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Interpersonal communication is based on questions and answers, and the most useful and simplest case is the binary “yes or no”
question and answer. -e purpose of this study is to show that it is possible to decode intentions on “yes” or “no” answers from
multichannel single-trial electroencephalograms, which were recorded while covertly answering to self-referential questions with
either “yes” or “no.” -e intention decoding algorithm consists of a common spatial pattern and support vector machine, which
are employed for the feature extraction and pattern classification, respectively, after dividing the overall time-frequency range into
subwindows of 200ms× 2Hz. -e decoding accuracy using the information within each subwindow was investigated to find
useful temporal and spectral ranges and found to be the highest for 800–1200ms in the alpha band or 200–400ms in the theta
band. When the features from multiple subwindows were utilized together, the accuracy was significantly increased up to ∼86%.
-e most useful features for the “yes/no” discrimination was found to be focused in the right frontal region in the theta band and
right centroparietal region in the alpha band, which may reflect the violation of autobiographic facts and higher cognitive load for
“no” compared to “yes.” Our task requires the subjects to answer self-referential questions just as in interpersonal conversation
without any self-regulation of the brain signals or high cognitive efforts, and the “yes” and “no” answers are decoded directly from
the brain activities. -is implies that the “mind reading” in a true sense is feasible. Beyond its contribution in fundamental
understanding of the neural mechanism of human intention, the decoding of “yes” or “no” from brain activities may eventually
lead to a natural brain-computer interface.

1. Introduction

-emost fundamental linguistic communication consists of
questions and answers, and the simplest one is the binary
“yes or no” question and answer. -is enables fundamental
interpersonal communications (e.g., “Is your name John?”
“Yes” or “Do you want to drink water?” “No”). So, by
decoding the intentions to answer either “yes” or “no” from
brain activities, a natural interpersonal communication tool,
which does not require any operant training or heavy
cognitive efforts, may be developed. As the first step toward
this, here we tried to demonstrate that it is possible to decode
the intentions to answer “yes” or “no” in response to self-
referential questions from noninvasive electroencephalo-
grams (EEGs) on single-trial basis. -is was motivated by

our recent studies which showed that the intentions to
answer “yes” or “no” to self-referential questions is repre-
sented significantly differently in event-related EEGs, par-
ticularly in alpha-band activities [1, 2].

Direct decoding of “yes” and “no” intentions may
eventually lead to advancement of the brain-computer in-
terface (BCI), which is a technological means to deliver
user’s intention to the external world (device or other
people) without behavioral outputs, by direct interpretation
of brain activities. -e most important target of the BCI is
the patients with severe motor impairment, who are unable
to communicate with others including those in the com-
pletely locked-in state (CLIS) due to amyotrophic lateral
sclerosis, spinal cord injury, and brainstem stroke [3–6]. One
of the most crucial technologies to enable the BCI is to read
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or “decode” the users’ intention from their brain activities.
Two major approaches have been pursued for the intention
decoding. -e first is based on voluntary self-regulation of
specific brain signals such as slow cortical potential [7] and
sensorimotor rhythms [8]. -is requires extensive operant
training using feedback and reward. Unfortunately, many
people are unable to regulate the brain activities as required,
which is known as “BCI illiteracy” [9, 10].-e other approach
utilizes evoked brain activities such as P300 event-related
potential (ERP) [11, 12] and steady-state evoked potential
[13, 14]. -e operant training is not required, but sustained
attention is needed to induce discriminable brain response
increases, resulting in significant cognitive workload.

Both approaches may not be so successful for the pa-
tients with CLIS [15]. It is speculated that the failure is due to
the extinction of goal-directed cognition and thought in the
CLIS patients [15]. An alternative approach for the mind
reading is crucial, which does not require volitional and
highly cognitive efforts. Birbaumer and colleagues suggested
an approach based on classical conditioning [16–18]. -ey
tried to associate language stimuli with unpleasant and
painful sensory stimuli so that cortical responses to these
nonlanguage stimuli are conditioned according to the lan-
guage stimuli. -is is remarkable considering that language
is the most natural means of communication.

-e specific aim of this study is to show that it is feasible
to decode “yes” and “no” answers in mind from single-trial
EEGs. We demonstrated that mind reading in a true sense,
which is based on the prediction of the intentions to answer
the questions from brain activities, is achievable. For the
intention decoding, the discriminative characteristics of
EEGs that we found in our previous study were utilized to
find the time-frequency features for “yes/no” decoding. -e
decoding algorithm was developed based on the same data
used in our previous study [2].

