to the human(h)
isoform hCA II9. Since then, many synthetic and natural phenols/
polyphenols were investigated for their interaction with many CAs
of diverse origin, leading to the discovery of interesting
leads10,11,20–24.

Considering the wealth of literature data on inhibition of vari-
ous CAs from mammals and pathogenic organisms with phenols,
and the lack of such studies for the inhibition of TcCA, here we
report the inhibition of this enzyme with a library of 22 phenols
(Table 1) investigated earlier for their interaction with human, bac-
terial and plasmodial CAs10–24. The following structure activity
relationship (SAR) can be evidenced from the inhibition data pre-
sented in Table 1, in which the hCA I and II inhibition data are
also provided for comparison reasons:

i. All phenols investigated here of types 1–22 inhibited TcCA
with KIs in the micromolar range, more precisely of 1.8–47.9
mM. It should be noted that the investigated compounds
incorporate one, two or three phenolic OH moieties, and
generally one two or three other simple substituents, of the
amino, hydroxyl, halogeno, carboxy, cyano, acetamido or
hydroxymethyl type. Few of them (21 and 22) possess the
carboxyethenyl moiety which is slightly bulkier compared to
the moieties present in the other scaffolds of type 1-20
(Table 1).

ii. The most effective TcCA inhibitors were 1, 2, 10, 16, 18 and
20-22, with KIs in the range of 1.8–7.3 mM. They include the
simple phenol 1, pyrocatechol 2, salicylic acid 10, 3,5-difluor-
ophenol 16, 3,4-dihydroxy-benzoic acid 18, 3,6- ihydroxy-
benzoic acid 20 as well as caffeic acid 22 and its des-hydroxy
analog 21. The best inhibitor was just caffeic acid 22 (KI of
1.8 mM) as well as pyrocatechol 2 (KI of 2.1 mM). It should be
noted that caffeic acid in fact incorporates in its molecule
the pyrocatechol fragment, also present in 18 (the next most
effective inhibitor in this series). However, this fragment not

always induced the most effective inhibitory power, as in
compound 5, it only led to a moderate inhibitor (KI of
13.2 mM).

iii. Slightly weaker TcCA inhibitory effects compared to the com-
pounds discussed above were observed for the following
phenols: 4, 5, 8, 9, 12, 13, and 19, which possessed KIs in
the range of 13.2–19.8 mM. The structure activity relationship
(SAR) is again not easy, since apart 19, which is a 2,6-dihy-
droxy-substituted phenol, the other derivatives generally
have a 4-substituent, of the OH, CN, acetamido, hydroxy-
methyl or Cl type. Thus, the structural diversity is rather high
in order to draw straightforward SAR conclusions.

iv. The least effective TcCA inhibitors were 3, 6, 7, 11, 14, 15,
and 17, which showed KIs in the range of 21.1–47.9 mM. As
mentioned above, also these derivatives possess a heteroge-
neous structure which makes SAR discussions not easy to
interpret. Howeve, it seems that the presence of amino
groups in meta or para to the phenol functionality (as in 6
and 14) was associated with weaker TcCA inhibitory proper-
ties. In fact these two compounds are the least effective
inhibitors (KIs of 41.7–47.9 mM). The presence of a chlorine in
para (in addition to the amino in meta) however increased
the inhibitory power, since compound 13 was a more effect-
ive TcCA inhibitor (KI of 13.6 mM) compared to 14. These two
compounds are position isomers, which demonstrates that
even small structural changes may lead to dramatic differen-
ces in the inhibitory power.

v. TcCA has a very diverse inhibition profile with phenols com-
pared to the human isoforms hCA I and II, for which these
compounds showed very diverse KIs (Table 1). However, all
phenols are much weaker CAIs compared to the sulphona-
mide acetazolamide, which is a nanomolar inhibitor for all
three enzymes.

4. Conclusions

Recently, several groups showed that the inhibitors of bacterial
CAs may lead to effective compounds for fighting drug resistant
bacteria24–26, although there was some relevant scepticism that
these enzymes could be considered as antiinfective drug targets27.
It took more than 10 years since the first proposal that bacterial
CAs may be new drug targets for the development of antibiotics28

till the actual in vivo validation of some of them, many of which
present in relevant and drug resistant bacterial pathogens, such
as Enterococci, Neisseria spp., Helicobacter pylori, etc25,26. This was
only possible through a dedicated medicinal chemistry approach
for developing new CAIs selective for the bacterial over the
human enzymes, but also due to the development of animal mod-
els of such bacterial diseases in which many of these compounds
were tested26. In the case of the protozoan CAIs, although there
are plenty of effective and rather selective in vitro inhibitors, there
is a lack of animal models of most such infections, partly due to
the complicated life cycles of these pathogens. This is particularly
true in the case of CD: T. cruzi has two evolutive forms, with the
first one being the circulating infective but not replicative form,
known as trypomastigotes, and the second one being the replica-
tive, intracellular form, known as amastigotes, which have also
been shown to be infective1,2. Thus, as long as there will be
impossible to test the efficacy of newly designed enzyme inhibi-
tors, as those investigated here, on both evolutive forms of T. cruzi
it is difficult to estimate the real contribution of protozoan CAs in
the pathogenicity and infectiveness of these protozoa.
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