2. Materials and Methods

2.1. Subjects. 23 subjects with no record of neurological or
psychiatric illness participated in the experiment (age:
23.13± 2.97 years, 12 males). All the subjects were un-
dergraduate students of Yonsei University and right-handed
native Korean speakers. Written informed consent was
obtained from each subject before the experiment. -e
experimental procedure was approved by the Yonsei Uni-
versity Wonju Institutional Review Board (IRB). All ex-
periments were performed in accordance with the guidelines
and regulations of the IRB.

2.2. Experimental Task. Before the experiment, all subjects
completed a written questionnaire on their autobiographical
facts (e.g., job, name, age, and date of birth). We generated
two opposite types of questions from a single autobio-
graphical fact; one question should be answered “yes,” and
the other (i.e., autobiographical fact violation (AFV)) should
be answered “no.”-ese two questions were almost the same
except one critical word (italicized word in the example
below), which determined whether the question agreed with

the subject’s identity or not. For example, if the subject’s job
was a student, the two questions were as follows:

Type (a), to be answered “yes”: Is your job a student?
Type (b), to be answered “no”: Is your job a teacher?

In total, 40 type (a) questions and 40 type (b) questions
were generated based on the questionnaire for each subject.
Each question was composed of 2 or 3 Korean words, and
the average number of characters (Korean “Hangul”) in each
critical word was 3.18± 1.02. Each character had 3.3 cm
width and 4.27 cm height.

All questions were presented visually through com-
mercial software (PRESENTATION; Neurobehavioral sys-
tems, Berkeley, CA). After explaining the detailed procedure
of the experimental task, we requested the subjects to watch
each word presented on a 17 inch computer screen carefully
so that they can make immediate response as soon as
possible to the critical words. -e distance between the
subject’s eyes and the monitor was set to ∼0.75m. Each word
in a question was presented sequentially one by one on the
center of the monitor, as described below.

Figure 1(a) illustrates the experimental procedure. A
cross mark (“+”) for the fixation appeared for 1000ms and a
black screen followed for 300ms. And then, each word in a
question was presented sequentially for 300ms, with a black
screen for 300ms between the words. -e last word in the
question is referred to the critical word (CW), which was
presented for 300ms along with a question mark. Although
this question mark may naturally induce decision of “yes” or
“no” and thus evoke answer automatically, we instructed the
subjects not to make any response neither covertly nor
overtly but to retain the answer in mind during the 1 s blank
period. -is would enable us to explore the cortical activity
during retaining the information on “yes” or “no” in
working memory (WM). Finally, when “Please respond” (in
Korean) was presented for 300ms, the subjects were
requested to respond covertly in mind with either “yes” or
“no” without any behavioral responses.

Figure 1(b) illustrates expected temporal sequence of
cognitive processing following the CW onset until the
“Please respond” cue appeared, which was based on our
previous studies on cortical information processing of in-
tention [1, 2], which showed that the brain activities differed
between “yes” and “no” answers at both early (0∼600ms)
and late periods (600∼1300ms) relative to the CW onset. We
found that the early period was associated with semantic
processing and automatic decision to answer [1] (denoted by
a red box in Figure 1(b)), while the late period was involved
in the retention of the answer in memory (denoted by a blue
box in Figure 1(b)) until the “Respond cue” appeared
(denoted by a yellow box in Figure 1(b)) [2]. -us, the
temporal period of interest for decoding the intentions to
answer “yes” or “no” was the late period, corresponding to
retain the intention in mind (600∼1300ms).

Each subject performed two blocks of tasks. Each block
included all questions generated based on the questionnaire
(i.e., 40 type (a) and 40 type (b) questions), and 10 of 40
questions for each question type were randomly selected and
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presented once again. Consequently, each block included 50
type (a) and 50 type (b) questions in total. -e average
duration of each single trial (i.e., one question and answer)
was 4380± 274.95ms. -e total time for performing the
tasks was approximately 20minutes including at least
5minutes of rest between blocks.

2.3. Electroencephalogram (EEG) Recording and Data
Analysis. Sixty channel EEGs were recorded based on the
10–10 system using an EEG amplifier (Brain Products
GmbH, Munich, Germany) with an Ag/AgCl electrode cap
(EASYCAP, FMS, Munich, Germany). -e ground and
reference electrodes were at AFz and linked mastoids, re-
spectively. -e impedances of all electrodes were kept under
10 kΩ. -e sampling rate was 500 samples/s. A bandpass
filter (0.03–100Hz) and a notch filter (60Hz) were applied in
order to reduce background noise and powerline
interferences.

An open source toolbox EEGLAB was used for the whole
procedure of preprocessing [19]. First, single-trial EEGs
were segmented during the −500∼1300ms period relative to
the critical word onset. By visual inspection, we removed the
single-trial waveforms contaminated severely from non-
stereotyped artifacts such as drifts and discontinuity. -en,
an independent component analysis (ICA) was employed to
the remaining single-trial EEGs in order to correct the ocular
and muscular artifacts [20]. -e group-averaged percentage
of the number of epochs remaining per subject was 98.88±
3.08% and 97.96± 5.86% for “yes” and “no” questions,
respectively.

2.4. Yes/No Decoding. Figure 2(a) illustrates the structure of
“yes/no” intention decoding algorithm using local time-
frequency information. First, we selected 29 channels out of
60 (i.e., Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6,
T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8,
O1, Oz, and O2), following the standard 10–20 system. -is
was based on a recent simulation study which showed that
the decoding accuracy with the common spatial pattern
(CSP) spatial filtering was optimized when ∼30 channels
were used and decreased for more channels [21]. -e overall

time-frequency range (0–1200ms, 4–50Hz) was divided into
subwindows of 200ms× 2Hz. -e intention decoding
within each of the local time-frequency subwindows was
performed as follows. Single-trial EEGs were bandpass fil-
tered in the frequency range of the subwindow using a
linear-phase finite impulse response filter (the number of the
filter order: 512, bandwidth: 2Hz). -e multichannel
bandpass-filtered signals within the temporal period of the
subwindow were subsequently projected to the lower di-
mension (four dimensions) by the CSP algorithm [22]. -e
four time series obtained from the CSP spatial filter were
used to construct a four-dimensional feature vector, which
was passed to a support vectormachine (SVM) classifier.-e
final output of the classifier was either “yes” or “no,” a
decision of answer for each single trial.

-e performance of the trained classifier was validated
by 10-fold cross-validation as follows: First, for each class,
we randomly split all the trials into 10-folds with the same
number of trials (i.e., ∼10 trials per fold for each class).
-en, we randomly selected one fold (kth, where k � 1, 2,
. . ., 10) as a test data (10%) and trained the classifier using
the rest of data (i.e., 9 folds excepting the kth fold, 90%). In
order to keep a balance between the numbers of “yes” and
“no” trials, the training/testing data were selected within
each class (i.e., “yes” or “no”), as shown in Figure 2(b). -e
ground truth for each single trial was determined whether
the question in the single trial was including AFV or not.
-e decoding accuracy for each subject was estimated by
averaging the ratio of correct classification from 10 rep-
etitions (i.e., k � 1, 2, . . ., 10) of this procedure.

Additionally, we also made effective use all the features
obtained from multiple time-frequency subwindows, in
order to investigate whether more accurate decoding is
possible by combining useful features each of which was
localized in the time-frequency domain. -e time-fre-
quency subwindows were selected if the decoding accu-
racies for a specific subwindow were higher than a
predetermined threshold (2 × standard deviation above the
mean among all time-frequency subwindows). And then,
the classifier was trained and tested as described above,
with input feature vectors obtained by combining all the
selected subwindows.

Please
respondStudent?Job+

Fixation

1000 ms 300 ms 300 ms 700 ms300 ms 1000 ms

Blank Critical word

......

Cue

0 1000 500 1500 
Time relative to the critical word (CW) onset (ms)

Semantic processing/
automatic decision

Retaining
“yes/no” in mind

Covert
response

Stimuli

300 ms300 ms

CW Blank Cue

(b)

(a)
1st word

Expected cognitive 
processing

Figure 1: Experimental task: (a) presentation of stimuli; (b) expected temporal sequence of cognitive processing.
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2.5. Event-Related Spectral Perturbation (ERSP) Analysis.
-e time-frequency activation patterns, i.e., ERSPs, were
investigated to reveal statistical differences between “yes”
and “no” to find the time and frequency ranges of interests
for effective classification. A` continuous wavelet transform
(CWT) based on a complex Morlet wavelet was used for the
ERSP analysis [23]. -e number of cycles for the CWT
linearly increased according to the frequency from 4 to 13.5,
at the lowest (1Hz) and the highest frequencies (100Hz),
respectively [19]. -is method provides better frequency
resolution at high frequencies, and it is better matched to the
linear scale that we adopted to visualize the time-frequency
map [19]. -e induced spectral power was calculated by
averaging the ERSP patterns of each single trial [24]. -e
time-frequency distribution of ERSP patterns was repre-
sented as the ratio of the relative change to the power in a
baseline interval from −300 to 0ms prior to stimulus onset,
to reduce intersubject variability and to normalize power
changes across different frequency bands.

We employed the mass-univariate approach with the
cluster-based permutation test for correcting multiple com-
parisons [25] in order to find the time, frequency, and elec-
trode showing significant differences between “yes” and “no”
without a priori knowledge. Detailed procedure is as follows:

(1) A large number of paired-sample t-tests were applied
to the data for all time-frequency-electrode bins
within the range of 0–1200ms (time), 5–30Hz
(frequency), and 29 electrodes. -e number of bins
was 181,714� 241× 26× 29 since there were 241 time
samples, 26 frequency points, and 29 electrodes. -e

electrodes showing high t values were selected, and
the average power spectral power was calculated over
the selected electrodes, as follows. First, from spatial
distribution of the t values averaged within the
frequency band of interest (e.g., theta band: 4–8Hz;
alpha band: 8–13Hz) during the overall time period
(0–1200ms), the electrodes showing higher p values
above a predetermined threshold (the upper 10%
highest value) were selected. -e average power
spectral power was calculated over the selected
electrodes for the next step.

(2) After significant locations were found in step 1, time-
frequency bins were screened to be significant
among all 6,266 (�241× 26) bins if p values were
below a predetermined threshold (p< 0.05). A
cluster of time-frequency bins was formed if more
than two successive bins were selected along either
time or frequency axis. Sum of t values within the
cluster, tmass, was then calculated and compared with
the null distribution of surrogate data to determine
statistical significance of the cluster (above the highest
5% of the null distribution). -e null distribution of
tmass was obtained from the largest values of tmass for
each of 5,000 surrogate data, which were derived by
random permutation of “yes” and “no” answers.

2.6. Feature Extraction by Common Spatial Pattern (CSP)
Filtering. CSP is a mathematical procedure to derive a
spatial filter which separates a multichannel signal into
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Figure 2: (a) Block diagram of the intention decoding algorithm; (b) the number of trials which was selected as training and testing data
within each answer type for each subject.
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additive subcomponents so that the differences of variances
are maximized between two classes. -at is, the most dis-
criminative features between two classes are obtained by
maximizing the variance of the spatially filtered signal of one
class while minimizing that of the other class [22]. -e CSP
algorithm is recognized to be effective for the discrimination
of mental states from event-related EEG spectral powers
[26]. -e results of the CSP can be visualized as a topo-
graphic map on the scalp, which facilitates interpretation of
functional neuroanatomical meanings [26].

-e CSP spatial filter, W, can be obtained by simulta-
neous diagonalization of two covariance matrices of classes 1
and 2 as follows:

WTΣ1W � Λ1,

WTΣ2W � Λ2,
(1)

where Λ1 + Λ2 � I. Σ1 and Σ2 represent the spatial co-
variance matrices averaged over all single-trial EEGs for
each class, and Λ1 and Λ2 denote the diagonal matrices. -e
projection vector, w (column vectors of W), can be ob-
tained from a generalized eigenvalue decomposition as
follows:

Σ1wk � λkΣ2wk, (2)

wherewk (k� 1, . . ., C, where C is the number of channels) is
the generalized eigenvector, and λ1,k � wT

kΣ1wk and λ2,k �

wT
kΣ2wk are defined as the k

th diagonal element ofΛ1 andΛ2,
respectively, where λk � λ1,k/λ2,k. Importantly, λ1,k and λ2,k

(ranges from 0 to 1) reflect the variance for each class and
λ1,k + λ2,k � 1.-us, if λ1,k is close to 1, λ2,k should be close to
0. -is means that corresponding projection vector, wk,
shows high variance in class 1 but low variance in class 2.-e
difference in variances between these two classes enables
discriminating one class from another. -e eigenvalues are
sorted in the descending order during calculation, meaning
that the first projection vector yields the highest variance for
class 1 (but the lowest for class 2), whereas the last projection
vector yields the highest variance for class 2 (but lowest for
class 1). -us, the first and last projection vectors are the
most useful for the discrimination [22].

-e spatial filter W provides the decomposition of a
single-trial multichannel EEG, E, as Z�WTE, where E is
represented as a matrix with C (the number of channels)
rows and T (the number of time samples) columns. -e
columns of W−1 form the common spatial patterns and can
be visualized as topographies on scalp. -e variances of the
spatially filtered time-series Z are calculated as features for
the classification as follows:

fp � log
var Zp 


2m
i�1var Zi( 

⎛⎝ ⎞⎠, where p � 1, 2, . . . , 2m, (3)

where p is the number of features. m was set to 2 which
means that the first 2 and last 2 projection vectors were used
as features, and thus, the number of features p was 4 for all
classifications. -e log transformation was adopted to ap-
proximate the normal distribution of the data.

2.7. Pattern Classification Using Support Vector Machine
(SVM). SVM has been recognized to be a practical and
robust method for the classification of human brain signals
[27, 28]. -e SVM is trained to determine an optimal hy-
perplane by which the distance to the support vectors
(closest to the separating boundary) is maximized [29, 30].
In the case of the linear SVM classification, the hyperplane
aTx+ b satisfies

yi aTxi + b ≥ 1− ξi, for i � 1, . . . , N, (4)

where xi � {fp,i} denotes a feature vector (in which p � 1, . . .,
4) which can be obtained from the CSP algorithm and
yi ∈ +1,−1{ } denotes its correct class label. N and ξi denote
the total number of training samples and the deviation from
the optimal condition of linear separability, respectively.-e
pair of hyperplanes that provide the maximum separating
margin can be found by minimizing the cost function
(1/2)aTa + P

N
i�1ξi subject to the constraints

yi aTxi + b ≥ 1− ξi,

ξi ≥ 0, for i � 1, . . . , N,
(5)

where P> 0 represents a regularization penalty parameter
of the error term. By transforming this optimization
problem into its dual problem, the solution may be de-
termined as a � 

N
i�1αiyixi and achieves equality for

nonzero values of αi only. -e corresponding data samples
are referred to as support vectors, which are crucial to
identify the decision boundary. Instead of the basic linear
SVM, we used a radial basis function (RBF) kernel which
nonlinearly projects the feature vectors onto a higher
dimensional space and thus is better suited for nonlinear
relationships between features and class labels [29]. -e
detailed parameters of the SVM including the RBF kernel
parameter and regularization penalty were determined by
trial-and-error.

3. Results

3.1. Yes/No Decoding. Figure 3 shows the time-frequency
representation of the “yes/no” decoding accuracy averaged
over all subjects for each time-frequency subwindow. -e
time-frequency map of decoding accuracy was generated by
representing the decoding accuracies averaged over all
subjects within each time-frequency subwindow, which
enables estimation of the decoding accuracies over all time-
frequency ranges. We used two criteria to define the most
important time-frequency subwindows showing high
decoding accuracies. -e first was to use the threshold level
of a decoding accuracy of 75%, determined by the theoretical
95% confidence limits of the chance level when 10 trials per
class are used for testing [31]. Another criterion was that the
decoding accuracy should be above the mean + 2× standard
deviation value (79.34% here). -e high decoding accuracies
above these two threshold levels were obtained for three
subwindows in the alpha and theta bands (as denoted by the
three boxes in Figure 3) for both early and late periods. -e
highest and second highest decoding accuracies were found
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in the upper alpha band (10–12Hz) at late epoch (box ①:
81.08± 8.89% at the 1000–1200ms, box②: 79.99± 8.99% at
the 800–1000ms). Also, the third highest decoding accuracy
was found in the upper theta band (6–8Hz) at the early
period (box③: 79.76± 10.21% at the 200–400ms). When all
12 features within these three best time-frequency sub-
windows were used together, the decoding accuracy was
drastically enhanced compared to the best subwindow
(10–12Hz, 1000–1200ms), as shown in Figure 4(a) (single:
81.08± 8.89%, combined: 86.03± 8.69%, t(22)�−5.95,
p< 0.001, by the paired-sample t-test). -e individual
decoding accuracies are presented in Table 1. -e sensitivity
and specificity values for each time-frequency subwindow
are presented in Supplementary Figure 1.

3.2. Spatial Patterns. Figure 5 shows the difference between
the most important common spatial patterns for “no” and
“yes” answers within the three time-frequency subwindows

(averaged over all subjects). Each topography was obtained
from the difference between the last (“no” answer) and first
columns (“yes” answer) of the inverse matrix of the pro-
jection matrix, W, for each subject (Supplementary Fig-
ure 2), which was calculated in each time-frequency
subwindow and then averaged over all subjects. -e dif-
ference between the most important common spatial pat-
terns in the alpha band showed the strongest coefficient at
the right centroparietal region at both 1000–1200ms and
800–1000ms periods (the leftmost and middle panels in
Figure 5, respectively). -e difference between the most
important common spatial pattern in the theta band at the
200–400ms period was focused in the right frontal regions
(the rightmost panel in Figure 5).

3.3. Event-Related Spectral Perturbation (ERSP) Analysis.
Figure 6(a) shows the topographical distributions of t values
averaged within the theta band (4–8Hz) in 0–1200ms.-e 3
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electrodes (FC2, FC6, and C4) showing high t values above a
predetermined threshold (t> 1.62, corresponding to the
highest 10%) were selected over the right frontal region
(denoted by black dots in the left panel in Figure 6(a)).
Significant “yes/no” difference was found within a single
time-frequency range around 200–800ms in the upper theta
and lower alpha bands (6–10Hz), which was stronger for
“no” compared to “yes” (denoted by a solid contour in the
left panel in Figure 6(b)).

In the alpha band, 3 electrodes in right parietal area
(CP2, Pz, and P4) with high t values were selected as de-
scribed above (t> 1.52, the highest 10%) as denoted by black
dots in the right panel in Figure 6(a).-e “yes/no” difference
in spectral power in this region was significant within a
single time-frequency range (300–1200ms, 9–12Hz), where
the alpha-band power was stronger for “no” compared to
“yes” (denoted by a solid contour in the right panel in
Figure 6(b)).

Table 1: Decoding accuracies for individual subjects.

Subject TF subwindow ① TF subwindow ② TF subwindow ③ Combined features

1 86.89± 6.52
(78.95, 100)

88.95± 4.35
(80.00, 95.00)

87.37± 9.47
(70.00, 100)

94.50± 3.50
(90.00, 100)

2 71.00± 6.63
(55.00, 80.00)

74.50± 10.11
(55.00, 90.00)

78.00± 9.80
(65.00, 95.00)

80.00± 10.49
(60.00, 95.00)

3 76.00± 10.20
(60.00, 90.00)

79.00± 6.63
(65.00, 90.00)

82.00± 7.14
(65.00, 90.00)

85.50± 7.89
(65.00, 95.00)

4 80.50± 8.79
(65.00, 95.00)

75.50± 7.23
(65.00, 90.00)

71.00± 8.00
(60.00, 85.00)

84.00± 3.74
(80.00, 90.00)

5 88.00± 3.32
(85.00, 95.00)

89.00± 10.44
(65.00, 100)

92.00± 7.48
(75.00, 100)

96.00± 4.90
(85.00, 100)

6 90.00± 7.07
(75.00, 100)

90.50± 4.15
(85.00, 95.00)

92.00± 5.57
(85.00, 100)

93.00± 4.00
(85.00, 100)

7 78.47± 13.21
(45.00, 94.74)

77.45± 10.00
(65.00, 100)

77.42± 9.75
(60.00, 90.00)

84.45± 8.17
(65.00, 95.00)

8 83.00± 5.57
(75.00, 95.00)

75.50± 7.57
(65.00, 85.00)

80.50± 7.57
(65.00, 90.00)

88.00± 8.72
(75.00, 100)

9 73.50± 9.76
(55.00, 85.00)

70.00± 8.37
(60.00, 85.00)

68.00± 6.40
(55.00, 80.00)

77.00± 8.12
(65.00, 90.00)

10 78.64± 10.95
(60.00, 94.74)

68.54± 8.60
(60.00, 89.47)

76.09± 12.77
(50.00, 94.74)

82.73± 6.25
(70.00, 90.00)

11 76.54± 7.58
(63.16, 85.00)

76.34± 9.54
(60.00, 89.47)

67.59± 6.00
(60.00, 75.00)

79.54± 6.25
(66.67, 90.00)

12 92.95± 3.37
(89.47, 100)

94.00± 7.35
(75.00, 100)

95.97± 3.75
(90.00, 100)

97.97± 2.48
(94.74, 100)

13 87.89± 6.54
(78.95, 100)

82.84± 9.76
(65.00, 95.00)

74.42± 12.27
(50.00, 90.00)

85.45± 8.17
(70.00, 100)

14 60.00± 7.75
(45.00, 75.00)

65.00± 10.25
(45.00, 75.00)

69.50± 14.04
(50.00, 90.00)

70.00± 10.49
(50.00, 85.00)

15 69.58± 14.98
(44.44, 88.89)

79.53± 10.70
(55.56, 94.44)

58.96± 13.75
(33.33, 77.78)

74.55± 10.76
(57.89, 94.44)

16 68.95± 8.49
(60.00, 90.00)

64.51± 6.80
(50.00, 75.00)

67.45± 8.21
(55.00, 80.00)

69.48± 7.00
(60.00, 85.00)

17 79.00± 9.43
(65.00, 90.00)

77.00± 7.14
(65.00, 85.00)

83.00± 9.00
(70.00, 95.00)

89.50± 7.89
(80.00, 100)

18 81.50± 8.67
(65.00, 100)

80.00± 9.22
(60.00, 90.00)

88.00± 7.14
(70.00, 95.00)

93.50± 5.50
(80.00, 100)

19 93.00± 5.10
(85.00, 100)

97.00± 4.00
(90.00, 100)

94.50± 2.69
(90.00, 100)

98.00± 2.45
(95.00, 100)

20 90.50± 4.72
(85.00, 100)

89.50± 6.10
(80.00, 100)

88.50± 6.73
(75.00, 100)

96.50± 4.50
(85.00, 100)

21 87.00± 7.48
(70.00, 95.00)

83.00± 9.27
(65.00, 100)

83.50± 5.50
(75.00, 95.00)

91.50± 5.94
(80.00, 100)

22 78.00± 8.72
(60.00, 90.00)

73.50± 8.08
(55.00, 85.00)

70.00± 8.66
(55.00, 85.00)

77.00± 4.00
(70.00, 85.00)

23 93.82± 5.51
(87.50, 100)

88.62± 8.34
(66.67, 100)

88.77± 6.86
(75.00, 100)

90.61± 9.01
(73.33, 100)

Ave 81.08± 8.89
(60.00, 93.82)

79.99± 8.99
(64.51, 97.00)

79.76± 10.21
(67.45, 95.97)

86.03± 8.69
(69.48, 98.00)

Value: mean± standard deviation (SD) of decoding accuracy (%).-e range of decoding accuracies was in parenthesis. Abbreviation: TF, time frequency; Ave,
average values over all subjects.
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4. Discussion

We showed that it is possible to decode the intentions to
answer “yes” and “no” with high accuracy from single-trial
EEGs. -e best decoding accuracy averaged over 23 subjects
was as high as 86.03% when useful features in multiple
time-frequency subwindows were all combined. -e
decoding accuracy was above 70% for most of the subjects

(22 out of 23 subjects), which is considered as a reasonable
accuracy for the binary classification [32]. We decoded the
“yes” and “no” answers directly from the brain activities
representing the two different answers, which implies that
the “mind reading” in a true sense is feasible. -e exper-
imental paradigm of our study is based on a natural task
which required the subjects to answer self-referential
questions as in conversation with others, without any self-
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Figure 5: Difference between the most important common spatial patterns for “no” and “yes” answers averaged over all subjects within 3
time-frequency subwindows. -e topography was obtained from the difference between the last (“no” answer) and first (“yes” answer)
columns of the inverse of the matrix, W, for each subject and then averaged over all subjects.
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Figure 6: Statistical comparisons in spectral power between “yes” and “no.” (a) Topographical distributions of t values (left: theta band
(4–8Hz), 0–1200ms; right: alpha band (8–13Hz), 0–1200ms). Black dots (FC2, FC6, and C4 in the left panel and CP2, Pz, and P4 in the right
panel) denote high t values above a predetermined threshold, corresponding to the highest 10%. (b) -e clusters in the time-frequency
domain showing significant differences between “yes” and “no” in right frontal (left panel) and right parietal regions (right panel) (denoted
by black contours).
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regulation of the brain signals or high cognitive efforts. No
unpleasant stimuli and volition or high cognitive efforts are
required since our approach is based on a direct decoding
of “yes” and “no” without any self-regulation of the brain
signals. Birbaumer’s group has suggested a new alternative
approach based on classical conditioning to solve the
problem of conventional BCI in the CLIS patients [16–18].
For the training, two distinct unconditioned stimuli are
presented to the subjects immediately after the simple “yes/
no” questions (corresponding to the conditioned stimuli)
so that the cortical responses can be conditioned differently
for yes and no. -e unconditioned stimuli include auditory
pink noise and white noise [16, 18] and weak electrical
stimulation to the thumb [17]. -e main idea of this ap-
proach is to modulate the users’ brain activities indirectly
through the unconditioned stimuli so that “yes” and “no”
can be easily discriminated from neural signals responding
to the sensory stimuli, rather than to read the users’ an-
swers from neural signals. -is approach may provide an
alternative to the conventional BCI approaches in that
volition, or high cognitive efforts are not required. How-
ever, it remains unclear how long the conditioned cortical
response can be maintained considering the extinction
effect of classical conditioning [33]. Moreover, un-
conditioned stimuli such as auditory noise or electrical
stimulation can evoke significant displeasure.

Recently, a more natural approach for the “yes/no”
decoding was demonstrated based on functional near-in-
frared spectroscopy (fNIRS) in the CLIS patients [34]. -ey
achieved “yes/no” decoding accuracy over 70% based on
fNIRS signals, which were recorded, while the patients
answered “yes” or “no” to personal and open questions in
minds repeatedly. Interestingly, for the same experimental
protocol, they reported that EEG-based decoding yielded
accuracy below the chance level. -is study employed a
natural question/answer task which does not require high
cognitive efforts or volition, just as ours. But due to the slow
nature of hemodynamics, the duration of each trial for the
decoding was quite long (>10 sec). Here, we showed the
possibility of “yes/no” decoding from considerably shorter
signal recording, which is more beneficial for a practical
BCI communication tool.

We took a systematic approach of finding features of
brain activities reflecting “yes/no” answers in minds and
then developing the decoding algorithm by utilizing these
features. Further studies may be necessary to investigate
whether the patients, who would potentially benefit from
the BCI, can hold the intentions to answer in minds for a
short time and to validate our method on the patients’ data.

In this study, the intentions regarding self-referential
questions based on the autobiographic facts were in-
vestigated. It is important to further try decoding the in-
tentions to answer various types of questions including
desire, feeling, and preference. In addition, our questions
were presented only in visual stimuli. Neurological patients
may have an abnormal visual function such as disability to
fix their gaze on specific visual stimuli [35]. Different sensory
modality such as auditory stimuli has been tried for the BCI
communication tools [34, 36]. It would be beneficial if our

approach can be validated with auditory stimuli such as
voice, considering that a high decoding accuracy above 80%
was obtained even when the brain activities during the
period of retaining the decision in minds (10–12Hz,
1000–1200ms) used for the decoding.-us, we expect that it
is possible to decode the “yes” and “no” intentions in a
similar way, even if other types of questions and/or the
auditory stimuli are employed in the further studies. In
addition, here, we did not try to optimize the detailed pa-
rameters of the SVM, including the RBF kernel parameter
and regularization penalty. -e use of the best parameters of
the SVM, for example, by using the “grid-search” method
[37], may be obviously helpful for better results.

We found two time-frequency regions containing useful
information for the “yes/no” decoding, in early theta and late
alpha bands.-e useful features for the “yes/no” decoding in
the alpha band were found to be concentrated in the parietal
region at 800–1200ms from the CSP algorithm. Recently, we
showed that the alpha rhythms in the right parietal region
are differentiated between the intentions to answers either
“yes” or “no” in minds, presumably due to the difference in
cognitive loads for the WM retention [2]. Several previous
studies showed that the higher parietal alpha power reflects
increased memory load [38, 39] or attentional demand
[40, 41] during WM retention. -e higher alpha power is
attributed to active inhibitory control to block incoming
stimuli during WM retention, for efficient cortical in-
formation processing [38, 39, 42, 43]. Our results showed
higher parietal alpha power for “no” compared to “yes,”
which may imply higher cognitive load during retaining
“no” in minds compared to “yes” [2]. -e greater increase in
alpha-band activity for “no” may reflect the increased WM
load during the intention retention. In Korean language,
“yes,” is the one-character word, “네,” and “no” is three-
character word, “아니오.” It is plausible that the higherWM
load is required to represent intention to respond “no” than
“yes” due to the length of the Korean words, resulting in the
higher alpha rhythm. -is assumption is supported by an
ERP study which reported that greater alpha-band power
was induced for retaining longer word [44].

It can also be interpreted that the significantly higher
alpha-band activity in the centroparietal region for “no” is
due to the higher attentional demand [40, 45], and this
contributed to the high decoding accuracy. -is is also in
agreement with a recent study [46], which reported that a
higher alpha rhythm was identified in the right parietal
cortex for a higher internal attention condition during a
divergent thinking task. Our result of greater alpha power
for “no” than for “yes” may imply a stronger inhibition of the
outer stimuli by the bottom-up attention network for “no,”
induced by higher internal attentional demand. -is is
supported by psychophysical which showed that saying “no”
requires more effortful reconsideration after comprehending
a sentence and a longer response time for saying “no” than
“yes” [47, 48].

-e theta-band activity in the frontal region in 200–
500ms was another major feature for “yes/no” decoding.
-e theta ERS showed topography focused on midline
frontal and lateral temporal regions. -e difference

Computational Intelligence and Neuroscience 9



between “yes” and “no” was also most prominent in these
regions. Hald et al. reported that temporal and frontal
theta-band activity in 300–800ms was significantly higher
in semantically incongruent compared to congruent
sentences [49]. -is is commensurate with our result in
that “no” stimuli are incongruent with autobiographic
facts. -e increase of theta-band activity for semantic
incongruence was interpreted to reflect the general error
detection mechanism, which is associated with error-re-
lated negativity (ERN) [50]. Interestingly, Luu and Tucker
showed that frequency domain analysis of the ERN yields
theta-band activity in the midfrontal region [50]. A related
study reported higher theta oscillation for syntactic vio-
lation as well [51]. We observed that frontal theta power in
200–500ms contributed to high decoding accuracy.
Considering the location and frequency band, our result
on the usefulness of frontal theta power in 200–500ms can
be interpreted as another evidence, suggesting that error-
related frontal theta oscillation is a general phenomenon
underlying processing of incoming stimuli containing
violation with internal information.
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